gpt4free/g4f/Provider/needs_auth/HuggingChat.py
kqlio67 9def1aa71f
Update model configurations, provider implementations, and documentation (#2577)
* Update model configurations, provider implementations, and documentation

- Updated model names and aliases for Qwen QVQ 72B and Qwen 2 72B (@TheFirstNoob)
- Revised HuggingSpace class configuration, added default_image_model
- Added llama-3.2-70b alias for Llama 3.2 70B model in AutonomousAI
- Removed BlackboxCreateAgent class
- Added gpt-4o alias for Copilot model
- Moved api_key to Mhystical class attribute
- Added models property with default_model value for Free2GPT
- Simplified Jmuz class implementation
- Improved image generation and model handling in DeepInfra
- Standardized default models and removed aliases in Gemini
- Replaced model aliases with direct model list in GlhfChat (@TheFirstNoob)
- Removed trailing slash from image generation URL in PollinationsAI (https://github.com/xtekky/gpt4free/issues/2571)
- Updated llama and qwen model configurations
- Enhanced provider documentation and model details

* Removed from (g4f/models.py) 'Yqcloud' provider from Default due to error 'ResponseStatusError: Response 429: 文字过长,请删减后重试。'

* Update docs/providers-and-models.md

* refactor(g4f/Provider/DDG.py): Add error handling and rate limiting to DDG provider

- Add custom exception classes for rate limits, timeouts, and conversation limits
- Implement rate limiting with sleep between requests (0.75s minimum delay)
- Add model validation method to check supported models
- Add proper error handling for API responses with custom exceptions
- Improve session cookie handling for conversation persistence
- Clean up User-Agent string and remove redundant code
- Add proper error propagation through async generator

Breaking changes:
- New custom exceptions may require updates to error handling code
- Rate limiting affects request timing and throughput
- Model validation is now stricter

Related:
- Adds error handling similar to standard API clients
- Improves reliability and robustness of chat interactions

* Update g4f/models.py g4f/Provider/PollinationsAI.py

* Update g4f/models.py

* Restored provider which was not working and was disabled (g4f/Provider/DeepInfraChat.py)

* Fixing a bug with Streaming Completions

* Update g4f/Provider/PollinationsAI.py

* Update g4f/Provider/Blackbox.py g4f/Provider/DDG.py

* Added another model for generating images 'ImageGeneration2' to the 'Blackbox' provider

* Update docs/providers-and-models.md

* Update g4f/models.py g4f/Provider/Blackbox.py

* Added a new OIVSCode provider from the Text Models and Vision (Image Upload) model

* Update docs/providers-and-models.md

* docs: add Conversation Memory class with context handling requested by @TheFirstNoob

* Simplified README.md documentation added new docs/configuration.md documentation

* Update add README.md docs/configuration.md

* Update README.md

* Update docs/providers-and-models.md g4f/models.py g4f/Provider/PollinationsAI.py

* Added new model deepseek-r1 to Blackbox provider. @TheFirstNoob

* Fixed bugs and updated docs/providers-and-models.md etc/unittest/client.py g4f/models.py g4f/Provider/.

---------

Co-authored-by: kqlio67 <>
Co-authored-by: H Lohaus <hlohaus@users.noreply.github.com>
2025-01-24 03:47:57 +01:00

259 lines
10 KiB
Python

from __future__ import annotations
import json
import re
import os
import requests
import base64
from typing import AsyncIterator
try:
from curl_cffi.requests import Session, CurlMime
has_curl_cffi = True
except ImportError:
has_curl_cffi = False
from ..base_provider import ProviderModelMixin, AsyncAuthedProvider, AuthResult
from ..helper import format_prompt
from ...typing import AsyncResult, Messages, Cookies, ImagesType
from ...errors import MissingRequirementsError, MissingAuthError, ResponseError
from ...image import to_bytes
from ...requests import get_args_from_nodriver, DEFAULT_HEADERS
from ...requests.raise_for_status import raise_for_status
from ...providers.response import JsonConversation, ImageResponse, Sources, TitleGeneration, Reasoning, RequestLogin
from ...cookies import get_cookies
from ... import debug
class Conversation(JsonConversation):
def __init__(self, models: dict):
self.models: dict = models
class HuggingChat(AsyncAuthedProvider, ProviderModelMixin):
url = "https://huggingface.co/chat"
working = True
supports_stream = True
needs_auth = True
default_model = "Qwen/Qwen2.5-72B-Instruct"
default_image_model = "black-forest-labs/FLUX.1-dev"
image_models = [
default_image_model,
"black-forest-labs/FLUX.1-schnell",
]
fallback_models = [
default_model,
'meta-llama/Llama-3.3-70B-Instruct',
'CohereForAI/c4ai-command-r-plus-08-2024',
'deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',
'Qwen/QwQ-32B-Preview',
'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
'Qwen/Qwen2.5-Coder-32B-Instruct',
'meta-llama/Llama-3.2-11B-Vision-Instruct',
'mistralai/Mistral-Nemo-Instruct-2407',
'microsoft/Phi-3.5-mini-instruct',
] + image_models
model_aliases = {
### Chat ###
"qwen-2.5-72b": "Qwen/Qwen2.5-Coder-32B-Instruct",
"llama-3.3-70b": "meta-llama/Llama-3.3-70B-Instruct",
"command-r-plus": "CohereForAI/c4ai-command-r-plus-08-2024",
"deepseek-r1": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"qwq-32b": "Qwen/QwQ-32B-Preview",
"nemotron-70b": "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF",
"qwen-2.5-coder-32b": "Qwen/Qwen2.5-Coder-32B-Instruct",
"llama-3.2-11b": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"mistral-nemo": "mistralai/Mistral-Nemo-Instruct-2407",
"phi-3.5-mini": "microsoft/Phi-3.5-mini-instruct",
### Image ###
"flux-dev": "black-forest-labs/FLUX.1-dev",
"flux-schnell": "black-forest-labs/FLUX.1-schnell",
}
@classmethod
def get_models(cls):
if not cls.models:
try:
text = requests.get(cls.url).text
text = re.sub(r',parameters:{[^}]+?}', '', text)
text = re.search(r'models:(\[.+?\]),oldModels:', text).group(1)
text = text.replace('void 0', 'null')
def add_quotation_mark(match):
return f'{match.group(1)}"{match.group(2)}":'
text = re.sub(r'([{,])([A-Za-z0-9_]+?):', add_quotation_mark, text)
models = json.loads(text)
cls.text_models = [model["id"] for model in models]
cls.models = cls.text_models + cls.image_models
cls.vision_models = [model["id"] for model in models if model["multimodal"]]
except Exception as e:
debug.log(f"HuggingChat: Error reading models: {type(e).__name__}: {e}")
cls.models = [*cls.fallback_models]
return cls.models
@classmethod
async def on_auth_async(cls, cookies: Cookies = None, proxy: str = None, **kwargs) -> AsyncIterator:
if cookies is None:
cookies = get_cookies("huggingface.co", single_browser=True)
if "hf-chat" in cookies:
yield AuthResult(
cookies=cookies,
impersonate="chrome",
headers=DEFAULT_HEADERS
)
return
login_url = os.environ.get("G4F_LOGIN_URL")
if login_url:
yield RequestLogin(cls.__name__, login_url)
yield AuthResult(
**await get_args_from_nodriver(
cls.url,
proxy=proxy,
wait_for='form[action="/chat/logout"]'
)
)
@classmethod
async def create_authed(
cls,
model: str,
messages: Messages,
auth_result: AuthResult,
prompt: str = None,
images: ImagesType = None,
return_conversation: bool = False,
conversation: Conversation = None,
web_search: bool = False,
**kwargs
) -> AsyncResult:
if not has_curl_cffi:
raise MissingRequirementsError('Install "curl_cffi" package | pip install -U curl_cffi')
model = cls.get_model(model)
session = Session(**auth_result.get_dict())
if conversation is None or not hasattr(conversation, "models"):
conversation = Conversation({})
if model not in conversation.models:
conversationId = cls.create_conversation(session, model)
messageId = cls.fetch_message_id(session, conversationId)
conversation.models[model] = {"conversationId": conversationId, "messageId": messageId}
if return_conversation:
yield conversation
inputs = format_prompt(messages)
else:
conversationId = conversation.models[model]["conversationId"]
conversation.models[model]["messageId"] = cls.fetch_message_id(session, conversationId)
inputs = messages[-1]["content"]
debug.log(f"Use: {json.dumps(conversation.models[model])}")
settings = {
"inputs": inputs,
"id": conversation.models[model]["messageId"],
"is_retry": False,
"is_continue": False,
"web_search": web_search,
"tools": ["000000000000000000000001"] if model in cls.image_models else [],
}
headers = {
'accept': '*/*',
'origin': 'https://huggingface.co',
'referer': f'https://huggingface.co/chat/conversation/{conversationId}',
}
data = CurlMime()
data.addpart('data', data=json.dumps(settings, separators=(',', ':')))
if images is not None:
for image, filename in images:
data.addpart(
"files",
filename=f"base64;{filename}",
data=base64.b64encode(to_bytes(image))
)
response = session.post(
f'https://huggingface.co/chat/conversation/{conversationId}',
headers=headers,
multipart=data,
stream=True
)
raise_for_status(response)
sources = None
for line in response.iter_lines():
if not line:
continue
try:
line = json.loads(line)
except json.JSONDecodeError as e:
debug.log(f"Failed to decode JSON: {line}, error: {e}")
continue
if "type" not in line:
raise RuntimeError(f"Response: {line}")
elif line["type"] == "stream":
yield line["token"].replace('\u0000', '')
elif line["type"] == "finalAnswer":
break
elif line["type"] == "file":
url = f"https://huggingface.co/chat/conversation/{conversationId}/output/{line['sha']}"
prompt = messages[-1]["content"] if prompt is None else prompt
yield ImageResponse(url, alt=prompt, options={"cookies": auth_result.cookies})
elif line["type"] == "webSearch" and "sources" in line:
sources = Sources(line["sources"])
elif line["type"] == "title":
yield TitleGeneration(line["title"])
elif line["type"] == "reasoning":
yield Reasoning(line.get("token"), line.get("status"))
if sources is not None:
yield sources
@classmethod
def create_conversation(cls, session: Session, model: str):
if model in cls.image_models:
model = cls.default_model
json_data = {
'model': model,
}
response = session.post('https://huggingface.co/chat/conversation', json=json_data)
if response.status_code == 401:
raise MissingAuthError(response.text)
raise_for_status(response)
return response.json().get('conversationId')
@classmethod
def fetch_message_id(cls, session: Session, conversation_id: str):
# Get the data response and parse it properly
response = session.get(f'https://huggingface.co/chat/conversation/{conversation_id}/__data.json?x-sveltekit-invalidated=11')
raise_for_status(response)
# Split the response content by newlines and parse each line as JSON
try:
json_data = None
for line in response.text.split('\n'):
if line.strip():
try:
parsed = json.loads(line)
if isinstance(parsed, dict) and "nodes" in parsed:
json_data = parsed
break
except json.JSONDecodeError:
continue
if not json_data:
raise RuntimeError("Failed to parse response data")
if json_data["nodes"][-1]["type"] == "error":
if json_data["nodes"][-1]["status"] == 403:
raise MissingAuthError(json_data["nodes"][-1]["error"]["message"])
raise ResponseError(json.dumps(json_data["nodes"][-1]))
data = json_data["nodes"][1]["data"]
keys = data[data[0]["messages"]]
message_keys = data[keys[-1]]
return data[message_keys["id"]]
except (KeyError, IndexError, TypeError) as e:
raise RuntimeError(f"Failed to extract message ID: {str(e)}")