mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-05 18:20:35 -08:00
* Fix api streaming, fix AsyncClient, Improve Client class, Some providers fixes, Update models list, Fix some tests, Update model list in Airforce provid er, Add OpenAi image generation url to api, Fix reload and debug in api arguments, Fix websearch in gui * Fix Cloadflare and Pi and AmigoChat provider * Fix conversation support in DDG provider, Add cloudflare bypass with nodriver * Fix unittests without curl_cffi
309 lines
9.8 KiB
Python
309 lines
9.8 KiB
Python
from __future__ import annotations
|
|
|
|
import sys
|
|
import asyncio
|
|
|
|
from asyncio import AbstractEventLoop
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from abc import abstractmethod
|
|
from inspect import signature, Parameter
|
|
from typing import Callable, Union
|
|
|
|
from ..typing import CreateResult, AsyncResult, Messages
|
|
from .types import BaseProvider, FinishReason
|
|
from ..errors import NestAsyncioError, ModelNotSupportedError
|
|
from .. import debug
|
|
|
|
if sys.version_info < (3, 10):
|
|
NoneType = type(None)
|
|
else:
|
|
from types import NoneType
|
|
|
|
try:
|
|
import nest_asyncio
|
|
has_nest_asyncio = True
|
|
except ImportError:
|
|
has_nest_asyncio = False
|
|
try:
|
|
import uvloop
|
|
has_uvloop = True
|
|
except ImportError:
|
|
has_uvloop = False
|
|
|
|
# Set Windows event loop policy for better compatibility with asyncio and curl_cffi
|
|
if sys.platform == 'win32':
|
|
try:
|
|
from curl_cffi import aio
|
|
if not hasattr(aio, "_get_selector"):
|
|
if isinstance(asyncio.get_event_loop_policy(), asyncio.WindowsProactorEventLoopPolicy):
|
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
except ImportError:
|
|
pass
|
|
|
|
def get_running_loop(check_nested: bool) -> Union[AbstractEventLoop, None]:
|
|
try:
|
|
loop = asyncio.get_running_loop()
|
|
# Do not patch uvloop loop because its incompatible.
|
|
if has_uvloop:
|
|
if isinstance(loop, uvloop.Loop):
|
|
return loop
|
|
if not hasattr(loop.__class__, "_nest_patched"):
|
|
if has_nest_asyncio:
|
|
nest_asyncio.apply(loop)
|
|
elif check_nested:
|
|
raise NestAsyncioError('Install "nest_asyncio" package | pip install -U nest_asyncio')
|
|
return loop
|
|
except RuntimeError:
|
|
pass
|
|
|
|
# Fix for RuntimeError: async generator ignored GeneratorExit
|
|
async def await_callback(callback: Callable):
|
|
return await callback()
|
|
|
|
class AbstractProvider(BaseProvider):
|
|
"""
|
|
Abstract class for providing asynchronous functionality to derived classes.
|
|
"""
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
*,
|
|
loop: AbstractEventLoop = None,
|
|
executor: ThreadPoolExecutor = None,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Asynchronously creates a result based on the given model and messages.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
loop = loop or asyncio.get_running_loop()
|
|
|
|
def create_func() -> str:
|
|
return "".join(cls.create_completion(model, messages, False, **kwargs))
|
|
|
|
return await asyncio.wait_for(
|
|
loop.run_in_executor(executor, create_func),
|
|
timeout=kwargs.get("timeout")
|
|
)
|
|
|
|
@classmethod
|
|
def get_parameters(cls) -> dict:
|
|
return signature(
|
|
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
|
|
cls.create_async if issubclass(cls, AsyncProvider) else
|
|
cls.create_completion
|
|
).parameters
|
|
|
|
@classmethod
|
|
@property
|
|
def params(cls) -> str:
|
|
"""
|
|
Returns the parameters supported by the provider.
|
|
|
|
Args:
|
|
cls (type): The class on which this property is called.
|
|
|
|
Returns:
|
|
str: A string listing the supported parameters.
|
|
"""
|
|
|
|
def get_type_name(annotation: type) -> str:
|
|
return annotation.__name__ if hasattr(annotation, "__name__") else str(annotation)
|
|
|
|
args = ""
|
|
for name, param in cls.get_parameters().items():
|
|
if name in ("self", "kwargs") or (name == "stream" and not cls.supports_stream):
|
|
continue
|
|
args += f"\n {name}"
|
|
args += f": {get_type_name(param.annotation)}" if param.annotation is not Parameter.empty else ""
|
|
default_value = f'"{param.default}"' if isinstance(param.default, str) else param.default
|
|
args += f" = {default_value}" if param.default is not Parameter.empty else ""
|
|
args += ","
|
|
|
|
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
|
|
|
|
|
|
class AsyncProvider(AbstractProvider):
|
|
"""
|
|
Provides asynchronous functionality for creating completions.
|
|
"""
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = False,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to False.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the completion creation.
|
|
"""
|
|
get_running_loop(check_nested=False)
|
|
yield asyncio.run(cls.create_async(model, messages, **kwargs))
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async(
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Abstract method for creating asynchronous results.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
class AsyncGeneratorProvider(AsyncProvider):
|
|
"""
|
|
Provides asynchronous generator functionality for streaming results.
|
|
"""
|
|
supports_stream = True
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a streaming completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the streaming completion creation.
|
|
"""
|
|
loop = get_running_loop(check_nested=False)
|
|
new_loop = False
|
|
if loop is None:
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
new_loop = True
|
|
|
|
generator = cls.create_async_generator(model, messages, stream=stream, **kwargs)
|
|
gen = generator.__aiter__()
|
|
|
|
try:
|
|
while True:
|
|
yield loop.run_until_complete(await_callback(gen.__anext__))
|
|
except StopAsyncIteration:
|
|
pass
|
|
finally:
|
|
if new_loop:
|
|
loop.close()
|
|
asyncio.set_event_loop(None)
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Asynchronously creates a result from a generator.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
return "".join([
|
|
str(chunk) async for chunk in cls.create_async_generator(model, messages, stream=False, **kwargs)
|
|
if not isinstance(chunk, (Exception, FinishReason))
|
|
])
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async_generator(
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
"""
|
|
Abstract method for creating an asynchronous generator.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
AsyncResult: An asynchronous generator yielding results.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
class ProviderModelMixin:
|
|
default_model: str = None
|
|
models: list[str] = []
|
|
model_aliases: dict[str, str] = {}
|
|
|
|
@classmethod
|
|
def get_models(cls) -> list[str]:
|
|
if not cls.models and cls.default_model is not None:
|
|
return [cls.default_model]
|
|
return cls.models
|
|
|
|
@classmethod
|
|
def get_model(cls, model: str) -> str:
|
|
if not model and cls.default_model is not None:
|
|
model = cls.default_model
|
|
elif model in cls.model_aliases:
|
|
model = cls.model_aliases[model]
|
|
elif model not in cls.get_models() and cls.models:
|
|
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
|
debug.last_model = model
|
|
return model
|