mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-26 11:53:07 -08:00
Updates for the response of the BackendApi Update of the demo model list Improve web search tool Moved copy_images to /image
78 lines
No EOL
3.4 KiB
Python
78 lines
No EOL
3.4 KiB
Python
from __future__ import annotations
|
|
|
|
from ...providers.types import Messages
|
|
from ...typing import ImagesType
|
|
from ...requests import StreamSession, raise_for_status
|
|
from ...errors import ModelNotSupportedError
|
|
from ..template.OpenaiTemplate import OpenaiTemplate
|
|
from .models import model_aliases
|
|
from .HuggingChat import HuggingChat
|
|
from ... import debug
|
|
|
|
class HuggingFaceAPI(OpenaiTemplate):
|
|
label = "HuggingFace (Inference API)"
|
|
parent = "HuggingFace"
|
|
url = "https://api-inference.huggingface.com"
|
|
api_base = "https://api-inference.huggingface.co/v1"
|
|
working = True
|
|
needs_auth = True
|
|
|
|
default_model = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
|
default_vision_model = default_model
|
|
vision_models = [default_vision_model, "Qwen/Qwen2-VL-7B-Instruct"]
|
|
model_aliases = model_aliases
|
|
|
|
@classmethod
|
|
def get_models(cls, **kwargs):
|
|
if not cls.models:
|
|
HuggingChat.get_models()
|
|
cls.models = HuggingChat.text_models.copy()
|
|
for model in cls.vision_models:
|
|
if model not in cls.models:
|
|
cls.models.append(model)
|
|
return cls.models
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
api_base: str = None,
|
|
max_tokens: int = 2048,
|
|
max_inputs_lenght: int = 10000,
|
|
images: ImagesType = None,
|
|
**kwargs
|
|
):
|
|
if api_base is None:
|
|
model_name = model
|
|
if model in cls.model_aliases:
|
|
model_name = cls.model_aliases[model]
|
|
api_base = f"https://api-inference.huggingface.co/models/{model_name}/v1"
|
|
async with StreamSession(
|
|
timeout=30,
|
|
) as session:
|
|
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
|
|
if response.status == 404:
|
|
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
|
await raise_for_status(response)
|
|
model_data = await response.json()
|
|
pipeline_tag = model_data.get("pipeline_tag")
|
|
if images is None and pipeline_tag not in ("text-generation", "image-text-to-text"):
|
|
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__} pipeline_tag: {pipeline_tag}")
|
|
elif pipeline_tag != "image-text-to-text":
|
|
raise ModelNotSupportedError(f"Model does not support images: {model} in: {cls.__name__} pipeline_tag: {pipeline_tag}")
|
|
start = calculate_lenght(messages)
|
|
if start > max_inputs_lenght:
|
|
if len(messages) > 6:
|
|
messages = messages[:3] + messages[-3:]
|
|
if calculate_lenght(messages) > max_inputs_lenght:
|
|
if len(messages) > 2:
|
|
messages = [m for m in messages if m["role"] == "system"] + messages[-1:]
|
|
if len(messages) > 1 and calculate_lenght(messages) > max_inputs_lenght:
|
|
messages = [messages[-1]]
|
|
debug.log(f"Messages trimmed from: {start} to: {calculate_lenght(messages)}")
|
|
async for chunk in super().create_async_generator(model, messages, api_base=api_base, max_tokens=max_tokens, images=images, **kwargs):
|
|
yield chunk
|
|
|
|
def calculate_lenght(messages: Messages) -> int:
|
|
return sum([len(message["content"]) + 16 for message in messages]) |