gpt4free/g4f/Provider/not_working/Airforce.py
hlohaus 9c8aedbeb1 Improve select custom model in UI
Updates for the response of the BackendApi
Update of the demo model list
Improve web search tool
Moved copy_images to /image
2025-02-03 20:23:55 +01:00

275 lines
11 KiB
Python

import json
import random
import re
import requests
from aiohttp import ClientSession
from typing import List
from ...typing import AsyncResult, Messages
from ...providers.response import ImageResponse, FinishReason, Usage
from ...requests.raise_for_status import raise_for_status
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ... import debug
def split_message(message: str, max_length: int = 1000) -> List[str]:
"""Splits the message into parts up to (max_length)."""
chunks = []
while len(message) > max_length:
split_point = message.rfind(' ', 0, max_length)
if split_point == -1:
split_point = max_length
chunks.append(message[:split_point])
message = message[split_point:].strip()
if message:
chunks.append(message)
return chunks
class Airforce(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://api.airforce"
api_endpoint_completions = "https://api.airforce/chat/completions"
api_endpoint_imagine2 = "https://api.airforce/imagine2"
working = False
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = "llama-3.1-70b-chat"
default_image_model = "flux"
models = []
image_models = []
hidden_models = {"Flux-1.1-Pro"}
additional_models_imagine = ["flux-1.1-pro", "midjourney", "dall-e-3"]
model_aliases = {
# Alias mappings for models
"openchat-3.5": "openchat-3.5-0106",
"deepseek-coder": "deepseek-coder-6.7b-instruct",
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
"hermes-2-pro": "hermes-2-pro-mistral-7b",
"openhermes-2.5": "openhermes-2.5-mistral-7b",
"lfm-40b": "lfm-40b-moe",
"german-7b": "discolm-german-7b-v1",
"llama-2-7b": "llama-2-7b-chat-int8",
"llama-3.1-70b": "llama-3.1-70b-chat",
"llama-3.1-8b": "llama-3.1-8b-chat",
"llama-3.1-70b": "llama-3.1-70b-turbo",
"llama-3.1-8b": "llama-3.1-8b-turbo",
"neural-7b": "neural-chat-7b-v3-1",
"zephyr-7b": "zephyr-7b-beta",
"evil": "any-uncensored",
"sdxl": "stable-diffusion-xl-lightning",
"sdxl": "stable-diffusion-xl-base",
"flux-pro": "flux-1.1-pro",
"llama-3.1-8b": "llama-3.1-8b-chat"
}
@classmethod
def get_models(cls):
"""Get available models with error handling"""
if not cls.image_models:
try:
response = requests.get(
f"{cls.url}/imagine2/models",
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
}
)
response.raise_for_status()
cls.image_models = response.json()
if isinstance(cls.image_models, list):
cls.image_models.extend(cls.additional_models_imagine)
else:
cls.image_models = cls.additional_models_imagine.copy()
except Exception as e:
debug.log(f"Error fetching image models: {e}")
cls.image_models = cls.additional_models_imagine.copy()
if not cls.models:
try:
response = requests.get(
f"{cls.url}/models",
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
}
)
response.raise_for_status()
data = response.json()
if isinstance(data, dict) and 'data' in data:
cls.models = [model['id'] for model in data['data']]
cls.models.extend(cls.image_models)
cls.models = [model for model in cls.models if model not in cls.hidden_models]
else:
cls.models = list(cls.model_aliases.keys())
except Exception as e:
debug.log(f"Error fetching text models: {e}")
cls.models = list(cls.model_aliases.keys())
return cls.models or list(cls.model_aliases.keys())
@classmethod
def get_model(cls, model: str) -> str:
"""Get the actual model name from alias"""
return cls.model_aliases.get(model, model or cls.default_model)
@classmethod
def _filter_content(cls, part_response: str) -> str:
"""
Filters out unwanted content from the partial response.
"""
part_response = re.sub(
r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
'',
part_response
)
part_response = re.sub(
r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
'',
part_response
)
return part_response
@classmethod
def _filter_response(cls, response: str) -> str:
"""
Filters the full response to remove system errors and other unwanted text.
"""
if "Model not found or too long input. Or any other error (xD)" in response:
raise ValueError(response)
filtered_response = re.sub(r"\[ERROR\] '\w{8}-\w{4}-\w{4}-\w{4}-\w{12}'", '', response) # any-uncensored
filtered_response = re.sub(r'<\|im_end\|>', '', filtered_response) # remove <|im_end|> token
filtered_response = re.sub(r'</s>', '', filtered_response) # neural-chat-7b-v3-1
filtered_response = re.sub(r'^(Assistant: |AI: |ANSWER: |Output: )', '', filtered_response) # phi-2
filtered_response = cls._filter_content(filtered_response)
return filtered_response
@classmethod
async def generate_image(
cls,
model: str,
prompt: str,
size: str,
seed: int,
proxy: str = None
) -> AsyncResult:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
"Accept": "image/avif,image/webp,image/png,image/svg+xml,image/*;q=0.8,*/*;q=0.5",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate, br",
"Content-Type": "application/json",
}
params = {"model": model, "prompt": prompt, "size": size, "seed": seed}
async with ClientSession(headers=headers) as session:
async with session.get(cls.api_endpoint_imagine2, params=params, proxy=proxy) as response:
if response.status == 200:
image_url = str(response.url)
yield ImageResponse(images=image_url, alt=prompt)
else:
error_text = await response.text()
raise RuntimeError(f"Image generation failed: {response.status} - {error_text}")
@classmethod
async def generate_text(
cls,
model: str,
messages: Messages,
max_tokens: int,
temperature: float,
top_p: float,
stream: bool,
proxy: str = None
) -> AsyncResult:
"""
Generates text, buffers the response, filters it, and returns the final result.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:133.0) Gecko/20100101 Firefox/133.0",
"Accept": "application/json, text/event-stream",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate, br",
"Content-Type": "application/json",
}
final_messages = []
for message in messages:
message_chunks = split_message(message["content"], max_length=1000)
final_messages.extend([{"role": message["role"], "content": chunk} for chunk in message_chunks])
data = {
"messages": final_messages,
"model": model,
"temperature": temperature,
"top_p": top_p,
"stream": stream,
}
if max_tokens != 512:
data["max_tokens"] = max_tokens
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint_completions, json=data, proxy=proxy) as response:
await raise_for_status(response)
if stream:
idx = 0
async for line in response.content:
line = line.decode('utf-8').strip()
if line.startswith('data: '):
try:
json_str = line[6:] # Remove 'data: ' prefix
chunk = json.loads(json_str)
if 'choices' in chunk and chunk['choices']:
delta = chunk['choices'][0].get('delta', {})
if 'content' in delta:
chunk = cls._filter_response(delta['content'])
if chunk:
yield chunk
idx += 1
except json.JSONDecodeError:
continue
if idx == 512:
yield FinishReason("length")
else:
# Non-streaming response
result = await response.json()
if "usage" in result:
yield Usage(**result["usage"])
if result["usage"]["completion_tokens"] == 512:
yield FinishReason("length")
if 'choices' in result and result['choices']:
message = result['choices'][0].get('message', {})
content = message.get('content', '')
filtered_response = cls._filter_response(content)
yield filtered_response
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
proxy: str = None,
max_tokens: int = 512,
temperature: float = 1,
top_p: float = 1,
stream: bool = True,
size: str = "1:1",
seed: int = None,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
if model in cls.image_models:
if prompt is None:
prompt = messages[-1]['content']
if seed is None:
seed = random.randint(0, 10000)
async for result in cls.generate_image(model, prompt, size, seed, proxy):
yield result
else:
async for result in cls.generate_text(model, messages, max_tokens, temperature, top_p, stream, proxy):
yield result