gpt4free/g4f/Provider/ARTA.py
hlohaus e83282fc4b feat: add EdgeTTS audio provider and global image→media refactor
- **Docs**
  - `docs/file.md`: update upload instructions to use inline `bucket` content parts instead of `tool_calls/bucket_tool`.
  - `docs/media.md`: add asynchronous audio transcription example, detailed explanation, and notes.

- **New audio provider**
  - Add `g4f/Provider/audio/EdgeTTS.py` implementing Edge Text‑to‑Speech (`EdgeTTS`).
  - Create `g4f/Provider/audio/__init__.py` for provider export.
  - Register provider in `g4f/Provider/__init__.py`.

- **Refactor image → media**
  - Introduce `generated_media/` directory and `get_media_dir()` helper in `g4f/image/copy_images.py`; add `ensure_media_dir()`; keep back‑compat with legacy `generated_images/`.
  - Replace `images_dir` references with `get_media_dir()` across:
    - `g4f/api/__init__.py`
    - `g4f/client/stubs.py`
    - `g4f/gui/server/api.py`
    - `g4f/gui/server/backend_api.py`
    - `g4f/image/copy_images.py`
  - Rename CLI/API config field/flag from `image_provider` to `media_provider` (`g4f/cli.py`, `g4f/api/__init__.py`, `g4f/client/__init__.py`).
  - Extend `g4f/image/__init__.py`
    - add `MEDIA_TYPE_MAP`, `get_extension()`
    - revise `is_allowed_extension()`, `to_input_audio()` to support wider media types.

- **Provider adjustments**
  - `g4f/Provider/ARTA.py`: swap `raise_error()` parameter order.
  - `g4f/Provider/Cloudflare.py`: drop unused `MissingRequirementsError` import; move `get_args_from_nodriver()` inside try; handle `FileNotFoundError`.

- **Core enhancements**
  - `g4f/providers/any_provider.py`: use `default_model` instead of literal `"default"`; broaden model/provider matching; update model list cleanup.
  - `g4f/models.py`: safeguard provider count logic when model name is falsy.
  - `g4f/providers/base_provider.py`: catch `json.JSONDecodeError` when reading auth cache, delete corrupted file.
  - `g4f/providers/response.py`: allow `AudioResponse` to accept extra kwargs.

- **Misc**
  - Remove obsolete `g4f/image.py`.
  - `g4f/Provider/Cloudflare.py`, `g4f/client/types.py`: minor whitespace and import tidy‑ups.
2025-04-19 03:20:57 +02:00

211 lines
No EOL
8.8 KiB
Python

from __future__ import annotations
import os
import time
import json
import random
from pathlib import Path
from aiohttp import ClientSession, ClientResponse
import asyncio
from ..typing import AsyncResult, Messages
from ..providers.response import ImageResponse, Reasoning
from ..errors import ResponseError
from ..cookies import get_cookies_dir
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .helper import format_image_prompt
class ARTA(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://ai-arta.com"
auth_url = "https://www.googleapis.com/identitytoolkit/v3/relyingparty/signupNewUser?key=AIzaSyB3-71wG0fIt0shj0ee4fvx1shcjJHGrrQ"
token_refresh_url = "https://securetoken.googleapis.com/v1/token?key=AIzaSyB3-71wG0fIt0shj0ee4fvx1shcjJHGrrQ"
image_generation_url = "https://img-gen-prod.ai-arta.com/api/v1/text2image"
status_check_url = "https://img-gen-prod.ai-arta.com/api/v1/text2image/{record_id}/status"
working = True
default_model = "Flux"
default_image_model = default_model
model_aliases = {
default_image_model: default_image_model,
"flux": default_image_model,
"medieval": "Medieval",
"vincent_van_gogh": "Vincent Van Gogh",
"f_dev": "F Dev",
"low_poly": "Low Poly",
"dreamshaper_xl": "Dreamshaper-xl",
"anima_pencil_xl": "Anima-pencil-xl",
"biomech": "Biomech",
"trash_polka": "Trash Polka",
"no_style": "No Style",
"cheyenne_xl": "Cheyenne-xl",
"chicano": "Chicano",
"embroidery_tattoo": "Embroidery tattoo",
"red_and_black": "Red and Black",
"fantasy_art": "Fantasy Art",
"watercolor": "Watercolor",
"dotwork": "Dotwork",
"old_school_colored": "Old school colored",
"realistic_tattoo": "Realistic tattoo",
"japanese_2": "Japanese_2",
"realistic_stock_xl": "Realistic-stock-xl",
"f_pro": "F Pro",
"revanimated": "RevAnimated",
"katayama_mix_xl": "Katayama-mix-xl",
"sdxl_l": "SDXL L",
"cor_epica_xl": "Cor-epica-xl",
"anime_tattoo": "Anime tattoo",
"new_school": "New School",
"death_metal": "Death metal",
"old_school": "Old School",
"juggernaut_xl": "Juggernaut-xl",
"photographic": "Photographic",
"sdxl_1_0": "SDXL 1.0",
"graffiti": "Graffiti",
"mini_tattoo": "Mini tattoo",
"surrealism": "Surrealism",
"neo_traditional": "Neo-traditional",
"on_limbs_black": "On limbs black",
"yamers_realistic_xl": "Yamers-realistic-xl",
"pony_xl": "Pony-xl",
"playground_xl": "Playground-xl",
"anything_xl": "Anything-xl",
"flame_design": "Flame design",
"kawaii": "Kawaii",
"cinematic_art": "Cinematic Art",
"professional": "Professional",
"black_ink": "Black Ink"
}
image_models = list(model_aliases.keys())
models = image_models
@classmethod
def get_auth_file(cls):
path = Path(get_cookies_dir())
path.mkdir(exist_ok=True)
filename = f"auth_{cls.__name__}.json"
return path / filename
@classmethod
async def create_token(cls, path: Path, proxy: str | None = None):
async with ClientSession() as session:
# Step 1: Generate Authentication Token
auth_payload = {"clientType": "CLIENT_TYPE_ANDROID"}
async with session.post(cls.auth_url, json=auth_payload, proxy=proxy) as auth_response:
await raise_error(f"Failed to obtain authentication token", auth_response)
auth_data = await auth_response.json()
auth_token = auth_data.get("idToken")
#refresh_token = auth_data.get("refreshToken")
if not auth_token:
raise ResponseError("Failed to obtain authentication token.")
json.dump(auth_data, path.open("w"))
return auth_data
@classmethod
async def refresh_token(cls, refresh_token: str, proxy: str = None) -> tuple[str, str]:
async with ClientSession() as session:
payload = {
"grant_type": "refresh_token",
"refresh_token": refresh_token,
}
async with session.post(cls.token_refresh_url, data=payload, proxy=proxy) as response:
await raise_error(f"Failed to refresh token", response)
response_data = await response.json()
return response_data.get("id_token"), response_data.get("refresh_token")
@classmethod
async def read_and_refresh_token(cls, proxy: str | None = None) -> str:
path = cls.get_auth_file()
if path.is_file():
auth_data = json.load(path.open("rb"))
diff = time.time() - os.path.getmtime(path)
expiresIn = int(auth_data.get("expiresIn"))
if diff < expiresIn:
if diff > expiresIn / 2:
auth_data["idToken"], auth_data["refreshToken"] = await cls.refresh_token(auth_data.get("refreshToken"), proxy)
json.dump(auth_data, path.open("w"))
return auth_data
return await cls.create_token(path, proxy)
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
prompt: str = None,
negative_prompt: str = "blurry, deformed hands, ugly",
n: int = 1,
guidance_scale: int = 7,
num_inference_steps: int = 30,
aspect_ratio: str = None,
seed: int = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
prompt = format_image_prompt(messages, prompt)
# Generate a random seed if not provided
if seed is None:
seed = random.randint(9999, 99999999) # Common range for random seeds
# Step 1: Get Authentication Token
auth_data = await cls.read_and_refresh_token(proxy)
async with ClientSession() as session:
# Step 2: Generate Images
image_payload = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"style": model,
"images_num": str(n),
"cfg_scale": str(guidance_scale),
"steps": str(num_inference_steps),
"aspect_ratio": "1:1" if aspect_ratio is None else aspect_ratio,
"seed": str(seed),
}
headers = {
"Authorization": auth_data.get("idToken"),
}
async with session.post(cls.image_generation_url, data=image_payload, headers=headers, proxy=proxy) as image_response:
await raise_error(f"Failed to initiate image generation", image_response)
image_data = await image_response.json()
record_id = image_data.get("record_id")
if not record_id:
raise ResponseError(f"Failed to initiate image generation: {image_data}")
# Step 3: Check Generation Status
status_url = cls.status_check_url.format(record_id=record_id)
start_time = time.time()
last_status = None
while True:
async with session.get(status_url, headers=headers, proxy=proxy) as status_response:
await raise_error(f"Failed to check image generation status", status_response)
status_data = await status_response.json()
status = status_data.get("status")
if status == "DONE":
image_urls = [image["url"] for image in status_data.get("response", [])]
duration = time.time() - start_time
yield Reasoning(label="Generated", status=f"{n} image in {duration:.2f}s" if n == 1 else f"{n} images in {duration:.2f}s")
yield ImageResponse(urls=image_urls, alt=prompt)
return
elif status in ("IN_QUEUE", "IN_PROGRESS"):
if last_status != status:
last_status = status
if status == "IN_QUEUE":
yield Reasoning(label="Waiting")
else:
yield Reasoning(label="Generating")
await asyncio.sleep(2) # Poll every 2 seconds
else:
raise ResponseError(f"Image generation failed with status: {status}")
async def raise_error(message: str, response: ClientResponse):
if response.ok:
return
error_text = await response.text()
content_type = response.headers.get('Content-Type', 'unknown')
raise ResponseError(f"{message}. Content-Type: {content_type}, Response: {error_text}")