mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
* Update model configurations, provider implementations, and documentation - Updated model names and aliases for Qwen QVQ 72B and Qwen 2 72B (@TheFirstNoob) - Revised HuggingSpace class configuration, added default_image_model - Added llama-3.2-70b alias for Llama 3.2 70B model in AutonomousAI - Removed BlackboxCreateAgent class - Added gpt-4o alias for Copilot model - Moved api_key to Mhystical class attribute - Added models property with default_model value for Free2GPT - Simplified Jmuz class implementation - Improved image generation and model handling in DeepInfra - Standardized default models and removed aliases in Gemini - Replaced model aliases with direct model list in GlhfChat (@TheFirstNoob) - Removed trailing slash from image generation URL in PollinationsAI (https://github.com/xtekky/gpt4free/issues/2571) - Updated llama and qwen model configurations - Enhanced provider documentation and model details * Removed from (g4f/models.py) 'Yqcloud' provider from Default due to error 'ResponseStatusError: Response 429: 文字过长,请删减后重试。' * Update docs/providers-and-models.md * refactor(g4f/Provider/DDG.py): Add error handling and rate limiting to DDG provider - Add custom exception classes for rate limits, timeouts, and conversation limits - Implement rate limiting with sleep between requests (0.75s minimum delay) - Add model validation method to check supported models - Add proper error handling for API responses with custom exceptions - Improve session cookie handling for conversation persistence - Clean up User-Agent string and remove redundant code - Add proper error propagation through async generator Breaking changes: - New custom exceptions may require updates to error handling code - Rate limiting affects request timing and throughput - Model validation is now stricter Related: - Adds error handling similar to standard API clients - Improves reliability and robustness of chat interactions * Update g4f/models.py g4f/Provider/PollinationsAI.py * Update g4f/models.py * Restored provider which was not working and was disabled (g4f/Provider/DeepInfraChat.py) * Fixing a bug with Streaming Completions * Update g4f/Provider/PollinationsAI.py * Update g4f/Provider/Blackbox.py g4f/Provider/DDG.py * Added another model for generating images 'ImageGeneration2' to the 'Blackbox' provider * Update docs/providers-and-models.md * Update g4f/models.py g4f/Provider/Blackbox.py * Added a new OIVSCode provider from the Text Models and Vision (Image Upload) model * Update docs/providers-and-models.md * docs: add Conversation Memory class with context handling requested by @TheFirstNoob * Simplified README.md documentation added new docs/configuration.md documentation * Update add README.md docs/configuration.md * Update README.md * Update docs/providers-and-models.md g4f/models.py g4f/Provider/PollinationsAI.py * Added new model deepseek-r1 to Blackbox provider. @TheFirstNoob * Fixed bugs and updated docs/providers-and-models.md etc/unittest/client.py g4f/models.py g4f/Provider/. --------- Co-authored-by: kqlio67 <> Co-authored-by: H Lohaus <hlohaus@users.noreply.github.com>
276 lines
11 KiB
Python
276 lines
11 KiB
Python
import json
|
|
import random
|
|
import re
|
|
import requests
|
|
from aiohttp import ClientSession
|
|
from typing import List
|
|
|
|
from ...typing import AsyncResult, Messages
|
|
from ...image import ImageResponse
|
|
from ...providers.response import FinishReason, Usage
|
|
from ...requests.raise_for_status import raise_for_status
|
|
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
|
|
from ... import debug
|
|
|
|
def split_message(message: str, max_length: int = 1000) -> List[str]:
|
|
"""Splits the message into parts up to (max_length)."""
|
|
chunks = []
|
|
while len(message) > max_length:
|
|
split_point = message.rfind(' ', 0, max_length)
|
|
if split_point == -1:
|
|
split_point = max_length
|
|
chunks.append(message[:split_point])
|
|
message = message[split_point:].strip()
|
|
if message:
|
|
chunks.append(message)
|
|
return chunks
|
|
|
|
class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://api.airforce"
|
|
api_endpoint_completions = "https://api.airforce/chat/completions"
|
|
api_endpoint_imagine2 = "https://api.airforce/imagine2"
|
|
|
|
working = False
|
|
supports_stream = True
|
|
supports_system_message = True
|
|
supports_message_history = True
|
|
|
|
default_model = "llama-3.1-70b-chat"
|
|
default_image_model = "flux"
|
|
|
|
models = []
|
|
image_models = []
|
|
|
|
hidden_models = {"Flux-1.1-Pro"}
|
|
additional_models_imagine = ["flux-1.1-pro", "midjourney", "dall-e-3"]
|
|
model_aliases = {
|
|
# Alias mappings for models
|
|
"openchat-3.5": "openchat-3.5-0106",
|
|
"deepseek-coder": "deepseek-coder-6.7b-instruct",
|
|
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
|
|
"hermes-2-pro": "hermes-2-pro-mistral-7b",
|
|
"openhermes-2.5": "openhermes-2.5-mistral-7b",
|
|
"lfm-40b": "lfm-40b-moe",
|
|
"german-7b": "discolm-german-7b-v1",
|
|
"llama-2-7b": "llama-2-7b-chat-int8",
|
|
"llama-3.1-70b": "llama-3.1-70b-chat",
|
|
"llama-3.1-8b": "llama-3.1-8b-chat",
|
|
"llama-3.1-70b": "llama-3.1-70b-turbo",
|
|
"llama-3.1-8b": "llama-3.1-8b-turbo",
|
|
"neural-7b": "neural-chat-7b-v3-1",
|
|
"zephyr-7b": "zephyr-7b-beta",
|
|
"evil": "any-uncensored",
|
|
"sdxl": "stable-diffusion-xl-lightning",
|
|
"sdxl": "stable-diffusion-xl-base",
|
|
"flux-pro": "flux-1.1-pro",
|
|
"llama-3.1-8b": "llama-3.1-8b-chat"
|
|
}
|
|
|
|
@classmethod
|
|
def get_models(cls):
|
|
"""Get available models with error handling"""
|
|
if not cls.image_models:
|
|
try:
|
|
response = requests.get(
|
|
f"{cls.url}/imagine2/models",
|
|
headers={
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
|
|
}
|
|
)
|
|
response.raise_for_status()
|
|
cls.image_models = response.json()
|
|
if isinstance(cls.image_models, list):
|
|
cls.image_models.extend(cls.additional_models_imagine)
|
|
else:
|
|
cls.image_models = cls.additional_models_imagine.copy()
|
|
except Exception as e:
|
|
debug.log(f"Error fetching image models: {e}")
|
|
cls.image_models = cls.additional_models_imagine.copy()
|
|
|
|
if not cls.models:
|
|
try:
|
|
response = requests.get(
|
|
f"{cls.url}/models",
|
|
headers={
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
|
|
}
|
|
)
|
|
response.raise_for_status()
|
|
data = response.json()
|
|
if isinstance(data, dict) and 'data' in data:
|
|
cls.models = [model['id'] for model in data['data']]
|
|
cls.models.extend(cls.image_models)
|
|
cls.models = [model for model in cls.models if model not in cls.hidden_models]
|
|
else:
|
|
cls.models = list(cls.model_aliases.keys())
|
|
except Exception as e:
|
|
debug.log(f"Error fetching text models: {e}")
|
|
cls.models = list(cls.model_aliases.keys())
|
|
|
|
return cls.models or list(cls.model_aliases.keys())
|
|
|
|
@classmethod
|
|
def get_model(cls, model: str) -> str:
|
|
"""Get the actual model name from alias"""
|
|
return cls.model_aliases.get(model, model or cls.default_model)
|
|
|
|
@classmethod
|
|
def _filter_content(cls, part_response: str) -> str:
|
|
"""
|
|
Filters out unwanted content from the partial response.
|
|
"""
|
|
part_response = re.sub(
|
|
r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
|
|
'',
|
|
part_response
|
|
)
|
|
|
|
part_response = re.sub(
|
|
r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
|
|
'',
|
|
part_response
|
|
)
|
|
|
|
return part_response
|
|
|
|
@classmethod
|
|
def _filter_response(cls, response: str) -> str:
|
|
"""
|
|
Filters the full response to remove system errors and other unwanted text.
|
|
"""
|
|
if "Model not found or too long input. Or any other error (xD)" in response:
|
|
raise ValueError(response)
|
|
|
|
filtered_response = re.sub(r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'", '', response) # any-uncensored
|
|
filtered_response = re.sub(r'<\|im_end\|>', '', filtered_response) # remove <|im_end|> token
|
|
filtered_response = re.sub(r'</s>', '', filtered_response) # neural-chat-7b-v3-1
|
|
filtered_response = re.sub(r'^(Assistant: |AI: |ANSWER: |Output: )', '', filtered_response) # phi-2
|
|
filtered_response = cls._filter_content(filtered_response)
|
|
return filtered_response
|
|
|
|
@classmethod
|
|
async def generate_image(
|
|
cls,
|
|
model: str,
|
|
prompt: str,
|
|
size: str,
|
|
seed: int,
|
|
proxy: str = None
|
|
) -> AsyncResult:
|
|
headers = {
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
|
|
"Accept": "image/avif,image/webp,image/png,image/svg+xml,image/*;q=0.8,*/*;q=0.5",
|
|
"Accept-Language": "en-US,en;q=0.5",
|
|
"Accept-Encoding": "gzip, deflate, br",
|
|
"Content-Type": "application/json",
|
|
}
|
|
params = {"model": model, "prompt": prompt, "size": size, "seed": seed}
|
|
|
|
async with ClientSession(headers=headers) as session:
|
|
async with session.get(cls.api_endpoint_imagine2, params=params, proxy=proxy) as response:
|
|
if response.status == 200:
|
|
image_url = str(response.url)
|
|
yield ImageResponse(images=image_url, alt=prompt)
|
|
else:
|
|
error_text = await response.text()
|
|
raise RuntimeError(f"Image generation failed: {response.status} - {error_text}")
|
|
|
|
@classmethod
|
|
async def generate_text(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
max_tokens: int,
|
|
temperature: float,
|
|
top_p: float,
|
|
stream: bool,
|
|
proxy: str = None
|
|
) -> AsyncResult:
|
|
"""
|
|
Generates text, buffers the response, filters it, and returns the final result.
|
|
"""
|
|
headers = {
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
|
|
"Accept": "application/json, text/event-stream",
|
|
"Accept-Language": "en-US,en;q=0.5",
|
|
"Accept-Encoding": "gzip, deflate, br",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
final_messages = []
|
|
for message in messages:
|
|
message_chunks = split_message(message["content"], max_length=1000)
|
|
final_messages.extend([{"role": message["role"], "content": chunk} for chunk in message_chunks])
|
|
data = {
|
|
"messages": final_messages,
|
|
"model": model,
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"stream": stream,
|
|
}
|
|
if max_tokens != 512:
|
|
data["max_tokens"] = max_tokens
|
|
|
|
async with ClientSession(headers=headers) as session:
|
|
async with session.post(cls.api_endpoint_completions, json=data, proxy=proxy) as response:
|
|
await raise_for_status(response)
|
|
|
|
if stream:
|
|
idx = 0
|
|
async for line in response.content:
|
|
line = line.decode('utf-8').strip()
|
|
if line.startswith('data: '):
|
|
try:
|
|
json_str = line[6:] # Remove 'data: ' prefix
|
|
chunk = json.loads(json_str)
|
|
if 'choices' in chunk and chunk['choices']:
|
|
delta = chunk['choices'][0].get('delta', {})
|
|
if 'content' in delta:
|
|
chunk = cls._filter_response(delta['content'])
|
|
if chunk:
|
|
yield chunk
|
|
idx += 1
|
|
except json.JSONDecodeError:
|
|
continue
|
|
if idx == 512:
|
|
yield FinishReason("length")
|
|
else:
|
|
# Non-streaming response
|
|
result = await response.json()
|
|
if "usage" in result:
|
|
yield Usage(**result["usage"])
|
|
if result["usage"]["completion_tokens"] == 512:
|
|
yield FinishReason("length")
|
|
if 'choices' in result and result['choices']:
|
|
message = result['choices'][0].get('message', {})
|
|
content = message.get('content', '')
|
|
filtered_response = cls._filter_response(content)
|
|
yield filtered_response
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
prompt: str = None,
|
|
proxy: str = None,
|
|
max_tokens: int = 512,
|
|
temperature: float = 1,
|
|
top_p: float = 1,
|
|
stream: bool = True,
|
|
size: str = "1:1",
|
|
seed: int = None,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
model = cls.get_model(model)
|
|
if model in cls.image_models:
|
|
if prompt is None:
|
|
prompt = messages[-1]['content']
|
|
if seed is None:
|
|
seed = random.randint(0, 10000)
|
|
async for result in cls.generate_image(model, prompt, size, seed, proxy):
|
|
yield result
|
|
else:
|
|
async for result in cls.generate_text(model, messages, max_tokens, temperature, top_p, stream, proxy):
|
|
yield result
|