gpt4free/g4f/mcp/tools.py
copilot-swe-agent[bot] 0a72ce961c Address code review feedback: improve type hints, validation, and documentation
Co-authored-by: hlohaus <983577+hlohaus@users.noreply.github.com>
2025-11-01 05:17:04 +00:00

298 lines
9.2 KiB
Python

"""MCP Tools for gpt4free
This module provides MCP tool implementations that wrap gpt4free capabilities:
- WebSearchTool: Web search using ddg search
- WebScrapeTool: Web page scraping and content extraction
- ImageGenerationTool: Image generation using various AI providers
"""
from __future__ import annotations
import asyncio
from typing import Any, Dict
from abc import ABC, abstractmethod
class MCPTool(ABC):
"""Base class for MCP tools"""
@property
@abstractmethod
def description(self) -> str:
"""Tool description"""
pass
@property
@abstractmethod
def input_schema(self) -> Dict[str, Any]:
"""JSON schema for tool input parameters"""
pass
@abstractmethod
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""Execute the tool with given arguments
Args:
arguments: Tool input arguments matching the input_schema
Returns:
Dict containing either results or an error key with error message
"""
pass
class WebSearchTool(MCPTool):
"""Web search tool using gpt4free's search capabilities"""
@property
def description(self) -> str:
return "Search the web for information using DuckDuckGo. Returns search results with titles, URLs, and snippets."
@property
def input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query to execute"
},
"max_results": {
"type": "integer",
"description": "Maximum number of results to return (default: 5)",
"default": 5
}
},
"required": ["query"]
}
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""Execute web search
Returns:
Dict[str, Any]: Search results or error message
"""
from ..tools.web_search import do_search
query = arguments.get("query", "")
max_results = arguments.get("max_results", 5)
if not query:
return {
"error": "Query parameter is required"
}
try:
# Perform search - query parameter is used for search execution
# and prompt parameter holds the content to be searched
result, sources = await do_search(
prompt=query,
query=query,
instructions=""
)
# Format results
search_results = []
if sources:
for i, source in enumerate(sources[:max_results]):
search_results.append({
"title": source.get("title", ""),
"url": source.get("url", ""),
"snippet": source.get("snippet", "")
})
return {
"query": query,
"results": search_results,
"count": len(search_results)
}
except Exception as e:
return {
"error": f"Search failed: {str(e)}"
}
class WebScrapeTool(MCPTool):
"""Web scraping tool using gpt4free's scraping capabilities"""
@property
def description(self) -> str:
return "Scrape and extract text content from a web page URL. Returns cleaned text content with optional word limit."
@property
def input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The URL of the web page to scrape"
},
"max_words": {
"type": "integer",
"description": "Maximum number of words to extract (default: 1000)",
"default": 1000
}
},
"required": ["url"]
}
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""Execute web scraping
Returns:
Dict[str, Any]: Scraped content or error message
"""
from ..tools.fetch_and_scrape import fetch_and_scrape
from aiohttp import ClientSession
url = arguments.get("url", "")
max_words = arguments.get("max_words", 1000)
if not url:
return {
"error": "URL parameter is required"
}
try:
# Scrape the URL
async with ClientSession() as session:
content = await fetch_and_scrape(
session=session,
url=url,
max_words=max_words,
add_source=True
)
if not content:
return {
"error": "Failed to scrape content from URL"
}
return {
"url": url,
"content": content,
"word_count": len(content.split())
}
except Exception as e:
return {
"error": f"Scraping failed: {str(e)}"
}
class ImageGenerationTool(MCPTool):
"""Image generation tool using gpt4free's image generation capabilities"""
@property
def description(self) -> str:
return "Generate images from text prompts using AI image generation providers. Returns base64-encoded image data."
@property
def input_schema(self) -> Dict[str, Any]:
return {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The text prompt describing the image to generate"
},
"model": {
"type": "string",
"description": "The image generation model to use (default: flux)",
"default": "flux"
},
"width": {
"type": "integer",
"description": "Image width in pixels (default: 1024)",
"default": 1024
},
"height": {
"type": "integer",
"description": "Image height in pixels (default: 1024)",
"default": 1024
}
},
"required": ["prompt"]
}
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
"""Execute image generation
Returns:
Dict[str, Any]: Generated image data or error message
"""
from ..client import AsyncClient
from ..image import to_data_uri
import base64
prompt = arguments.get("prompt", "")
model = arguments.get("model", "flux")
width = arguments.get("width", 1024)
height = arguments.get("height", 1024)
if not prompt:
return {
"error": "Prompt parameter is required"
}
try:
# Generate image using gpt4free client
client = AsyncClient()
response = await client.images.generate(
model=model,
prompt=prompt,
width=width,
height=height
)
# Get the image data with proper validation
if not response:
return {
"error": "Image generation failed: No response from provider"
}
if not hasattr(response, 'data') or not response.data:
return {
"error": "Image generation failed: No image data in response"
}
if len(response.data) == 0:
return {
"error": "Image generation failed: Empty image data array"
}
image_data = response.data[0]
# Check if image_data has url attribute
if not hasattr(image_data, 'url'):
return {
"error": "Image generation failed: No URL in image data"
}
image_url = image_data.url
# Return result based on URL type
if image_url.startswith('data:'):
return {
"prompt": prompt,
"model": model,
"width": width,
"height": height,
"image": image_url
}
else:
return {
"prompt": prompt,
"model": model,
"width": width,
"height": height,
"image_url": image_url
}
except Exception as e:
return {
"error": f"Image generation failed: {str(e)}"
}