Merge branch 'AUTOMATIC1111:master' into master

This commit is contained in:
InvincibleDude 2023-01-24 15:44:09 +03:00 committed by GitHub
commit 44c0e6b993
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
39 changed files with 1199 additions and 676 deletions

View file

@ -11,10 +11,9 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
@ -23,6 +22,8 @@ from modules.sd_models import checkpoints_list, find_checkpoint_config
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import List
import piexif
import piexif.helper
def upscaler_to_index(name: str):
try:
@ -45,32 +46,46 @@ def validate_sampler_name(name):
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
return reqDict
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
return Image.open(BytesIO(base64.b64decode(encoding)))
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
except Exception as err:
raise HTTPException(status_code=500, detail="Invalid encoded image")
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
# Copy any text-only metadata
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
if opts.samples_format.lower() == 'png':
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
})
if opts.samples_format.lower() in ("jpg", "jpeg"):
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
else:
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
else:
raise HTTPException(status_code=500, detail="Invalid image format")
image.save(
output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
)
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI):
@ -244,7 +259,7 @@ class Api:
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
@ -260,7 +275,7 @@ class Api:
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
@ -360,13 +375,16 @@ class Api:
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []
for upscaler in shared.sd_upscalers:
u = upscaler.scaler
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
return upscalers
return [
{
"name": upscaler.name,
"model_name": upscaler.scaler.model_name,
"model_path": upscaler.data_path,
"model_url": None,
"scale": upscaler.scale,
}
for upscaler in shared.sd_upscalers
]
def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]

View file

@ -220,6 +220,7 @@ class UpscalerItem(BaseModel):
model_name: Optional[str] = Field(title="Model Name")
model_path: Optional[str] = Field(title="Path")
model_url: Optional[str] = Field(title="URL")
scale: Optional[float] = Field(title="Scale")
class SDModelItem(BaseModel):
title: str = Field(title="Title")

View file

@ -24,6 +24,18 @@ See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable
""")
already_displayed = {}
def display_once(e: Exception, task):
if task in already_displayed:
return
display(e, task)
already_displayed[task] = 1
def run(code, task):
try:
code()

View file

@ -1,230 +1,16 @@
from __future__ import annotations
import math
import os
import sys
import traceback
import re
import shutil
import numpy as np
from PIL import Image
import torch
import tqdm
from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass
from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
from modules import shared, images, sd_models, sd_vae
from modules.ui_common import plaintext_to_html
import gradio as gr
import safetensors.torch
class LruCache(OrderedDict):
@dataclass(frozen=True)
class Key:
image_hash: int
info_hash: int
args_hash: int
@dataclass
class Value:
image: Image.Image
info: str
def __init__(self, max_size: int = 5, *args, **kwargs):
super().__init__(*args, **kwargs)
self._max_size = max_size
def get(self, key: LruCache.Key) -> LruCache.Value:
ret = super().get(key)
if ret is not None:
self.move_to_end(key) # Move to end of eviction list
return ret
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
self[key] = value
while len(self) > self._max_size:
self.popitem(last=False)
cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
imageArr = []
# Also keep track of original file names
imageNameArr = []
outputs = []
if extras_mode == 1:
#convert file to pillow image
for img in image_folder:
image = Image.open(img)
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = shared.listfiles(input_dir)
for img in image_list:
try:
image = Image.open(img)
except Exception:
continue
imageArr.append(image)
imageNameArr.append(img)
else:
imageArr.append(image)
imageNameArr.append(None)
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
res = cropped
return res
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
if cached_entry is None:
res = upscale(image, *upscale_args)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
else:
res, info = cached_entry.image, cached_entry.info
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
upscale_ops: List[Callable] = []
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
upscale_ops.append(partial(run_upscalers_blend, step_params))
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
if opts.use_original_name_batch and image_name is not None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
basename = ''
if opts.enable_pnginfo: # append info before save
image.info = existing_pnginfo
image.info["extras"] = info
if save_output:
# Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
# Add second upscaler if applicable.
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
if extras_mode != 2 or show_extras_results :
outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), ''
def clear_cache():
cached_images.clear()
def run_pnginfo(image):
if image is None:
@ -285,7 +71,7 @@ def to_half(tensor, enable):
return tensor
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae):
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
shared.state.begin()
shared.state.job = 'model-merge'
@ -430,6 +216,12 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
for key in theta_0.keys():
theta_0[key] = to_half(theta_0[key], save_as_half)
if discard_weights:
regex = re.compile(discard_weights)
for key in list(theta_0):
if re.search(regex, key):
theta_0.pop(key, None)
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = filename_generator() if custom_name == '' else custom_name

View file

@ -715,6 +715,8 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
do_not_save_samples=True,
)
p.disable_extra_networks = True
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt

View file

@ -2,6 +2,7 @@ import os
import sys
import traceback
from collections import namedtuple
from pathlib import Path
import re
import torch
@ -20,19 +21,20 @@ Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
def category_types():
return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')]
def download_default_clip_interrogate_categories(content_dir):
print("Downloading CLIP categories...")
tmpdir = content_dir + "_tmp"
category_types = ["artists", "flavors", "mediums", "movements"]
try:
os.makedirs(tmpdir)
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/artists.txt", os.path.join(tmpdir, "artists.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/flavors.txt", os.path.join(tmpdir, "flavors.top3.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/mediums.txt", os.path.join(tmpdir, "mediums.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/movements.txt", os.path.join(tmpdir, "movements.txt"))
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
except Exception as e:
@ -51,32 +53,38 @@ class InterrogateModels:
def __init__(self, content_dir):
self.loaded_categories = None
self.skip_categories = []
self.content_dir = content_dir
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
def categories(self):
if self.loaded_categories is not None:
return self.loaded_categories
self.loaded_categories = []
if not os.path.exists(self.content_dir):
download_default_clip_interrogate_categories(self.content_dir)
if os.path.exists(self.content_dir):
for filename in os.listdir(self.content_dir):
m = re_topn.search(filename)
topn = 1 if m is None else int(m.group(1))
if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories:
return self.loaded_categories
with open(os.path.join(self.content_dir, filename), "r", encoding="utf8") as file:
self.loaded_categories = []
if os.path.exists(self.content_dir):
self.skip_categories = shared.opts.interrogate_clip_skip_categories
category_types = []
for filename in Path(self.content_dir).glob('*.txt'):
category_types.append(filename.stem)
if filename.stem in self.skip_categories:
continue
m = re_topn.search(filename.stem)
topn = 1 if m is None else int(m.group(1))
with open(filename, "r", encoding="utf8") as file:
lines = [x.strip() for x in file.readlines()]
self.loaded_categories.append(Category(name=filename, topn=topn, items=lines))
self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines))
return self.loaded_categories
def load_blip_model(self):
import models.blip
with paths.Prioritize("BLIP"):
import models.blip
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "BLIP"),
@ -139,6 +147,8 @@ class InterrogateModels:
def rank(self, image_features, text_array, top_count=1):
import clip
devices.torch_gc()
if shared.opts.interrogate_clip_dict_limit != 0:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]

View file

@ -38,3 +38,17 @@ for d, must_exist, what, options in path_dirs:
else:
sys.path.append(d)
paths[what] = d
class Prioritize:
def __init__(self, name):
self.name = name
self.path = None
def __enter__(self):
self.path = sys.path.copy()
sys.path = [paths[self.name]] + sys.path
def __exit__(self, exc_type, exc_val, exc_tb):
sys.path = self.path
self.path = None

103
modules/postprocessing.py Normal file
View file

@ -0,0 +1,103 @@
import os
from PIL import Image
from modules import shared, images, devices, scripts, scripts_postprocessing, ui_common, generation_parameters_copypaste
from modules.shared import opts
def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
image_data = []
image_names = []
outputs = []
if extras_mode == 1:
for img in image_folder:
image = Image.open(img)
image_data.append(image)
image_names.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'
image_list = shared.listfiles(input_dir)
for filename in image_list:
try:
image = Image.open(filename)
except Exception:
continue
image_data.append(image)
image_names.append(filename)
else:
assert image, 'image not selected'
image_data.append(image)
image_names.append(None)
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
infotext = ''
for image, name in zip(image_data, image_names):
shared.state.textinfo = name
existing_pnginfo = image.info or {}
pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB"))
scripts.scripts_postproc.run(pp, args)
if opts.use_original_name_batch and name is not None:
basename = os.path.splitext(os.path.basename(name))[0]
else:
basename = ''
infotext = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in pp.info.items() if v is not None])
if opts.enable_pnginfo:
pp.image.info = existing_pnginfo
pp.image.info["postprocessing"] = infotext
if save_output:
images.save_image(pp.image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if extras_mode != 2 or show_extras_results:
outputs.append(pp.image)
devices.torch_gc()
return outputs, ui_common.plaintext_to_html(infotext), ''
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
"""old handler for API"""
args = scripts.scripts_postproc.create_args_for_run({
"Upscale": {
"upscale_mode": resize_mode,
"upscale_by": upscaling_resize,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,
"upscaler_1_name": extras_upscaler_1,
"upscaler_2_name": extras_upscaler_2,
"upscaler_2_visibility": extras_upscaler_2_visibility,
},
"GFPGAN": {
"gfpgan_visibility": gfpgan_visibility,
},
"CodeFormer": {
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
},
})
return run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output=save_output)

View file

@ -140,6 +140,7 @@ class StableDiffusionProcessing:
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.is_using_inpainting_conditioning = False
self.disable_extra_networks = False
if not seed_enable_extras:
self.subseed = -1
@ -579,7 +580,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
extra_networks.activate(p, extra_network_data)
if not p.disable_extra_networks:
extra_networks.activate(p, extra_network_data)
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
@ -723,7 +725,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
extra_networks.deactivate(p, extra_network_data)
if not p.disable_extra_networks:
extra_networks.deactivate(p, extra_network_data)
devices.torch_gc()
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)

View file

@ -7,7 +7,7 @@ from collections import namedtuple
import gradio as gr
from modules.processing import StableDiffusionProcessing
from modules import shared, paths, script_callbacks, extensions, script_loading
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
AlwaysVisible = object()
@ -150,8 +150,10 @@ def basedir():
return current_basedir
scripts_data = []
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
scripts_data = []
postprocessing_scripts_data = []
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"])
@ -190,23 +192,31 @@ def list_files_with_name(filename):
def load_scripts():
global current_basedir
scripts_data.clear()
postprocessing_scripts_data.clear()
script_callbacks.clear_callbacks()
scripts_list = list_scripts("scripts", ".py")
syspath = sys.path
def register_scripts_from_module(module):
for key, script_class in module.__dict__.items():
if type(script_class) != type:
continue
if issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing):
postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
for scriptfile in sorted(scripts_list):
try:
if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
module = script_loading.load_module(scriptfile.path)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
script_module = script_loading.load_module(scriptfile.path)
register_scripts_from_module(script_module)
except Exception:
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
@ -413,6 +423,7 @@ class ScriptRunner:
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
scripts_current: ScriptRunner = None
@ -423,12 +434,13 @@ def reload_script_body_only():
def reload_scripts():
global scripts_txt2img, scripts_img2img
global scripts_txt2img, scripts_img2img, scripts_postproc
load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
def IOComponent_init(self, *args, **kwargs):

View file

@ -0,0 +1,147 @@
import os
import gradio as gr
from modules import errors, shared
class PostprocessedImage:
def __init__(self, image):
self.image = image
self.info = {}
class ScriptPostprocessing:
filename = None
controls = None
args_from = None
args_to = None
order = 1000
"""scripts will be ordred by this value in postprocessing UI"""
name = None
"""this function should return the title of the script."""
group = None
"""A gr.Group component that has all script's UI inside it"""
def ui(self):
"""
This function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be a dictionary that maps parameter names to components used in processing.
Values of those components will be passed to process() function.
"""
pass
def process(self, pp: PostprocessedImage, **args):
"""
This function is called to postprocess the image.
args contains a dictionary with all values returned by components from ui()
"""
pass
def image_changed(self):
pass
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
res = func(*args, **kwargs)
return res
except Exception as e:
errors.display(e, f"calling {filename}/{funcname}")
return default
class ScriptPostprocessingRunner:
def __init__(self):
self.scripts = None
self.ui_created = False
def initialize_scripts(self, scripts_data):
self.scripts = []
for script_class, path, basedir, script_module in scripts_data:
script: ScriptPostprocessing = script_class()
script.filename = path
self.scripts.append(script)
def create_script_ui(self, script, inputs):
script.args_from = len(inputs)
script.args_to = len(inputs)
script.controls = wrap_call(script.ui, script.filename, "ui")
for control in script.controls.values():
control.custom_script_source = os.path.basename(script.filename)
inputs += list(script.controls.values())
script.args_to = len(inputs)
def scripts_in_preferred_order(self):
if self.scripts is None:
import modules.scripts
self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
scripts_order = [x.lower().strip() for x in shared.opts.postprocessing_scipts_order.split(",")]
def script_score(name):
name = name.lower()
for i, possible_match in enumerate(scripts_order):
if possible_match in name:
return i
return len(self.scripts)
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(self.scripts)}
return sorted(self.scripts, key=lambda x: script_scores[x.name])
def setup_ui(self):
inputs = []
for script in self.scripts_in_preferred_order():
with gr.Box() as group:
self.create_script_ui(script, inputs)
script.group = group
self.ui_created = True
return inputs
def run(self, pp: PostprocessedImage, args):
for script in self.scripts_in_preferred_order():
shared.state.job = script.name
script_args = args[script.args_from:script.args_to]
process_args = {}
for (name, component), value in zip(script.controls.items(), script_args):
process_args[name] = value
script.process(pp, **process_args)
def create_args_for_run(self, scripts_args):
if not self.ui_created:
with gr.Blocks(analytics_enabled=False):
self.setup_ui()
scripts = self.scripts_in_preferred_order()
args = [None] * max([x.args_to for x in scripts])
for script in scripts:
script_args_dict = scripts_args.get(script.name, None)
if script_args_dict is not None:
for i, name in enumerate(script.controls):
args[script.args_from + i] = script_args_dict.get(name, None)
return args
def image_changed(self):
for script in self.scripts_in_preferred_order():
script.image_changed()

View file

@ -41,7 +41,9 @@ class DisableInitialization:
return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
res.name_or_path = pretrained_model_name_or_path
return res
def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug

View file

@ -9,7 +9,7 @@ from torch import einsum
from ldm.util import default
from einops import rearrange
from modules import shared
from modules import shared, errors
from modules.hypernetworks import hypernetwork
from .sub_quadratic_attention import efficient_dot_product_attention
@ -279,6 +279,21 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_
)
def get_xformers_flash_attention_op(q, k, v):
if not shared.cmd_opts.xformers_flash_attention:
return None
try:
flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
fw, bw = flash_attention_op
if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
return flash_attention_op
except Exception as e:
errors.display_once(e, "enabling flash attention")
return None
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
@ -290,7 +305,8 @@ def xformers_attention_forward(self, x, context=None, mask=None):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
@ -365,7 +381,7 @@ def xformers_attnblock_forward(self, x):
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v)
out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out

View file

@ -57,6 +57,7 @@ parser.add_argument("--realesrgan-models-path", type=str, help="Path to director
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
@ -398,7 +399,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01 }),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
@ -406,7 +407,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -422,6 +424,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
"interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
@ -429,6 +432,10 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, { "choices": ["cards", "thumbs"] }),
}))
options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
@ -443,9 +450,12 @@ options_templates.update(options_section(('ui', "User interface"), {
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"),
'ui_reorder': OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
}))
options_templates.update(options_section(('ui', "Live previews"), {
@ -470,6 +480,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_scipts_order': OptionInfo("upscale, gfpgan, codeformer", "Postprocessing operation order"),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable those extensions"),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),

View file

@ -5,7 +5,6 @@ import mimetypes
import os
import platform
import random
import subprocess as sp
import sys
import tempfile
import time
@ -20,7 +19,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path
@ -41,6 +40,7 @@ from modules.sd_samplers import samplers, samplers_for_img2img
from modules.textual_inversion import textual_inversion
import modules.hypernetworks.ui
from modules.generation_parameters_copypaste import image_from_url_text
import modules.extras
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning)
@ -75,6 +75,7 @@ css_hide_progressbar = """
.wrap .m-12::before { content:"Loading..." }
.wrap .z-20 svg { display:none!important; }
.wrap .z-20::before { content:"Loading..." }
.wrap.cover-bg .z-20::before { content:"" }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
.meta-text-center { display:none!important; }
@ -85,7 +86,6 @@ css_hide_progressbar = """
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️
paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋
@ -94,78 +94,14 @@ extra_networks_symbol = '\U0001F3B4' # 🎴
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
return ui_common.plaintext_to_html(text)
def send_gradio_gallery_to_image(x):
if len(x) == 0:
return None
return image_from_url_text(x[0])
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = opts.outdir_save
save_to_dirs = opts.use_save_to_dirs_for_ui
extension: str = opts.samples_format
start_index = 0
if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(opts.outdir_save, exist_ok=True)
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def visit(x, func, path=""):
if hasattr(x, 'children'):
for c in x.children:
@ -443,19 +379,6 @@ def apply_setting(key, value):
opts.save(shared.config_filename)
return getattr(opts, key)
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
@ -476,107 +399,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
def create_output_panel(tabname, outdir):
def open_folder(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
return ui_common.create_output_panel(tabname, outdir)
def create_sampler_and_steps_selection(choices, tabname):
@ -935,7 +758,7 @@ def create_ui():
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
elif category == "checkboxes":
with FormRow(elem_id="img2img_checkboxes"):
with FormRow(elem_id="img2img_checkboxes", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
@ -1122,86 +945,7 @@ def create_ui():
modules.scripts.scripts_current = None
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab"):
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"):
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"):
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"):
with gr.Group():
with gr.Row():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Group():
extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
with gr.Group():
extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility")
with gr.Group():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility")
with gr.Group():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight")
with gr.Group():
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix")
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
_js="get_extras_tab_index",
inputs=[
dummy_component,
dummy_component,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
gfpgan_visibility,
codeformer_visibility,
codeformer_weight,
upscaling_resize,
upscaling_resize_w,
upscaling_resize_h,
upscaling_crop,
extras_upscaler_1,
extras_upscaler_2,
extras_upscaler_2_visibility,
upscale_before_face_fix,
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=modules.extras.clear_cache,
inputs=[], outputs=[]
)
ui_postprocessing.create_ui()
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
with gr.Row().style(equal_height=False):
@ -1222,10 +966,19 @@ def create_ui():
outputs=[html, generation_info, html2],
)
def update_interp_description(value):
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>"
interp_descriptions = {
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."),
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"),
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M")
}
return interp_descriptions[value]
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='compact'):
gr.HTML(value="<p style='margin-bottom: 2.5em'>A merger of the two checkpoints will be generated in your <b>checkpoint</b> directory.</p>")
interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
with FormRow(elem_id="modelmerger_models"):
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
@ -1240,6 +993,7 @@ def create_ui():
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description])
with FormRow():
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
@ -1254,6 +1008,9 @@ def create_ui():
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
with FormRow():
discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights")
with gr.Row():
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary')
@ -1265,7 +1022,7 @@ def create_ui():
with gr.Row().style(equal_height=False):
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
with gr.Row().style(equal_height=False):
with gr.Row(variant="compact").style(equal_height=False):
with gr.Tabs(elem_id="train_tabs"):
with gr.Tab(label="Create embedding"):
@ -1844,6 +1601,7 @@ def create_ui():
checkpoint_format,
config_source,
bake_in_vae,
discard_weights,
],
outputs=[
primary_model_name,
@ -1931,28 +1689,27 @@ def create_ui():
with open(ui_config_file, "w", encoding="utf8") as file:
json.dump(ui_settings, file, indent=4)
# Required as a workaround for change() event not triggering when loading values from ui-config.json
interp_description.value = update_interp_description(interp_method.value)
return demo
def reload_javascript():
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f'<script>{jsfile.read()}</script>'
scripts_list = modules.scripts.list_scripts("javascript", ".js")
for basedir, filename, path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {filename} --><script>{jsfile.read()}</script>"
head = f'<script type="text/javascript" src="file={os.path.abspath("script.js")}"></script>\n'
inline = f"{localization.localization_js(shared.opts.localization)};"
if cmd_opts.theme is not None:
javascript += f"\n<script>set_theme('{cmd_opts.theme}');</script>\n"
inline += f"set_theme('{cmd_opts.theme}');"
javascript += f"\n<script>{localization.localization_js(shared.opts.localization)}</script>"
for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="file={script.path}"></script>\n'
head += f'<script type="text/javascript">{inline}</script>\n'
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.body = res.body.replace(b'</head>', f'{head}</head>'.encode("utf8"))
res.init_headers()
return res

202
modules/ui_common.py Normal file
View file

@ -0,0 +1,202 @@
import json
import html
import os
import platform
import sys
import gradio as gr
import subprocess as sp
from modules import call_queue, shared
from modules.generation_parameters_copypaste import image_from_url_text
import modules.images
folder_symbol = '\U0001f4c2' # 📂
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = shared.opts.outdir_save
save_to_dirs = shared.opts.use_save_to_dirs_for_ui
extension: str = shared.opts.samples_format
start_index = 0
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(shared.opts.outdir_save, exist_ok=True)
with open(os.path.join(shared.opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = modules.images.save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def create_output_panel(tabname, outdir):
from modules import shared
import modules.generation_parameters_copypaste as parameters_copypaste
def open_folder(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(shared.opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log

View file

@ -47,3 +47,4 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
def get_block_name(self):
return "colorpicker"

View file

@ -3,6 +3,7 @@ import os.path
from modules import shared
import gradio as gr
import json
import html
from modules.generation_parameters_copypaste import image_from_url_text
@ -26,6 +27,7 @@ class ExtraNetworksPage:
pass
def create_html(self, tabname):
view = shared.opts.extra_networks_default_view
items_html = ''
for item in self.list_items():
@ -36,7 +38,7 @@ class ExtraNetworksPage:
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
res = f"""
<div id='{tabname}_{self.name}_cards' class='extra-network-cards'>
<div id='{tabname}_{self.name}_cards' class='extra-network-{view}'>
{items_html}
</div>
"""
@ -53,12 +55,13 @@ class ExtraNetworksPage:
preview = item.get("preview", None)
args = {
"preview_html": "style='background-image: url(" + json.dumps(preview) + ")'" if preview else '',
"prompt": json.dumps(item["prompt"]),
"preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
"prompt": item["prompt"],
"tabname": json.dumps(tabname),
"local_preview": json.dumps(item["local_preview"]),
"name": item["name"],
"allow_negative_prompt": "true" if self.allow_negative_prompt else "false",
"card_clicked": '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"',
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
}
return self.card_page.format(**args)
@ -79,10 +82,26 @@ class ExtraNetworksUi:
self.tabname = None
def pages_in_preferred_order(pages):
tab_order = [x.lower().strip() for x in shared.opts.ui_extra_networks_tab_reorder.split(",")]
def tab_name_score(name):
name = name.lower()
for i, possible_match in enumerate(tab_order):
if possible_match in name:
return i
return len(pages)
tab_scores = {page.name: (tab_name_score(page.name), original_index) for original_index, page in enumerate(pages)}
return sorted(pages, key=lambda x: tab_scores[x.name])
def create_ui(container, button, tabname):
ui = ExtraNetworksUi()
ui.pages = []
ui.stored_extra_pages = extra_pages.copy()
ui.stored_extra_pages = pages_in_preferred_order(extra_pages.copy())
ui.tabname = tabname
with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs:

View file

@ -1,3 +1,4 @@
import json
import os
from modules import shared, ui_extra_networks
@ -25,7 +26,7 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
"name": name,
"filename": path,
"preview": preview,
"prompt": f"<hypernet:{name}:1.0>",
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": path + ".png",
}

View file

@ -1,3 +1,4 @@
import json
import os
from modules import ui_extra_networks, sd_hijack
@ -24,7 +25,7 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
"name": embedding.name,
"filename": embedding.filename,
"preview": preview,
"prompt": embedding.name,
"prompt": json.dumps(embedding.name),
"local_preview": path + ".preview.png",
}

View file

@ -0,0 +1,57 @@
import gradio as gr
from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue
import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
tab_index = gr.State(value=0)
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab") as tab_single:
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
script_inputs = scripts.scripts_postproc.setup_ui()
with gr.Column():
result_images, html_info_x, html_info, html_log = ui_common.create_output_panel("extras", shared.opts.outdir_extras_samples)
tab_single.select(fn=lambda: 0, inputs=[], outputs=[tab_index])
tab_batch.select(fn=lambda: 1, inputs=[], outputs=[tab_index])
tab_batch_dir.select(fn=lambda: 2, inputs=[], outputs=[tab_index])
submit.click(
fn=call_queue.wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
inputs=[
tab_index,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
*script_inputs
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=scripts.scripts_postproc.image_changed,
inputs=[], outputs=[]
)