mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
243 lines
No EOL
8.8 KiB
Python
243 lines
No EOL
8.8 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import random
|
|
import requests
|
|
from urllib.parse import quote_plus
|
|
from typing import Optional
|
|
from aiohttp import ClientSession
|
|
|
|
from .helper import filter_none
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ..typing import AsyncResult, Messages, ImagesType
|
|
from ..image import to_data_uri
|
|
from ..requests.raise_for_status import raise_for_status
|
|
from ..requests.aiohttp import get_connector
|
|
from ..providers.response import ImageResponse, FinishReason, Usage
|
|
|
|
DEFAULT_HEADERS = {
|
|
'Accept': '*/*',
|
|
'Accept-Language': 'en-US,en;q=0.9',
|
|
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
|
|
}
|
|
|
|
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
|
|
label = "Pollinations AI"
|
|
url = "https://pollinations.ai"
|
|
|
|
working = True
|
|
supports_stream = False
|
|
supports_system_message = True
|
|
supports_message_history = True
|
|
|
|
# API endpoints
|
|
text_api_endpoint = "https://text.pollinations.ai/openai"
|
|
image_api_endpoint = "https://image.pollinations.ai/"
|
|
|
|
# Models configuration
|
|
default_model = "openai"
|
|
default_image_model = "flux"
|
|
default_vision_model = "gpt-4o"
|
|
extra_image_models = ["midjourney", "dall-e-3", "flux-pro", "flux-realism", "flux-cablyai", "flux-anime", "flux-3d"]
|
|
vision_models = [default_vision_model, "gpt-4o-mini"]
|
|
extra_text_models = [*vision_models, "claude", "karma", "command-r", "llamalight", "mistral-large", "sur", "sur-mistral", "any-dark"]
|
|
model_aliases = {
|
|
"qwen-2-72b": "qwen",
|
|
"qwen-2.5-coder-32b": "qwen-coder",
|
|
"llama-3.3-70b": "llama",
|
|
"mistral-nemo": "mistral",
|
|
#"": "karma",
|
|
"gpt-4": "searchgpt",
|
|
"gpt-4": "claude",
|
|
"claude-3.5-sonnet": "sur",
|
|
"deepseek-chat": "deepseek",
|
|
"llama-3.2-3b": "llamalight",
|
|
}
|
|
text_models = []
|
|
|
|
@classmethod
|
|
def get_models(cls, **kwargs):
|
|
# Fetch image models if not cached
|
|
if not cls.image_models:
|
|
url = "https://image.pollinations.ai/models"
|
|
response = requests.get(url)
|
|
raise_for_status(response)
|
|
cls.image_models = response.json()
|
|
cls.image_models.extend(cls.extra_image_models)
|
|
|
|
# Fetch text models if not cached
|
|
if not cls.text_models:
|
|
url = "https://text.pollinations.ai/models"
|
|
response = requests.get(url)
|
|
raise_for_status(response)
|
|
cls.text_models = [model.get("name") for model in response.json()]
|
|
cls.text_models.extend(cls.extra_text_models)
|
|
|
|
# Return combined models
|
|
return cls.text_models + cls.image_models
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
# Image specific parameters
|
|
prompt: str = None,
|
|
width: int = 1024,
|
|
height: int = 1024,
|
|
seed: Optional[int] = None,
|
|
nologo: bool = True,
|
|
private: bool = False,
|
|
enhance: bool = False,
|
|
safe: bool = False,
|
|
# Text specific parameters
|
|
images: ImagesType = None,
|
|
temperature: float = None,
|
|
presence_penalty: float = None,
|
|
top_p: float = 1,
|
|
frequency_penalty: float = None,
|
|
response_format: Optional[dict] = None,
|
|
cache: bool = False,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
if images is not None and not model:
|
|
model = cls.default_vision_model
|
|
model = cls.get_model(model)
|
|
if not cache and seed is None:
|
|
seed = random.randint(0, 100000)
|
|
|
|
# Check if models
|
|
# Image generation
|
|
if model in cls.image_models:
|
|
yield await cls._generate_image(
|
|
model=model,
|
|
prompt=messages[-1]["content"] if prompt is None else prompt,
|
|
proxy=proxy,
|
|
width=width,
|
|
height=height,
|
|
seed=seed,
|
|
nologo=nologo,
|
|
private=private,
|
|
enhance=enhance,
|
|
safe=safe
|
|
)
|
|
else:
|
|
# Text generation
|
|
async for result in cls._generate_text(
|
|
model=model,
|
|
messages=messages,
|
|
images=images,
|
|
proxy=proxy,
|
|
temperature=temperature,
|
|
presence_penalty=presence_penalty,
|
|
top_p=top_p,
|
|
frequency_penalty=frequency_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
cache=cache,
|
|
):
|
|
yield result
|
|
|
|
@classmethod
|
|
async def _generate_image(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
proxy: str,
|
|
width: int,
|
|
height: int,
|
|
seed: Optional[int],
|
|
nologo: bool,
|
|
private: bool,
|
|
enhance: bool,
|
|
safe: bool
|
|
) -> ImageResponse:
|
|
params = {
|
|
"seed": seed,
|
|
"width": width,
|
|
"height": height,
|
|
"model": model,
|
|
"nologo": nologo,
|
|
"private": private,
|
|
"enhance": enhance,
|
|
"safe": safe
|
|
}
|
|
params = {k: json.dumps(v) if isinstance(v, bool) else v for k, v in params.items() if v is not None}
|
|
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
|
|
async with session.head(f"{cls.image_api_endpoint}prompt/{quote_plus(prompt)}", params=params) as response:
|
|
await raise_for_status(response)
|
|
return ImageResponse(str(response.url), prompt)
|
|
|
|
@classmethod
|
|
async def _generate_text(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
images: Optional[ImagesType],
|
|
proxy: str,
|
|
temperature: float,
|
|
presence_penalty: float,
|
|
top_p: float,
|
|
frequency_penalty: float,
|
|
response_format: Optional[dict],
|
|
seed: Optional[int],
|
|
cache: bool
|
|
) -> AsyncResult:
|
|
jsonMode = False
|
|
if response_format is not None and "type" in response_format:
|
|
if response_format["type"] == "json_object":
|
|
jsonMode = True
|
|
|
|
if images is not None and messages:
|
|
last_message = messages[-1].copy()
|
|
last_message["content"] = [
|
|
*[{
|
|
"type": "image_url",
|
|
"image_url": {"url": to_data_uri(image)}
|
|
} for image, _ in images],
|
|
{
|
|
"type": "text",
|
|
"text": messages[-1]["content"]
|
|
}
|
|
]
|
|
messages[-1] = last_message
|
|
|
|
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
|
|
data = {
|
|
"messages": messages,
|
|
"model": model,
|
|
"temperature": temperature,
|
|
"presence_penalty": presence_penalty,
|
|
"top_p": top_p,
|
|
"frequency_penalty": frequency_penalty,
|
|
"jsonMode": jsonMode,
|
|
"stream": False, # To get more informations like Usage and FinishReason
|
|
"seed": seed,
|
|
"cache": cache
|
|
}
|
|
async with session.post(cls.text_api_endpoint, json=filter_none(**data)) as response:
|
|
await raise_for_status(response)
|
|
async for line in response.content:
|
|
decoded_chunk = line.decode(errors="replace")
|
|
# If [DONE].
|
|
if "data: [DONE]" in decoded_chunk:
|
|
break
|
|
# Processing JSON format
|
|
try:
|
|
# Remove the prefix “data: “ and parse JSON
|
|
json_str = decoded_chunk.replace("data:", "").strip()
|
|
data = json.loads(json_str)
|
|
choice = data["choices"][0]
|
|
if "usage" in data:
|
|
yield Usage(**data["usage"])
|
|
if "message" in choice and "content" in choice["message"] and choice["message"]["content"]:
|
|
yield choice["message"]["content"].replace("\\(", "(").replace("\\)", ")")
|
|
elif "delta" in choice and "content" in choice["delta"] and choice["delta"]["content"]:
|
|
yield choice["delta"]["content"].replace("\\(", "(").replace("\\)", ")")
|
|
if "finish_reason" in choice and choice["finish_reason"] is not None:
|
|
yield FinishReason(choice["finish_reason"])
|
|
break
|
|
except json.JSONDecodeError:
|
|
yield decoded_chunk.strip()
|
|
continue |