mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
Updates for the response of the BackendApi Update of the demo model list Improve web search tool Moved copy_images to /image
127 lines
No EOL
4.5 KiB
Python
127 lines
No EOL
4.5 KiB
Python
from __future__ import annotations
|
|
|
|
import requests
|
|
from ...typing import AsyncResult, Messages
|
|
from ...requests import StreamSession, raise_for_status
|
|
from ...providers.response import ImageResponse
|
|
from ..template import OpenaiTemplate
|
|
from ..helper import format_image_prompt
|
|
|
|
class DeepInfra(OpenaiTemplate):
|
|
url = "https://deepinfra.com"
|
|
login_url = "https://deepinfra.com/dash/api_keys"
|
|
api_base = "https://api.deepinfra.com/v1/openai"
|
|
working = True
|
|
needs_auth = True
|
|
|
|
default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
|
default_image_model = "stabilityai/sd3.5"
|
|
|
|
@classmethod
|
|
def get_models(cls, **kwargs):
|
|
if not cls.models:
|
|
url = 'https://api.deepinfra.com/models/featured'
|
|
response = requests.get(url)
|
|
models = response.json()
|
|
|
|
cls.models = []
|
|
cls.image_models = []
|
|
|
|
for model in models:
|
|
if model["type"] == "text-generation":
|
|
cls.models.append(model['model_name'])
|
|
elif model["reported_type"] == "text-to-image":
|
|
cls.image_models.append(model['model_name'])
|
|
|
|
cls.models.extend(cls.image_models)
|
|
|
|
return cls.models
|
|
|
|
@classmethod
|
|
def get_image_models(cls, **kwargs):
|
|
if not cls.image_models:
|
|
cls.get_models()
|
|
return cls.image_models
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool,
|
|
prompt: str = None,
|
|
temperature: float = 0.7,
|
|
max_tokens: int = 1028,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
if model in cls.get_image_models():
|
|
yield cls.create_async_image(
|
|
format_image_prompt(messages, prompt),
|
|
model,
|
|
**kwargs
|
|
)
|
|
return
|
|
|
|
headers = {
|
|
'Accept-Encoding': 'gzip, deflate, br',
|
|
'Accept-Language': 'en-US',
|
|
'Origin': 'https://deepinfra.com',
|
|
'Referer': 'https://deepinfra.com/',
|
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
|
|
'X-Deepinfra-Source': 'web-embed',
|
|
}
|
|
async for chunk in super().create_async_generator(
|
|
model, messages,
|
|
stream=stream,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
headers=headers,
|
|
**kwargs
|
|
):
|
|
yield chunk
|
|
|
|
@classmethod
|
|
async def create_async_image(
|
|
cls,
|
|
prompt: str,
|
|
model: str,
|
|
api_key: str = None,
|
|
api_base: str = "https://api.deepinfra.com/v1/inference",
|
|
proxy: str = None,
|
|
timeout: int = 180,
|
|
extra_data: dict = {},
|
|
**kwargs
|
|
) -> ImageResponse:
|
|
headers = {
|
|
'Accept-Encoding': 'gzip, deflate, br',
|
|
'Accept-Language': 'en-US',
|
|
'Connection': 'keep-alive',
|
|
'Origin': 'https://deepinfra.com',
|
|
'Referer': 'https://deepinfra.com/',
|
|
'Sec-Fetch-Dest': 'empty',
|
|
'Sec-Fetch-Mode': 'cors',
|
|
'Sec-Fetch-Site': 'same-site',
|
|
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
|
|
'X-Deepinfra-Source': 'web-embed',
|
|
'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
|
|
'sec-ch-ua-mobile': '?0',
|
|
'sec-ch-ua-platform': '"macOS"',
|
|
}
|
|
if api_key is not None:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
async with StreamSession(
|
|
proxies={"all": proxy},
|
|
headers=headers,
|
|
timeout=timeout
|
|
) as session:
|
|
model = cls.get_model(model)
|
|
data = {"prompt": prompt, **extra_data}
|
|
data = {"input": data} if model == cls.default_model else data
|
|
async with session.post(f"{api_base.rstrip('/')}/{model}", json=data) as response:
|
|
await raise_for_status(response)
|
|
data = await response.json()
|
|
images = data.get("output", data.get("images", data.get("image_url")))
|
|
if not images:
|
|
raise RuntimeError(f"Response: {data}")
|
|
images = images[0] if len(images) == 1 else images
|
|
return ImageResponse(images, prompt) |