mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
343 lines
11 KiB
Python
343 lines
11 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
from typing import Optional, List
|
|
from time import time
|
|
|
|
from ..image import extract_data_uri
|
|
from ..image.copy_images import get_media_dir
|
|
from ..client.helper import filter_markdown
|
|
from ..providers.response import Reasoning, ToolCalls, AudioResponse
|
|
from .helper import filter_none
|
|
|
|
try:
|
|
from pydantic import BaseModel, field_serializer
|
|
except ImportError:
|
|
class BaseModel():
|
|
@classmethod
|
|
def model_construct(cls, **data):
|
|
new = cls()
|
|
for key, value in data.items():
|
|
setattr(new, key, value)
|
|
return new
|
|
class field_serializer():
|
|
def __init__(self, field_name):
|
|
self.field_name = field_name
|
|
def __call__(self, *args, **kwargs):
|
|
return args[0]
|
|
|
|
class BaseModel(BaseModel):
|
|
@classmethod
|
|
def model_construct(cls, **data):
|
|
if hasattr(super(), "model_construct"):
|
|
return super().model_construct(**data)
|
|
return cls.construct(**data)
|
|
|
|
class PromptTokenDetails(BaseModel):
|
|
cached_tokens: int
|
|
audio_tokens: int
|
|
|
|
class CompletionTokenDetails(BaseModel):
|
|
reasoning_tokens: int
|
|
image_tokens: int
|
|
audio_tokens: int
|
|
|
|
class UsageModel(BaseModel):
|
|
prompt_tokens: int
|
|
completion_tokens: int
|
|
total_tokens: int
|
|
prompt_tokens_details: PromptTokenDetails
|
|
completion_tokens_details: CompletionTokenDetails
|
|
|
|
@classmethod
|
|
def model_construct(cls, prompt_tokens=0, completion_tokens=0, total_tokens=0, prompt_tokens_details=None, completion_tokens_details=None, **kwargs):
|
|
return super().model_construct(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=total_tokens,
|
|
prompt_tokens_details=PromptTokenDetails.model_construct(**prompt_tokens_details if prompt_tokens_details else {"cached_tokens": 0}),
|
|
completion_tokens_details=CompletionTokenDetails.model_construct(**completion_tokens_details if completion_tokens_details else {}),
|
|
**kwargs
|
|
)
|
|
|
|
class ToolFunctionModel(BaseModel):
|
|
name: str
|
|
arguments: str
|
|
|
|
class ToolCallModel(BaseModel):
|
|
id: str
|
|
type: str
|
|
function: ToolFunctionModel
|
|
|
|
@classmethod
|
|
def model_construct(cls, function=None, **kwargs):
|
|
return super().model_construct(
|
|
**kwargs,
|
|
function=ToolFunctionModel.model_construct(**function),
|
|
)
|
|
|
|
class ChatCompletionChunk(BaseModel):
|
|
id: str
|
|
object: str
|
|
created: int
|
|
model: str
|
|
provider: Optional[str]
|
|
choices: List[ChatCompletionDeltaChoice]
|
|
usage: UsageModel
|
|
conversation: dict
|
|
|
|
@classmethod
|
|
def model_construct(
|
|
cls,
|
|
content: str,
|
|
finish_reason: str,
|
|
completion_id: str = None,
|
|
created: int = None,
|
|
usage: UsageModel = None,
|
|
conversation: dict = None
|
|
):
|
|
return super().model_construct(
|
|
id=f"chatcmpl-{completion_id}" if completion_id else None,
|
|
object="chat.completion.chunk",
|
|
created=created,
|
|
model=None,
|
|
provider=None,
|
|
choices=[ChatCompletionDeltaChoice.model_construct(
|
|
ChatCompletionDelta.model_construct(content),
|
|
finish_reason
|
|
)],
|
|
**filter_none(usage=usage, conversation=conversation)
|
|
)
|
|
|
|
@field_serializer('conversation')
|
|
def serialize_conversation(self, conversation: dict):
|
|
if hasattr(conversation, "get_dict"):
|
|
return conversation.get_dict()
|
|
return conversation
|
|
|
|
class ResponseMessage(BaseModel):
|
|
type: str = "message"
|
|
role: str
|
|
content: list[ResponseMessageContent]
|
|
|
|
@classmethod
|
|
def model_construct(cls, content: str):
|
|
return super().model_construct(role="assistant", content=[ResponseMessageContent.model_construct(content)])
|
|
|
|
class ResponseMessageContent(BaseModel):
|
|
type: str
|
|
text: str
|
|
|
|
@classmethod
|
|
def model_construct(cls, text: str):
|
|
return super().model_construct(type="output_text", text=text)
|
|
|
|
@field_serializer('text')
|
|
def serialize_text(self, text: str):
|
|
return str(text)
|
|
|
|
class AudioResponseModel(BaseModel):
|
|
data: str
|
|
transcript: Optional[str] = None
|
|
|
|
@classmethod
|
|
def model_construct(cls, data: str, transcript: Optional[str] = None):
|
|
return super().model_construct(data=data, transcript=transcript)
|
|
|
|
class ChatCompletionMessage(BaseModel):
|
|
role: str
|
|
content: str
|
|
reasoning: Optional[str] = None
|
|
tool_calls: list[ToolCallModel] = None
|
|
audio: AudioResponseModel = None
|
|
|
|
@classmethod
|
|
def model_construct(cls, content: str):
|
|
return super().model_construct(role="assistant", content=[ResponseMessageContent.model_construct(content)])
|
|
|
|
@classmethod
|
|
def model_construct(cls, content: str, reasoning: list[Reasoning] = None, tool_calls: list = None):
|
|
if isinstance(content, AudioResponse) and content.data.startswith("data:"):
|
|
return super().model_construct(
|
|
role="assistant",
|
|
audio=AudioResponseModel.model_construct(
|
|
data=content.data.split(",")[-1],
|
|
transcript=content.transcript
|
|
),
|
|
content=content
|
|
)
|
|
if reasoning is not None and isinstance(reasoning, list):
|
|
reasoning = "".join([str(content) for content in reasoning])
|
|
return super().model_construct(role="assistant", content=content, **filter_none(tool_calls=tool_calls, reasoning=reasoning))
|
|
|
|
@field_serializer('content')
|
|
def serialize_content(self, content: str):
|
|
return str(content)
|
|
|
|
def save(self, filepath: str, allowed_types = None):
|
|
if hasattr(self.content, "data"):
|
|
os.rename(self.content.data.replace("/media", get_media_dir()), filepath)
|
|
return
|
|
if self.content.startswith("data:"):
|
|
with open(filepath, "wb") as f:
|
|
f.write(extract_data_uri(self.content))
|
|
return
|
|
content = filter_markdown(self.content, allowed_types, self.content if not allowed_types else None)
|
|
if content is not None:
|
|
with open(filepath, "w") as f:
|
|
f.write(content)
|
|
|
|
|
|
class ChatCompletionChoice(BaseModel):
|
|
index: int
|
|
message: ChatCompletionMessage
|
|
finish_reason: str
|
|
|
|
@classmethod
|
|
def model_construct(cls, message: ChatCompletionMessage, finish_reason: str):
|
|
return super().model_construct(index=0, message=message, finish_reason=finish_reason)
|
|
|
|
class ChatCompletion(BaseModel):
|
|
id: str
|
|
object: str
|
|
created: int
|
|
model: str
|
|
provider: Optional[str]
|
|
choices: list[ChatCompletionChoice]
|
|
usage: UsageModel
|
|
conversation: dict
|
|
|
|
@classmethod
|
|
def model_construct(
|
|
cls,
|
|
content: str,
|
|
finish_reason: str,
|
|
completion_id: str = None,
|
|
created: int = None,
|
|
tool_calls: list[ToolCallModel] = None,
|
|
usage: UsageModel = None,
|
|
conversation: dict = None,
|
|
reasoning: list[Reasoning] = None
|
|
):
|
|
return super().model_construct(
|
|
id=f"chatcmpl-{completion_id}" if completion_id else None,
|
|
object="chat.completion",
|
|
created=created,
|
|
model=None,
|
|
provider=None,
|
|
choices=[ChatCompletionChoice.model_construct(
|
|
ChatCompletionMessage.model_construct(content, reasoning, tool_calls),
|
|
finish_reason,
|
|
)],
|
|
**filter_none(usage=usage, conversation=conversation)
|
|
)
|
|
|
|
@field_serializer('conversation')
|
|
def serialize_conversation(self, conversation: dict):
|
|
if hasattr(conversation, "get_dict"):
|
|
return conversation.get_dict()
|
|
return conversation
|
|
|
|
class ClientResponse(BaseModel):
|
|
id: str
|
|
object: str
|
|
created_at: int
|
|
model: str
|
|
provider: Optional[str]
|
|
output: list[ResponseMessage]
|
|
usage: UsageModel
|
|
conversation: dict
|
|
|
|
@classmethod
|
|
def model_construct(
|
|
cls,
|
|
content: str,
|
|
response_id: str = None,
|
|
created_at: int = None,
|
|
usage: UsageModel = None,
|
|
conversation: dict = None
|
|
) -> ClientResponse:
|
|
return super().model_construct(
|
|
id=f"resp-{response_id}" if response_id else None,
|
|
object="response",
|
|
created_at=created_at,
|
|
model=None,
|
|
provider=None,
|
|
output=[
|
|
ResponseMessage.model_construct(content),
|
|
],
|
|
**filter_none(usage=usage, conversation=conversation)
|
|
)
|
|
|
|
@field_serializer('conversation')
|
|
def serialize_conversation(self, conversation: dict):
|
|
if hasattr(conversation, "get_dict"):
|
|
return conversation.get_dict()
|
|
return conversation
|
|
|
|
class ChatCompletionDelta(BaseModel):
|
|
role: str
|
|
content: Optional[str]
|
|
reasoning: Optional[str] = None
|
|
tool_calls: list[ToolCallModel] = None
|
|
|
|
@classmethod
|
|
def model_construct(cls, content: Optional[str]):
|
|
if isinstance(content, Reasoning):
|
|
return super().model_construct(role="assistant", content=None, reasoning=str(content))
|
|
elif isinstance(content, ToolCalls) and content.get_list():
|
|
return super().model_construct(role="assistant", content=None, tool_calls=[
|
|
ToolCallModel.model_construct(**tool_call) for tool_call in content.get_list()
|
|
])
|
|
return super().model_construct(role="assistant", content=content)
|
|
|
|
@field_serializer('content')
|
|
def serialize_content(self, content: Optional[str]):
|
|
if content is None:
|
|
return ""
|
|
if isinstance(content, (Reasoning, ToolCalls)):
|
|
return None
|
|
return str(content)
|
|
|
|
class ChatCompletionDeltaChoice(BaseModel):
|
|
index: int
|
|
delta: ChatCompletionDelta
|
|
finish_reason: Optional[str]
|
|
|
|
@classmethod
|
|
def model_construct(cls, delta: ChatCompletionDelta, finish_reason: Optional[str]):
|
|
return super().model_construct(index=0, delta=delta, finish_reason=finish_reason)
|
|
|
|
class Image(BaseModel):
|
|
url: Optional[str]
|
|
b64_json: Optional[str]
|
|
revised_prompt: Optional[str]
|
|
|
|
@classmethod
|
|
def model_construct(cls, url: str = None, b64_json: str = None, revised_prompt: str = None):
|
|
return super().model_construct(**filter_none(
|
|
url=url,
|
|
b64_json=b64_json,
|
|
revised_prompt=revised_prompt
|
|
))
|
|
|
|
def save(self, path: str):
|
|
if self.url is not None and self.url.startswith("/media/"):
|
|
os.rename(self.url.replace("/media", get_media_dir()), path)
|
|
|
|
class ImagesResponse(BaseModel):
|
|
data: List[Image]
|
|
model: str
|
|
provider: str
|
|
created: int
|
|
|
|
@classmethod
|
|
def model_construct(cls, data: List[Image], created: int = None, model: str = None, provider: str = None):
|
|
if created is None:
|
|
created = int(time())
|
|
return super().model_construct(
|
|
data=data,
|
|
model=model,
|
|
provider=provider,
|
|
created=created
|
|
)
|