gpt4free/g4f/client/stubs.py
hlohaus e83282fc4b feat: add EdgeTTS audio provider and global image→media refactor
- **Docs**
  - `docs/file.md`: update upload instructions to use inline `bucket` content parts instead of `tool_calls/bucket_tool`.
  - `docs/media.md`: add asynchronous audio transcription example, detailed explanation, and notes.

- **New audio provider**
  - Add `g4f/Provider/audio/EdgeTTS.py` implementing Edge Text‑to‑Speech (`EdgeTTS`).
  - Create `g4f/Provider/audio/__init__.py` for provider export.
  - Register provider in `g4f/Provider/__init__.py`.

- **Refactor image → media**
  - Introduce `generated_media/` directory and `get_media_dir()` helper in `g4f/image/copy_images.py`; add `ensure_media_dir()`; keep back‑compat with legacy `generated_images/`.
  - Replace `images_dir` references with `get_media_dir()` across:
    - `g4f/api/__init__.py`
    - `g4f/client/stubs.py`
    - `g4f/gui/server/api.py`
    - `g4f/gui/server/backend_api.py`
    - `g4f/image/copy_images.py`
  - Rename CLI/API config field/flag from `image_provider` to `media_provider` (`g4f/cli.py`, `g4f/api/__init__.py`, `g4f/client/__init__.py`).
  - Extend `g4f/image/__init__.py`
    - add `MEDIA_TYPE_MAP`, `get_extension()`
    - revise `is_allowed_extension()`, `to_input_audio()` to support wider media types.

- **Provider adjustments**
  - `g4f/Provider/ARTA.py`: swap `raise_error()` parameter order.
  - `g4f/Provider/Cloudflare.py`: drop unused `MissingRequirementsError` import; move `get_args_from_nodriver()` inside try; handle `FileNotFoundError`.

- **Core enhancements**
  - `g4f/providers/any_provider.py`: use `default_model` instead of literal `"default"`; broaden model/provider matching; update model list cleanup.
  - `g4f/models.py`: safeguard provider count logic when model name is falsy.
  - `g4f/providers/base_provider.py`: catch `json.JSONDecodeError` when reading auth cache, delete corrupted file.
  - `g4f/providers/response.py`: allow `AudioResponse` to accept extra kwargs.

- **Misc**
  - Remove obsolete `g4f/image.py`.
  - `g4f/Provider/Cloudflare.py`, `g4f/client/types.py`: minor whitespace and import tidy‑ups.
2025-04-19 03:20:57 +02:00

235 lines
No EOL
7.2 KiB
Python

from __future__ import annotations
import os
from typing import Optional, List
from time import time
from ..image import extract_data_uri
from ..image.copy_images import get_media_dir
from ..client.helper import filter_markdown
from .helper import filter_none
try:
from pydantic import BaseModel, field_serializer
except ImportError:
class BaseModel():
@classmethod
def model_construct(cls, **data):
new = cls()
for key, value in data.items():
setattr(new, key, value)
return new
class field_serializer():
def __init__(self, field_name):
self.field_name = field_name
def __call__(self, *args, **kwargs):
return args[0]
class BaseModel(BaseModel):
@classmethod
def model_construct(cls, **data):
if hasattr(super(), "model_construct"):
return super().model_construct(**data)
return cls.construct(**data)
class TokenDetails(BaseModel):
cached_tokens: int
class UsageModel(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: TokenDetails
completion_tokens_details: TokenDetails
@classmethod
def model_construct(cls, prompt_tokens=0, completion_tokens=0, total_tokens=0, prompt_tokens_details=None, completion_tokens_details=None, **kwargs):
return super().model_construct(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens_details=TokenDetails.model_construct(**prompt_tokens_details if prompt_tokens_details else {"cached_tokens": 0}),
completion_tokens_details=TokenDetails.model_construct(**completion_tokens_details if completion_tokens_details else {}),
**kwargs
)
class ToolFunctionModel(BaseModel):
name: str
arguments: str
class ToolCallModel(BaseModel):
id: str
type: str
function: ToolFunctionModel
@classmethod
def model_construct(cls, function=None, **kwargs):
return super().model_construct(
**kwargs,
function=ToolFunctionModel.model_construct(**function),
)
class ChatCompletionChunk(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: List[ChatCompletionDeltaChoice]
usage: UsageModel
conversation: dict
@classmethod
def model_construct(
cls,
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None,
usage: UsageModel = None,
conversation: dict = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion.chunk",
created=created,
model=None,
provider=None,
choices=[ChatCompletionDeltaChoice.model_construct(
ChatCompletionDelta.model_construct(content),
finish_reason
)],
**filter_none(usage=usage, conversation=conversation)
)
@field_serializer('conversation')
def serialize_conversation(self, conversation: dict):
if hasattr(conversation, "get_dict"):
return conversation.get_dict()
return conversation
class ChatCompletionMessage(BaseModel):
role: str
content: str
tool_calls: list[ToolCallModel] = None
@classmethod
def model_construct(cls, content: str, tool_calls: list = None):
return super().model_construct(role="assistant", content=content, **filter_none(tool_calls=tool_calls))
@field_serializer('content')
def serialize_content(self, content: str):
return str(content)
def save(self, filepath: str, allowd_types = None):
if hasattr(self.content, "data"):
os.rename(self.content.data.replace("/media", get_media_dir()), filepath)
return
if self.content.startswith("data:"):
with open(filepath, "wb") as f:
f.write(extract_data_uri(self.content))
return
content = filter_markdown(self.content, allowd_types)
if content is not None:
with open(filepath, "w") as f:
f.write(content)
class ChatCompletionChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: str
@classmethod
def model_construct(cls, message: ChatCompletionMessage, finish_reason: str):
return super().model_construct(index=0, message=message, finish_reason=finish_reason)
class ChatCompletion(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: list[ChatCompletionChoice]
usage: UsageModel
conversation: dict
@classmethod
def model_construct(
cls,
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None,
tool_calls: list[ToolCallModel] = None,
usage: UsageModel = None,
conversation: dict = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion",
created=created,
model=None,
provider=None,
choices=[ChatCompletionChoice.model_construct(
ChatCompletionMessage.model_construct(content, tool_calls),
finish_reason,
)],
**filter_none(usage=usage, conversation=conversation)
)
@field_serializer('conversation')
def serialize_conversation(self, conversation: dict):
if hasattr(conversation, "get_dict"):
return conversation.get_dict()
return conversation
class ChatCompletionDelta(BaseModel):
role: str
content: str
@classmethod
def model_construct(cls, content: Optional[str]):
return super().model_construct(role="assistant", content=content)
@field_serializer('content')
def serialize_content(self, content: str):
return str(content)
class ChatCompletionDeltaChoice(BaseModel):
index: int
delta: ChatCompletionDelta
finish_reason: Optional[str]
@classmethod
def model_construct(cls, delta: ChatCompletionDelta, finish_reason: Optional[str]):
return super().model_construct(index=0, delta=delta, finish_reason=finish_reason)
class Image(BaseModel):
url: Optional[str]
b64_json: Optional[str]
revised_prompt: Optional[str]
@classmethod
def model_construct(cls, url: str = None, b64_json: str = None, revised_prompt: str = None):
return super().model_construct(**filter_none(
url=url,
b64_json=b64_json,
revised_prompt=revised_prompt
))
class ImagesResponse(BaseModel):
data: List[Image]
model: str
provider: str
created: int
@classmethod
def model_construct(cls, data: List[Image], created: int = None, model: str = None, provider: str = None):
if created is None:
created = int(time())
return super().model_construct(
data=data,
model=model,
provider=provider,
created=created
)