mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-12-31 22:32:13 -08:00
Merge branch 'AUTOMATIC1111:master' into Inspiron
This commit is contained in:
commit
5bfa2b23ca
13 changed files with 1043 additions and 719 deletions
|
|
@ -45,7 +45,7 @@ def enable_tf32():
|
|||
|
||||
errors.run(enable_tf32, "Enabling TF32")
|
||||
|
||||
device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = None
|
||||
device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
|
||||
dtype = torch.float16
|
||||
dtype_vae = torch.float16
|
||||
|
||||
|
|
@ -81,3 +81,7 @@ def autocast(disable=False):
|
|||
return contextlib.nullcontext()
|
||||
|
||||
return torch.autocast("cuda")
|
||||
|
||||
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
|
||||
def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor
|
||||
def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device)
|
||||
|
|
|
|||
|
|
@ -190,7 +190,7 @@ def upscale_without_tiling(model, img):
|
|||
img = img[:, :, ::-1]
|
||||
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_esrgan)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
|
|
|
|||
|
|
@ -16,7 +16,7 @@ from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
|||
from fonts.ttf import Roboto
|
||||
import string
|
||||
|
||||
from modules import sd_samplers, shared
|
||||
from modules import sd_samplers, shared, script_callbacks
|
||||
from modules.shared import opts, cmd_opts
|
||||
|
||||
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
||||
|
|
@ -344,7 +344,10 @@ class FilenameGenerator:
|
|||
time_datetime = datetime.datetime.now()
|
||||
|
||||
time_format = args[0] if len(args) > 0 else self.default_time_format
|
||||
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
|
||||
try:
|
||||
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
|
||||
except pytz.exceptions.UnknownTimeZoneError as _:
|
||||
time_zone = None
|
||||
|
||||
time_zone_time = time_datetime.astimezone(time_zone)
|
||||
try:
|
||||
|
|
@ -474,8 +477,10 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||
if forced_filename is None:
|
||||
if short_filename or seed is None:
|
||||
file_decoration = ""
|
||||
else:
|
||||
elif opts.save_to_dirs:
|
||||
file_decoration = opts.samples_filename_pattern or "[seed]"
|
||||
else:
|
||||
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
||||
|
||||
add_number = opts.save_images_add_number or file_decoration == ''
|
||||
|
||||
|
|
@ -536,6 +541,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||
else:
|
||||
txt_fullfn = None
|
||||
|
||||
script_callbacks.image_saved_callback(image, p, fullfn, txt_fullfn)
|
||||
return fullfn, txt_fullfn
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -1,37 +1,69 @@
|
|||
import sys
|
||||
import traceback
|
||||
from collections import namedtuple
|
||||
import inspect
|
||||
|
||||
|
||||
def report_exception(c, job):
|
||||
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
|
||||
print(traceback.format_exc(), file=sys.stderr)
|
||||
|
||||
|
||||
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
||||
callbacks_model_loaded = []
|
||||
callbacks_ui_tabs = []
|
||||
callbacks_ui_settings = []
|
||||
|
||||
callbacks_image_saved = []
|
||||
|
||||
def clear_callbacks():
|
||||
callbacks_model_loaded.clear()
|
||||
callbacks_ui_tabs.clear()
|
||||
callbacks_image_saved.clear()
|
||||
|
||||
|
||||
def model_loaded_callback(sd_model):
|
||||
for callback in callbacks_model_loaded:
|
||||
callback(sd_model)
|
||||
for c in callbacks_model_loaded:
|
||||
try:
|
||||
c.callback(sd_model)
|
||||
except Exception:
|
||||
report_exception(c, 'model_loaded_callback')
|
||||
|
||||
|
||||
def ui_tabs_callback():
|
||||
res = []
|
||||
|
||||
for callback in callbacks_ui_tabs:
|
||||
res += callback() or []
|
||||
for c in callbacks_ui_tabs:
|
||||
try:
|
||||
res += c.callback() or []
|
||||
except Exception:
|
||||
report_exception(c, 'ui_tabs_callback')
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def ui_settings_callback():
|
||||
for callback in callbacks_ui_settings:
|
||||
callback()
|
||||
for c in callbacks_ui_settings:
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
report_exception(c, 'ui_settings_callback')
|
||||
|
||||
|
||||
def add_callback(callbacks, fun):
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
|
||||
|
||||
callbacks.append(ScriptCallback(filename, fun))
|
||||
|
||||
|
||||
def image_saved_callback(image, p, fullfn, txt_fullfn):
|
||||
for callback in callbacks_image_saved:
|
||||
callback(image, p, fullfn, txt_fullfn)
|
||||
|
||||
def on_model_loaded(callback):
|
||||
"""register a function to be called when the stable diffusion model is created; the model is
|
||||
passed as an argument"""
|
||||
callbacks_model_loaded.append(callback)
|
||||
add_callback(callbacks_model_loaded, callback)
|
||||
|
||||
|
||||
def on_ui_tabs(callback):
|
||||
|
|
@ -44,10 +76,15 @@ def on_ui_tabs(callback):
|
|||
title is tab text displayed to user in the UI
|
||||
elem_id is HTML id for the tab
|
||||
"""
|
||||
callbacks_ui_tabs.append(callback)
|
||||
add_callback(callbacks_ui_tabs, callback)
|
||||
|
||||
|
||||
def on_ui_settings(callback):
|
||||
"""register a function to be called before UI settings are populated; add your settings
|
||||
by using shared.opts.add_option(shared.OptionInfo(...)) """
|
||||
callbacks_ui_settings.append(callback)
|
||||
|
||||
|
||||
def on_save_imaged(callback):
|
||||
"""register a function to call after modules.images.save_image is called returning same values, original image and p """
|
||||
callbacks_image_saved.append(callback)
|
||||
|
|
|
|||
|
|
@ -54,9 +54,8 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
|
|||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(device)
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), device)
|
||||
|
||||
img = img.to(device)
|
||||
with torch.no_grad():
|
||||
output = model(img)
|
||||
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||||
|
|
|
|||
|
|
@ -228,7 +228,7 @@ class VanillaStableDiffusionSampler:
|
|||
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
|
||||
|
||||
|
||||
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
|
||||
|
||||
return samples
|
||||
|
||||
|
|
@ -429,7 +429,7 @@ class KDiffusionSampler:
|
|||
self.model_wrap_cfg.init_latent = x
|
||||
self.last_latent = x
|
||||
|
||||
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
|
|
|
|||
|
|
@ -58,7 +58,7 @@ parser.add_argument("--opt-split-attention", action='store_true', help="force-en
|
|||
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
|
||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
||||
|
|
@ -97,8 +97,8 @@ restricted_opts = [
|
|||
"outdir_save",
|
||||
]
|
||||
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer'])
|
||||
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
|
||||
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
|
||||
|
||||
device = devices.device
|
||||
weight_load_location = None if cmd_opts.lowram else "cpu"
|
||||
|
|
|
|||
|
|
@ -7,8 +7,8 @@ from PIL import Image
|
|||
from basicsr.utils.download_util import load_file_from_url
|
||||
from tqdm import tqdm
|
||||
|
||||
from modules import modelloader
|
||||
from modules.shared import cmd_opts, opts, device
|
||||
from modules import modelloader, devices
|
||||
from modules.shared import cmd_opts, opts
|
||||
from modules.swinir_model_arch import SwinIR as net
|
||||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
||||
from modules.upscaler import Upscaler, UpscalerData
|
||||
|
|
@ -42,7 +42,7 @@ class UpscalerSwinIR(Upscaler):
|
|||
model = self.load_model(model_file)
|
||||
if model is None:
|
||||
return img
|
||||
model = model.to(device)
|
||||
model = model.to(devices.device_swinir)
|
||||
img = upscale(img, model)
|
||||
try:
|
||||
torch.cuda.empty_cache()
|
||||
|
|
@ -111,7 +111,7 @@ def upscale(
|
|||
img = img[:, :, ::-1]
|
||||
img = np.moveaxis(img, 2, 0) / 255
|
||||
img = torch.from_numpy(img).float()
|
||||
img = img.unsqueeze(0).to(device)
|
||||
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
|
||||
with torch.no_grad(), precision_scope("cuda"):
|
||||
_, _, h_old, w_old = img.size()
|
||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||
|
|
@ -139,8 +139,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
|
|||
stride = tile - tile_overlap
|
||||
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
||||
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=torch.half, device=device)
|
||||
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img)
|
||||
W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir)
|
||||
|
||||
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
||||
for h_idx in h_idx_list:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue