mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
182 lines
No EOL
6.9 KiB
Markdown
182 lines
No EOL
6.9 KiB
Markdown
## G4F - File API Documentation with Web Download and Enhanced File Support
|
|
|
|
This document details the enhanced G4F File API, allowing users to upload files, download files from web URLs, and process a wider range of file types for integration with language models.
|
|
|
|
**Key Improvements:**
|
|
|
|
* **Web URL Downloads:** Upload a `downloads.json` file to your bucket containing a list of URLs. The API will download and process these files. Example: `[{"url": "https://example.com/document.pdf"}]`
|
|
|
|
* **Expanded File Support:** Added support for additional plain text file extensions: `.txt`, `.xml`, `.json`, `.js`, `.har`, `.sh`, `.py`, `.php`, `.css`, `.yaml`, `.sql`, `.log`, `.csv`, `.twig`, `.md`. Binary file support remains for `.pdf`, `.html`, `.docx`, `.odt`, `.epub`, `.xlsx`, and `.zip`.
|
|
|
|
* **Server-Sent Events (SSE):** SSE are now used to provide asynchronous updates on file download and processing progress. This improves the user experience, particularly for large files and multiple downloads.
|
|
|
|
|
|
**API Endpoints:**
|
|
|
|
* **Upload:** `/v1/files/{bucket_id}` (POST)
|
|
|
|
* **Method:** POST
|
|
* **Path Parameters:** `bucket_id` (Generated by your own. For example a UUID)
|
|
* **Body:** Multipart/form-data with files OR a `downloads.json` file containing URLs.
|
|
* **Response:** JSON object with `bucket_id`, `url`, and a list of uploaded/downloaded filenames.
|
|
|
|
|
|
* **Retrieve:** `/v1/files/{bucket_id}` (GET)
|
|
|
|
* **Method:** GET
|
|
* **Path Parameters:** `bucket_id`
|
|
* **Query Parameters:**
|
|
* `delete_files`: (Optional, boolean, default `true`) Delete files after retrieval.
|
|
* `refine_chunks_with_spacy`: (Optional, boolean, default `false`) Apply spaCy-based refinement.
|
|
* **Response:** Streaming response with extracted text, separated by ``` markers. SSE updates are sent if the `Accept` header includes `text/event-stream`.
|
|
|
|
|
|
**Example Usage (Python):**
|
|
|
|
```python
|
|
import requests
|
|
import uuid
|
|
import json
|
|
|
|
def upload_and_process(files_or_urls, bucket_id=None):
|
|
if bucket_id is None:
|
|
bucket_id = str(uuid.uuid4())
|
|
|
|
if isinstance(files_or_urls, list): #URLs
|
|
files = {'files': ('downloads.json', json.dumps(files_or_urls), 'application/json')}
|
|
elif isinstance(files_or_urls, dict): #Files
|
|
files = files_or_urls
|
|
else:
|
|
raise ValueError("files_or_urls must be a list of URLs or a dictionary of files")
|
|
|
|
upload_response = requests.post(f'http://localhost:1337/v1/files/{bucket_id}', files=files)
|
|
|
|
if upload_response.status_code == 200:
|
|
upload_data = upload_response.json()
|
|
print(f"Upload successful. Bucket ID: {upload_data['bucket_id']}")
|
|
else:
|
|
print(f"Upload failed: {upload_response.status_code} - {upload_response.text}")
|
|
|
|
response = requests.get(f'http://localhost:1337/v1/files/{bucket_id}', stream=True, headers={'Accept': 'text/event-stream'})
|
|
for line in response.iter_lines():
|
|
if line:
|
|
line = line.decode('utf-8')
|
|
if line.startswith('data:'):
|
|
try:
|
|
data = json.loads(line[5:]) #remove data: prefix
|
|
if "action" in data:
|
|
print(f"SSE Event: {data}")
|
|
elif "error" in data:
|
|
print(f"Error: {data['error']['message']}")
|
|
else:
|
|
print(f"File data received: {data}") #Assuming it's file content
|
|
except json.JSONDecodeError as e:
|
|
print(f"Error decoding JSON: {e}")
|
|
else:
|
|
print(f"Unhandled SSE event: {line}")
|
|
response.close()
|
|
|
|
# Example with URLs
|
|
urls = [{"url": "https://github.com/xtekky/gpt4free/issues"}]
|
|
bucket_id = upload_and_process(urls)
|
|
|
|
#Example with files
|
|
files = {'files': open('document.pdf', 'rb'), 'files': open('data.json', 'rb')}
|
|
bucket_id = upload_and_process(files)
|
|
```
|
|
|
|
|
|
**Example Usage (JavaScript):**
|
|
|
|
```javascript
|
|
function uuid() {
|
|
return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c =>
|
|
(c ^ crypto.getRandomValues(new Uint8Array(1))[0] & 15 >> c / 4).toString(16)
|
|
);
|
|
}
|
|
|
|
async function upload_files_or_urls(data) {
|
|
let bucket_id = uuid(); // Use a random generated key for your bucket
|
|
|
|
let formData = new FormData();
|
|
if (typeof data === "object" && data.constructor === Array) { //URLs
|
|
const blob = new Blob([JSON.stringify(data)], { type: 'application/json' });
|
|
const file = new File([blob], 'downloads.json', { type: 'application/json' }); // Create File object
|
|
formData.append('files', file); // Append as a file
|
|
} else { //Files
|
|
Array.from(data).forEach(file => {
|
|
formData.append('files', file);
|
|
});
|
|
}
|
|
|
|
await fetch("/v1/files/" + bucket_id, {
|
|
method: 'POST',
|
|
body: formData
|
|
});
|
|
|
|
function connectToSSE(url) {
|
|
const eventSource = new EventSource(url);
|
|
eventSource.onmessage = (event) => {
|
|
const data = JSON.parse(event.data);
|
|
if (data.error) {
|
|
console.error("Error:", data.error.message);
|
|
} else if (data.action === "done") {
|
|
console.log("Files loaded successfully. Bucket ID:", bucket_id);
|
|
// Use bucket_id in your LLM prompt.
|
|
const prompt = `Use files from bucket. ${JSON.stringify({"bucket_id": bucket_id})} to answer this: ...your question...`;
|
|
// ... Send prompt to your language model ...
|
|
} else {
|
|
console.log("SSE Event:", data); // Update UI with progress as needed
|
|
}
|
|
};
|
|
eventSource.onerror = (event) => {
|
|
console.error("SSE Error:", event);
|
|
eventSource.close();
|
|
};
|
|
}
|
|
|
|
connectToSSE(`/v1/files/${bucket_id}`); //Retrieve and refine
|
|
}
|
|
|
|
// Example with URLs
|
|
const urls = [{"url": "https://github.com/xtekky/gpt4free/issues"}];
|
|
upload_files_or_urls(urls)
|
|
|
|
// Example with files (using a file input element)
|
|
const fileInput = document.getElementById('fileInput');
|
|
fileInput.addEventListener('change', () => {
|
|
upload_files_or_urls(fileInput.files);
|
|
});
|
|
```
|
|
|
|
**Integrating with `ChatCompletion`:**
|
|
|
|
To incorporate file uploads into your client applications, include the `tool_calls` parameter in your chat completion requests, using the `bucket_tool` function. The `bucket_id` is passed as a JSON object within your prompt.
|
|
|
|
|
|
```json
|
|
{
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "Answer this question using the files in the specified bucket: ...your question...\n{\"bucket_id\": \"your_actual_bucket_id\"}"
|
|
}
|
|
],
|
|
"tool_calls": [
|
|
{
|
|
"function": {
|
|
"name": "bucket_tool"
|
|
},
|
|
"type": "function"
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
**Important Considerations:**
|
|
|
|
* **Error Handling:** Implement robust error handling in both Python and JavaScript to gracefully manage potential issues during file uploads, downloads, and API interactions.
|
|
* **Dependencies:** Ensure all required packages are installed (`pip install -U g4f[files]` for Python).
|
|
|
|
---
|
|
[Return to Home](/) |