gpt4free/g4f/Provider/needs_auth/DeepInfra.py
kqlio67 9def1aa71f
Update model configurations, provider implementations, and documentation (#2577)
* Update model configurations, provider implementations, and documentation

- Updated model names and aliases for Qwen QVQ 72B and Qwen 2 72B (@TheFirstNoob)
- Revised HuggingSpace class configuration, added default_image_model
- Added llama-3.2-70b alias for Llama 3.2 70B model in AutonomousAI
- Removed BlackboxCreateAgent class
- Added gpt-4o alias for Copilot model
- Moved api_key to Mhystical class attribute
- Added models property with default_model value for Free2GPT
- Simplified Jmuz class implementation
- Improved image generation and model handling in DeepInfra
- Standardized default models and removed aliases in Gemini
- Replaced model aliases with direct model list in GlhfChat (@TheFirstNoob)
- Removed trailing slash from image generation URL in PollinationsAI (https://github.com/xtekky/gpt4free/issues/2571)
- Updated llama and qwen model configurations
- Enhanced provider documentation and model details

* Removed from (g4f/models.py) 'Yqcloud' provider from Default due to error 'ResponseStatusError: Response 429: 文字过长,请删减后重试。'

* Update docs/providers-and-models.md

* refactor(g4f/Provider/DDG.py): Add error handling and rate limiting to DDG provider

- Add custom exception classes for rate limits, timeouts, and conversation limits
- Implement rate limiting with sleep between requests (0.75s minimum delay)
- Add model validation method to check supported models
- Add proper error handling for API responses with custom exceptions
- Improve session cookie handling for conversation persistence
- Clean up User-Agent string and remove redundant code
- Add proper error propagation through async generator

Breaking changes:
- New custom exceptions may require updates to error handling code
- Rate limiting affects request timing and throughput
- Model validation is now stricter

Related:
- Adds error handling similar to standard API clients
- Improves reliability and robustness of chat interactions

* Update g4f/models.py g4f/Provider/PollinationsAI.py

* Update g4f/models.py

* Restored provider which was not working and was disabled (g4f/Provider/DeepInfraChat.py)

* Fixing a bug with Streaming Completions

* Update g4f/Provider/PollinationsAI.py

* Update g4f/Provider/Blackbox.py g4f/Provider/DDG.py

* Added another model for generating images 'ImageGeneration2' to the 'Blackbox' provider

* Update docs/providers-and-models.md

* Update g4f/models.py g4f/Provider/Blackbox.py

* Added a new OIVSCode provider from the Text Models and Vision (Image Upload) model

* Update docs/providers-and-models.md

* docs: add Conversation Memory class with context handling requested by @TheFirstNoob

* Simplified README.md documentation added new docs/configuration.md documentation

* Update add README.md docs/configuration.md

* Update README.md

* Update docs/providers-and-models.md g4f/models.py g4f/Provider/PollinationsAI.py

* Added new model deepseek-r1 to Blackbox provider. @TheFirstNoob

* Fixed bugs and updated docs/providers-and-models.md etc/unittest/client.py g4f/models.py g4f/Provider/.

---------

Co-authored-by: kqlio67 <>
Co-authored-by: H Lohaus <hlohaus@users.noreply.github.com>
2025-01-24 03:47:57 +01:00

131 lines
4.7 KiB
Python

from __future__ import annotations
import requests
from ...typing import AsyncResult, Messages
from ...requests import StreamSession, raise_for_status
from ...image import ImageResponse
from .OpenaiAPI import OpenaiAPI
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
class DeepInfra(OpenaiAPI, AsyncGeneratorProvider, ProviderModelMixin):
label = "DeepInfra"
url = "https://deepinfra.com"
login_url = "https://deepinfra.com/dash/api_keys"
working = True
api_base = "https://api.deepinfra.com/v1/openai"
needs_auth = True
supports_stream = True
supports_message_history = True
default_model = "meta-llama/Meta-Llama-3.1-70B-Instruct"
default_image_model = "stabilityai/sd3.5"
models = []
image_models = []
@classmethod
def get_models(cls, **kwargs):
if not cls.models:
url = 'https://api.deepinfra.com/models/featured'
response = requests.get(url)
models = response.json()
cls.models = []
cls.image_models = []
for model in models:
if model["type"] == "text-generation":
cls.models.append(model['model_name'])
elif model["reported_type"] == "text-to-image":
cls.image_models.append(model['model_name'])
cls.models.extend(cls.image_models)
return cls.models
@classmethod
def get_image_models(cls, **kwargs):
if not cls.image_models:
cls.get_models()
return cls.image_models
@classmethod
def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool,
temperature: float = 0.7,
max_tokens: int = 1028,
**kwargs
) -> AsyncResult:
headers = {
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
'X-Deepinfra-Source': 'web-embed',
}
return super().create_async_generator(
model, messages,
stream=stream,
temperature=temperature,
max_tokens=max_tokens,
headers=headers,
**kwargs
)
@classmethod
async def create_async_image(
cls,
prompt: str,
model: str,
api_key: str = None,
api_base: str = "https://api.deepinfra.com/v1/inference",
proxy: str = None,
timeout: int = 180,
extra_data: dict = {},
**kwargs
) -> ImageResponse:
headers = {
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US',
'Connection': 'keep-alive',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',
'X-Deepinfra-Source': 'web-embed',
'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"macOS"',
}
if api_key is not None:
headers["Authorization"] = f"Bearer {api_key}"
async with StreamSession(
proxies={"all": proxy},
headers=headers,
timeout=timeout
) as session:
model = cls.get_model(model)
data = {"prompt": prompt, **extra_data}
data = {"input": data} if model == cls.default_model else data
async with session.post(f"{api_base.rstrip('/')}/{model}", json=data) as response:
await raise_for_status(response)
data = await response.json()
images = data.get("output", data.get("images", data.get("image_url")))
if not images:
raise RuntimeError(f"Response: {data}")
images = images[0] if len(images) == 1 else images
return ImageResponse(images, prompt)
@classmethod
async def create_async_image_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
**kwargs
) -> AsyncResult:
yield await cls.create_async_image(messages[-1]["content"] if prompt is None else prompt, model, **kwargs)