gpt4free/g4f/Provider/hf_space/Microsoft_Phi_4_Multimodal.py
kqlio67 c3d61ad9e3 refactor: update providers and models for better compatibility
- Changed default model in commit.py from "gpt-4o" to "claude-3.7-sonnet"
- Fixed ARTA provider by adding proper auth token handling and form data submission
- Updated Blackbox provider to use OpenRouter models instead of premium models
- Improved DDG provider with simplified authentication and better error handling
- Updated DeepInfraChat provider with new models and aliases
- Removed non-working providers: Goabror, Jmuz, OIVSCode, AllenAI, ChatGptEs, FreeRouter, Glider
- Moved non-working providers to the not_working directory
- Added BlackboxPro provider in needs_auth directory with premium model support
- Updated Liaobots provider with new models and improved authentication
- Renamed Microsoft_Phi_4 to Microsoft_Phi_4_Multimodal for clarity
- Updated LambdaChat provider with direct API implementation instead of HuggingChat
- Updated models.py with new model definitions and provider mappings
- Removed BlackForestLabs_Flux1Schnell from HuggingSpace providers
- Updated model aliases across multiple providers for better compatibility
- Fixed Dynaspark provider endpoint URL to prevent spam detection
2025-05-12 20:24:36 +03:00

164 lines
7.3 KiB
Python

from __future__ import annotations
import json
import uuid
from ...typing import AsyncResult, Messages, Cookies, MediaListType
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt, format_image_prompt
from ...providers.response import JsonConversation
from ...requests.aiohttp import StreamSession, StreamResponse, FormData
from ...requests.raise_for_status import raise_for_status
from ...image import to_bytes, is_accepted_format, is_data_an_audio
from ...errors import ResponseError
from ... import debug
from .DeepseekAI_JanusPro7b import get_zerogpu_token
from .raise_for_status import raise_for_status
class Microsoft_Phi_4_Multimodal(AsyncGeneratorProvider, ProviderModelMixin):
label = "Microsoft Phi-4"
space = "microsoft/phi-4-multimodal"
url = f"https://huggingface.co/spaces/{space}"
api_url = "https://microsoft-phi-4-multimodal.hf.space"
referer = f"{api_url}?__theme=light"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = "phi-4-multimodal"
default_vision_model = default_model
vision_models = [default_vision_model]
models = vision_models
model_aliases = {"phi-4": default_vision_model}
@classmethod
def run(cls, method: str, session: StreamSession, prompt: str, conversation: JsonConversation, media: list = None):
headers = {
"content-type": "application/json",
"x-zerogpu-token": conversation.zerogpu_token,
"x-zerogpu-uuid": conversation.zerogpu_uuid,
"referer": cls.referer,
}
if method == "predict":
return session.post(f"{cls.api_url}/gradio_api/run/predict", **{
"headers": {k: v for k, v in headers.items() if v is not None},
"json": {
"data":[
[],
{
"text": prompt,
"files": media,
},
None
],
"event_data": None,
"fn_index": 10,
"trigger_id": 8,
"session_hash": conversation.session_hash
},
})
if method == "post":
return session.post(f"{cls.api_url}/gradio_api/queue/join?__theme=light", **{
"headers": {k: v for k, v in headers.items() if v is not None},
"json": {
"data": [[
{
"role": "user",
"content": prompt,
}
]] + [[
{
"role": "user",
"content": {"file": image}
} for image in media
]],
"event_data": None,
"fn_index": 11,
"trigger_id": 8,
"session_hash": conversation.session_hash
},
})
return session.get(f"{cls.api_url}/gradio_api/queue/data?session_hash={conversation.session_hash}", **{
"headers": {
"accept": "text/event-stream",
"content-type": "application/json",
"referer": cls.referer,
}
})
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
media: MediaListType = None,
prompt: str = None,
proxy: str = None,
cookies: Cookies = None,
api_key: str = None,
zerogpu_uuid: str = "[object Object]",
return_conversation: bool = True,
conversation: JsonConversation = None,
**kwargs
) -> AsyncResult:
prompt = format_prompt(messages) if prompt is None and conversation is None else prompt
prompt = format_image_prompt(messages, prompt)
session_hash = uuid.uuid4().hex if conversation is None else getattr(conversation, "session_hash", uuid.uuid4().hex)
async with StreamSession(proxy=proxy, impersonate="chrome") as session:
if api_key is None:
zerogpu_uuid, api_key = await get_zerogpu_token(cls.space, session, conversation, cookies)
if conversation is None or not hasattr(conversation, "session_hash"):
conversation = JsonConversation(session_hash=session_hash, zerogpu_token=api_key, zerogpu_uuid=zerogpu_uuid)
else:
conversation.zerogpu_token = api_key
if return_conversation:
yield conversation
if media is not None:
data = FormData()
mime_types = [None for i in range(len(media))]
for i in range(len(media)):
mime_types[i] = is_data_an_audio(media[i][0], media[i][1])
media[i] = (to_bytes(media[i][0]), media[i][1])
mime_types[i] = is_accepted_format(media[i][0]) if mime_types[i] is None else mime_types[i]
for image, image_name in media:
data.add_field(f"files", to_bytes(image), filename=image_name)
async with session.post(f"{cls.api_url}/gradio_api/upload", params={"upload_id": session_hash}, data=data) as response:
await raise_for_status(response)
image_files = await response.json()
media = [{
"path": image_file,
"url": f"{cls.api_url}/gradio_api/file={image_file}",
"orig_name": media[i][1],
"size": len(media[i][0]),
"mime_type": mime_types[i],
"meta": {
"_type": "gradio.FileData"
}
} for i, image_file in enumerate(image_files)]
async with cls.run("predict", session, prompt, conversation, media) as response:
await raise_for_status(response)
async with cls.run("post", session, prompt, conversation, media) as response:
await raise_for_status(response)
async with cls.run("get", session, prompt, conversation) as response:
response: StreamResponse = response
async for line in response.iter_lines():
if line.startswith(b'data: '):
try:
json_data = json.loads(line[6:])
if json_data.get('msg') == 'process_completed':
if 'output' in json_data and 'error' in json_data['output']:
raise ResponseError(json_data['output']['error'])
if 'output' in json_data and 'data' in json_data['output']:
yield json_data['output']['data'][0][-1]["content"]
break
except json.JSONDecodeError:
debug.log("Could not parse JSON:", line.decode(errors="replace"))