gpt4free/g4f/providers/base_provider.py
Heiner Lohaus 75fe95cbed Add continue messages support,
Remove old text_to_speech service from gui
Update gui and client readmes,
Add HuggingSpaces group provider;
Add providers parameters config forms to gui
2024-12-30 02:51:36 +01:00

334 lines
No EOL
11 KiB
Python

from __future__ import annotations
import asyncio
from asyncio import AbstractEventLoop
from concurrent.futures import ThreadPoolExecutor
from abc import abstractmethod
from inspect import signature, Parameter
from typing import Optional, _GenericAlias
from types import NoneType
from ..typing import CreateResult, AsyncResult, Messages
from .types import BaseProvider
from .asyncio import get_running_loop, to_sync_generator
from .response import BaseConversation
from .helper import concat_chunks, async_concat_chunks
from ..errors import ModelNotSupportedError
from .. import debug
SAFE_PARAMETERS = [
"model", "messages", "stream", "timeout",
"proxy", "images", "response_format",
"prompt", "tools", "conversation",
"history_disabled", "auto_continue",
"temperature", "top_k", "top_p",
"frequency_penalty", "presence_penalty",
"max_tokens", "max_new_tokens", "stop",
"api_key", "seed", "width", "height",
"proof_token", "max_retries"
]
BASIC_PARAMETERS = {
"model": "",
"messages": [],
"provider": None,
"stream": False,
"timeout": 0,
"response_format": None,
"max_tokens": None,
"stop": None,
"web_search": False,
}
PARAMETER_EXAMPLES = {
"proxy": "http://user:password@127.0.0.1:3128",
"temperature": 1,
"top_k": 1,
"top_p": 1,
"frequency_penalty": 1,
"presence_penalty": 1,
"messages": [{"role": "system", "content": ""}, {"role": "user", "content": ""}],
"images": [["data:image/jpeg;base64,...", "filename.jpg"]],
"response_format": {"type": "json_object"},
"conversation": {"conversation_id": "550e8400-e29b-11d4-a716-...", "message_id": "550e8400-e29b-11d4-a716-..."},
"max_new_tokens": 1024,
"max_tokens": 4096,
"seed": 42,
}
class AbstractProvider(BaseProvider):
"""
Abstract class for providing asynchronous functionality to derived classes.
"""
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
*,
timeout: int = None,
loop: AbstractEventLoop = None,
executor: ThreadPoolExecutor = None,
**kwargs
) -> str:
"""
Asynchronously creates a result based on the given model and messages.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
loop = loop or asyncio.get_running_loop()
def create_func() -> str:
return concat_chunks(cls.create_completion(model, messages, False, **kwargs))
return await asyncio.wait_for(
loop.run_in_executor(executor, create_func),
timeout=timeout
)
@classmethod
def get_parameters(cls, as_json: bool = False) -> dict[str, Parameter]:
params = {name: parameter for name, parameter in signature(
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
cls.create_async if issubclass(cls, AsyncProvider) else
cls.create_completion
).parameters.items() if name in SAFE_PARAMETERS
and (name != "stream" or cls.supports_stream)}
if as_json:
def get_type_as_var(annotation: type, key: str):
if key == "model":
return getattr(cls, "default_model", "")
elif key == "stream":
return cls.supports_stream
elif key in PARAMETER_EXAMPLES:
if key == "messages" and not cls.supports_system_message:
return [PARAMETER_EXAMPLES[key][-1]]
return PARAMETER_EXAMPLES[key]
if isinstance(annotation, type):
if issubclass(annotation, int):
return 0
elif issubclass(annotation, float):
return 0.0
elif issubclass(annotation, bool):
return False
elif issubclass(annotation, str):
return ""
elif issubclass(annotation, dict):
return {}
elif issubclass(annotation, list):
return []
elif issubclass(annotation, BaseConversation):
return {}
elif issubclass(annotation, NoneType):
return {}
elif annotation is None:
return None
elif isinstance(annotation, _GenericAlias) and annotation.__origin__ is Optional:
return get_type_as_var(annotation.__args__[0])
else:
return str(annotation)
return { name: (
param.default
if isinstance(param, Parameter) and param.default is not Parameter.empty and param.default is not None
else get_type_as_var(param.annotation if isinstance(param, Parameter) else type(param), name)
) for name, param in {
**BASIC_PARAMETERS,
**{"provider": cls.__name__},
**params
}.items()}
return params
@classmethod
@property
def params(cls) -> str:
"""
Returns the parameters supported by the provider.
Args:
cls (type): The class on which this property is called.
Returns:
str: A string listing the supported parameters.
"""
def get_type_name(annotation: type) -> str:
return getattr(annotation, "__name__", str(annotation)) if annotation is not Parameter.empty else ""
args = ""
for name, param in cls.get_parameters().items():
args += f"\n {name}"
args += f": {get_type_name(param.annotation)}"
default_value = getattr(cls, "default_model", "") if name == "model" else param.default
default_value = f'"{default_value}"' if isinstance(default_value, str) else default_value
args += f" = {default_value}" if param.default is not Parameter.empty else ""
args += ","
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
class AsyncProvider(AbstractProvider):
"""
Provides asynchronous functionality for creating completions.
"""
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = False,
**kwargs
) -> CreateResult:
"""
Creates a completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to False.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the completion creation.
"""
get_running_loop(check_nested=False)
yield asyncio.run(cls.create_async(model, messages, **kwargs))
@staticmethod
@abstractmethod
async def create_async(
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Abstract method for creating asynchronous results.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
str: The created result as a string.
"""
raise NotImplementedError()
class AsyncGeneratorProvider(AsyncProvider):
"""
Provides asynchronous generator functionality for streaming results.
"""
supports_stream = True
@classmethod
def create_completion(
cls,
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> CreateResult:
"""
Creates a streaming completion result synchronously.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
**kwargs: Additional keyword arguments.
Returns:
CreateResult: The result of the streaming completion creation.
"""
return to_sync_generator(
cls.create_async_generator(model, messages, stream=stream, **kwargs)
)
@classmethod
async def create_async(
cls,
model: str,
messages: Messages,
**kwargs
) -> str:
"""
Asynchronously creates a result from a generator.
Args:
cls (type): The class on which this method is called.
model (str): The model to use for creation.
messages (Messages): The messages to process.
**kwargs: Additional keyword arguments.
Returns:
str: The created result as a string.
"""
return await async_concat_chunks(cls.create_async_generator(model, messages, stream=False, **kwargs))
@staticmethod
@abstractmethod
async def create_async_generator(
model: str,
messages: Messages,
stream: bool = True,
**kwargs
) -> AsyncResult:
"""
Abstract method for creating an asynchronous generator.
Args:
model (str): The model to use for creation.
messages (Messages): The messages to process.
stream (bool): Indicates whether to stream the results. Defaults to True.
**kwargs: Additional keyword arguments.
Raises:
NotImplementedError: If this method is not overridden in derived classes.
Returns:
AsyncResult: An asynchronous generator yielding results.
"""
raise NotImplementedError()
class ProviderModelMixin:
default_model: str = None
models: list[str] = []
model_aliases: dict[str, str] = {}
image_models: list = None
last_model: str = None
@classmethod
def get_models(cls, **kwargs) -> list[str]:
if not cls.models and cls.default_model is not None:
return [cls.default_model]
return cls.models
@classmethod
def get_model(cls, model: str, **kwargs) -> str:
if not model and cls.default_model is not None:
model = cls.default_model
elif model in cls.model_aliases:
model = cls.model_aliases[model]
else:
if model not in cls.get_models(**kwargs) and cls.models:
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
cls.last_model = model
debug.last_model = model
return model