Merge branch 'dev' into extra-networks-performance-updates

This commit is contained in:
Sj-Si 2024-04-12 12:40:41 -04:00
commit 0853c2b42c
19 changed files with 331 additions and 74 deletions

View file

@ -50,7 +50,7 @@ class FaceRestorerCodeFormer(face_restoration_utils.CommonFaceRestoration):
def restore_face(cropped_face_t):
assert self.net is not None
return self.net(cropped_face_t, w=w, adain=True)[0]
return self.net(cropped_face_t, weight=w, adain=True)[0]
return self.restore_with_helper(np_image, restore_face)

View file

@ -8,7 +8,7 @@ import sys
import gradio as gr
from modules.paths import data_path
from modules import shared, ui_tempdir, script_callbacks, processing, infotext_versions, images, prompt_parser
from modules import shared, ui_tempdir, script_callbacks, processing, infotext_versions, images, prompt_parser, errors
from PIL import Image
sys.modules['modules.generation_parameters_copypaste'] = sys.modules[__name__] # alias for old name
@ -488,7 +488,11 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
for output, key in paste_fields:
if callable(key):
v = key(params)
try:
v = key(params)
except Exception:
errors.report(f"Error executing {key}", exc_info=True)
v = None
else:
v = params.get(key, None)

View file

@ -131,13 +131,15 @@ def run_postprocessing_webui(id_task, *args, **kwargs):
return run_postprocessing(*args, **kwargs)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True, max_side_length: int = 0):
"""old handler for API"""
args = scripts.scripts_postproc.create_args_for_run({
"Upscale": {
"upscale_enabled": True,
"upscale_mode": resize_mode,
"upscale_by": upscaling_resize,
"max_side_length": max_side_length,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,

View file

@ -608,7 +608,7 @@ class Processed:
"version": self.version,
}
return json.dumps(obj)
return json.dumps(obj, default=lambda o: None)
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
@ -703,8 +703,54 @@ def program_version():
return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None, all_hr_prompts=None, all_hr_negative_prompts=None):
if index is None:
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
"""
this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee
Args:
p: StableDiffusionProcessing
all_prompts: list[str]
all_seeds: list[int]
all_subseeds: list[int]
comments: list[str]
iteration: int
position_in_batch: int
use_main_prompt: bool
index: int
all_negative_prompts: list[str]
Returns: str
Extra generation params
p.extra_generation_params dictionary allows for additional parameters to be added to the infotext
this can be use by the base webui or extensions.
To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext
the value generation_params can be defined as:
- str | None
- List[str|None]
- callable func(**kwargs) -> str | None
When defined as a string, it will be used as without extra processing; this is this most common use case.
Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter.
The list should have the same length as the total number of images in the entire job.
Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required.
For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions
and may vary across different images, defining as a static string or list would not work.
The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'.
the base signature of the function should be:
func(**kwargs) -> str | None
optionally it can have additional arguments that will be used in the function:
func(p, index, **kwargs) -> str | None
note: for better future compatibility even though this function will have access to all variables in the locals(),
it is recommended to only use the arguments present in the function signature of create_infotext.
For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt.
"""
if use_main_prompt:
index = 0
elif index is None:
index = position_in_batch + iteration * p.batch_size
if all_negative_prompts is None:
@ -715,6 +761,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
token_merging_ratio = p.get_token_merging_ratio()
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]
uses_ensd = opts.eta_noise_seed_delta != 0
if uses_ensd:
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
@ -747,22 +796,24 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
"Hires prompt": None, # This is set later, insert here to keep order
"Hires negative prompt": None, # This is set later, insert here to keep order
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
}
if all_hr_prompts := all_hr_prompts or getattr(p, 'all_hr_prompts', None):
generation_params['Hires prompt'] = all_hr_prompts[index] if all_hr_prompts[index] != all_prompts[index] else None
if all_hr_negative_prompts := all_hr_negative_prompts or getattr(p, 'all_hr_negative_prompts', None):
generation_params['Hires negative prompt'] = all_hr_negative_prompts[index] if all_hr_negative_prompts[index] != all_negative_prompts[index] else None
for key, value in generation_params.items():
try:
if isinstance(value, list):
generation_params[key] = value[index]
elif callable(value):
generation_params[key] = value(**locals())
except Exception:
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
generation_params[key] = None
generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@ -1204,6 +1255,17 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
def get_hr_prompt(p, index, prompt_text, **kwargs):
hr_prompt = p.all_hr_prompts[index]
return hr_prompt if hr_prompt != prompt_text else None
def get_hr_negative_prompt(p, index, negative_prompt, **kwargs):
hr_negative_prompt = p.all_hr_negative_prompts[index]
return hr_negative_prompt if hr_negative_prompt != negative_prompt else None
self.extra_generation_params["Hires prompt"] = get_hr_prompt
self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt
self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
if self.hr_scheduler is None:

View file

@ -439,6 +439,9 @@ def remove_current_script_callbacks():
for callback_list in callback_map.values():
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
callback_list.remove(callback_to_remove)
for ordered_callbacks_list in ordered_callbacks_map.values():
for callback_to_remove in [cb for cb in ordered_callbacks_list if cb.script == filename]:
ordered_callbacks_list.remove(callback_to_remove)
def remove_callbacks_for_function(callback_func):

View file

@ -2,6 +2,10 @@ import os
import importlib.util
from modules import errors
import sys
loaded_scripts = {}
def load_module(path):
@ -9,6 +13,11 @@ def load_module(path):
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
loaded_scripts[path] = module
module_name, _ = os.path.splitext(os.path.basename(path))
sys.modules["scripts." + module_name] = module
return module

View file

@ -739,12 +739,17 @@ class ScriptRunner:
def onload_script_visibility(params):
title = params.get('Script', None)
if title:
title_index = self.titles.index(title)
visibility = title_index == self.script_load_ctr
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
return gr.update(visible=visibility)
else:
return gr.update(visible=False)
try:
title_index = self.titles.index(title)
visibility = title_index == self.script_load_ctr
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
return gr.update(visible=visibility)
except ValueError:
params['Script'] = None
massage = f'Cannot find Script: "{title}"'
print(massage)
gr.Warning(massage)
return gr.update(visible=False)
self.infotext_fields.append((dropdown, lambda x: gr.update(value=x.get('Script', 'None'))))
self.infotext_fields.extend([(script.group, onload_script_visibility) for script in self.selectable_scripts])

View file

@ -143,6 +143,7 @@ class ScriptPostprocessingRunner:
self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
scripts_order = shared.opts.postprocessing_operation_order
scripts_filter_out = set(shared.opts.postprocessing_disable_in_extras)
def script_score(name):
for i, possible_match in enumerate(scripts_order):
@ -151,9 +152,10 @@ class ScriptPostprocessingRunner:
return len(self.scripts)
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(self.scripts)}
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out]
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(filtered_scripts)}
return sorted(self.scripts, key=lambda x: script_scores[x.name])
return sorted(filtered_scripts, key=lambda x: script_scores[x.name])
def setup_ui(self):
inputs = []

View file

@ -1,5 +1,5 @@
import collections
import os.path
import os
import sys
import threading
@ -7,7 +7,6 @@ import torch
import re
import safetensors.torch
from omegaconf import OmegaConf, ListConfig
from os import mkdir
from urllib import request
import ldm.modules.midas as midas
@ -151,7 +150,7 @@ def list_models():
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
model_url = None
else:
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
@ -508,7 +507,7 @@ def enable_midas_autodownload():
path = midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
os.mkdir(midas_path)
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
@ -787,6 +786,13 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
Additionally deletes loaded models that are over the limit set in settings (sd_checkpoints_limit).
"""
if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
return sd_model
if shared.opts.sd_checkpoints_keep_in_cpu:
send_model_to_cpu(sd_model)
timer.record("send model to cpu")
already_loaded = None
for i in reversed(range(len(model_data.loaded_sd_models))):
loaded_model = model_data.loaded_sd_models[i]
@ -796,14 +802,10 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
if len(model_data.loaded_sd_models) > shared.opts.sd_checkpoints_limit > 0:
print(f"Unloading model {len(model_data.loaded_sd_models)} over the limit of {shared.opts.sd_checkpoints_limit}: {loaded_model.sd_checkpoint_info.title}")
model_data.loaded_sd_models.pop()
del model_data.loaded_sd_models[i]
send_model_to_trash(loaded_model)
timer.record("send model to trash")
if shared.opts.sd_checkpoints_keep_in_cpu:
send_model_to_cpu(sd_model)
timer.record("send model to cpu")
if already_loaded is not None:
send_model_to_device(already_loaded)
timer.record("send model to device")

View file

@ -90,3 +90,5 @@ list_checkpoint_tiles = shared_items.list_checkpoint_tiles
refresh_checkpoints = shared_items.refresh_checkpoints
list_samplers = shared_items.list_samplers
reload_hypernetworks = shared_items.reload_hypernetworks
hf_endpoint = os.getenv('HF_ENDPOINT', 'https://huggingface.co')

View file

@ -19,7 +19,9 @@ restricted_opts = {
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
"outdir_init_images",
"temp_dir",
"clean_temp_dir_at_start",
}
categories.register_category("saving", "Saving images")
@ -384,6 +386,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),

View file

@ -3,13 +3,10 @@ import dataclasses
import json
import html
import os
import platform
import sys
import gradio as gr
import subprocess as sp
from modules import call_queue, shared, ui_tempdir
from modules import call_queue, shared, ui_tempdir, util
from modules.infotext_utils import image_from_url_text
import modules.images
from modules.ui_components import ToolButton
@ -176,31 +173,7 @@ def create_output_panel(tabname, outdir, toprow=None):
except Exception:
pass
if not os.path.exists(f):
msg = f'Folder "{f}" does not exist. After you create an image, the folder will be created.'
print(msg)
gr.Info(msg)
return
elif not os.path.isdir(f):
msg = f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
"""
print(msg, file=sys.stderr)
gr.Warning(msg)
return
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
util.open_folder(f)
with gr.Column(elem_id=f"{tabname}_results"):
if toprow:

View file

@ -58,8 +58,9 @@ def apply_and_restart(disable_list, update_list, disable_all):
def save_config_state(name):
current_config_state = config_states.get_config()
if not name:
name = "Config"
name = os.path.basename(name or "Config")
current_config_state["name"] = name
timestamp = datetime.now().strftime('%Y_%m_%d-%H_%M_%S')
filename = os.path.join(config_states_dir, f"{timestamp}_{name}.json")

View file

@ -60,6 +60,9 @@ class Upscaler:
if img.width >= dest_w and img.height >= dest_h:
break
if shared.state.interrupted:
break
shape = (img.width, img.height)
img = self.do_upscale(img, selected_model)

View file

@ -69,6 +69,8 @@ def upscale_with_model(
for y, h, row in grid.tiles:
newrow = []
for x, w, tile in row:
if shared.state.interrupted:
return img
output = upscale_pil_patch(model, tile)
scale_factor = output.width // tile.width
newrow.append([x * scale_factor, w * scale_factor, output])

View file

@ -148,6 +148,11 @@ class MassFileLister:
"""Clear the cache of all directories."""
self.cached_dirs.clear()
def update_file_entry(self, path):
"""Update the cache for a specific directory."""
dirname, filename = os.path.split(path)
if cached_dir := self.cached_dirs.get(dirname):
cached_dir.update_entry(filename)
def topological_sort(dependencies):
"""Accepts a dictionary mapping name to its dependencies, returns a list of names ordered according to dependencies.
@ -171,3 +176,38 @@ def topological_sort(dependencies):
inner(depname)
return result
def open_folder(path):
"""Open a folder in the file manager of the respect OS."""
# import at function level to avoid potential issues
import gradio as gr
import platform
import sys
import subprocess
if not os.path.exists(path):
msg = f'Folder "{path}" does not exist. after you save an image, the folder will be created.'
print(msg)
gr.Info(msg)
return
elif not os.path.isdir(path):
msg = f"""
WARNING
An open_folder request was made with an path that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {path}
"""
print(msg, file=sys.stderr)
gr.Warning(msg)
return
path = os.path.normpath(path)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
subprocess.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
subprocess.Popen(["wsl-open", path])
else:
subprocess.Popen(["xdg-open", path])