mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-05 18:20:35 -08:00
* Fix api streaming, fix AsyncClient, Improve Client class, Some providers fixes, Update models list, Fix some tests, Update model list in Airforce provid er, Add OpenAi image generation url to api, Fix reload and debug in api arguments, Fix websearch in gui * Fix Cloadflare and Pi and AmigoChat provider * Fix conversation support in DDG provider, Add cloudflare bypass with nodriver * Fix unittests without curl_cffi
820 lines
33 KiB
Python
820 lines
33 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import uuid
|
|
import json
|
|
import base64
|
|
import time
|
|
from aiohttp import ClientWebSocketResponse
|
|
from copy import copy
|
|
|
|
try:
|
|
import webview
|
|
has_webview = True
|
|
except ImportError:
|
|
has_webview = False
|
|
|
|
try:
|
|
from selenium.webdriver.common.by import By
|
|
from selenium.webdriver.support.ui import WebDriverWait
|
|
from selenium.webdriver.support import expected_conditions as EC
|
|
except ImportError:
|
|
pass
|
|
|
|
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
from ...webdriver import get_browser
|
|
from ...typing import AsyncResult, Messages, Cookies, ImageType, AsyncIterator
|
|
from ...requests import get_args_from_browser, raise_for_status
|
|
from ...requests.aiohttp import StreamSession
|
|
from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format
|
|
from ...errors import MissingAuthError, ResponseError
|
|
from ...providers.conversation import BaseConversation
|
|
from ..helper import format_cookies
|
|
from ..openai.har_file import getArkoseAndAccessToken, NoValidHarFileError
|
|
from ..openai.proofofwork import generate_proof_token
|
|
from ... import debug
|
|
|
|
DEFAULT_HEADERS = {
|
|
"accept": "*/*",
|
|
"accept-encoding": "gzip, deflate, br, zstd",
|
|
"accept-language": "en-US,en;q=0.5",
|
|
"referer": "https://chatgpt.com/",
|
|
"sec-ch-ua": "\"Brave\";v=\"123\", \"Not:A-Brand\";v=\"8\", \"Chromium\";v=\"123\"",
|
|
"sec-ch-ua-mobile": "?0",
|
|
"sec-ch-ua-platform": "\"Windows\"",
|
|
"sec-fetch-dest": "empty",
|
|
"sec-fetch-mode": "cors",
|
|
"sec-fetch-site": "same-origin",
|
|
"sec-gpc": "1",
|
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
|
|
}
|
|
|
|
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
|
|
"""A class for creating and managing conversations with OpenAI chat service"""
|
|
|
|
label = "OpenAI ChatGPT"
|
|
url = "https://chatgpt.com"
|
|
working = True
|
|
needs_auth = True
|
|
supports_gpt_4 = True
|
|
supports_message_history = True
|
|
supports_system_message = True
|
|
default_model = None
|
|
default_vision_model = "gpt-4o"
|
|
models = [ "auto", "gpt-4o-mini", "gpt-4o", "gpt-4", "gpt-4-gizmo"]
|
|
|
|
model_aliases = {
|
|
#"gpt-4-turbo": "gpt-4",
|
|
#"gpt-4": "gpt-4-gizmo",
|
|
#"dalle": "gpt-4",
|
|
}
|
|
_api_key: str = None
|
|
_headers: dict = None
|
|
_cookies: Cookies = None
|
|
_expires: int = None
|
|
|
|
@classmethod
|
|
async def create(
|
|
cls,
|
|
prompt: str = None,
|
|
model: str = "",
|
|
messages: Messages = [],
|
|
action: str = "next",
|
|
**kwargs
|
|
) -> Response:
|
|
"""
|
|
Create a new conversation or continue an existing one
|
|
|
|
Args:
|
|
prompt: The user input to start or continue the conversation
|
|
model: The name of the model to use for generating responses
|
|
messages: The list of previous messages in the conversation
|
|
history_disabled: A flag indicating if the history and training should be disabled
|
|
action: The type of action to perform, either "next", "continue", or "variant"
|
|
conversation_id: The ID of the existing conversation, if any
|
|
parent_id: The ID of the parent message, if any
|
|
image: The image to include in the user input, if any
|
|
**kwargs: Additional keyword arguments to pass to the generator
|
|
|
|
Returns:
|
|
A Response object that contains the generator, action, messages, and options
|
|
"""
|
|
# Add the user input to the messages list
|
|
if prompt is not None:
|
|
messages.append({
|
|
"role": "user",
|
|
"content": prompt
|
|
})
|
|
generator = cls.create_async_generator(
|
|
model,
|
|
messages,
|
|
return_conversation=True,
|
|
**kwargs
|
|
)
|
|
return Response(
|
|
generator,
|
|
action,
|
|
messages,
|
|
kwargs
|
|
)
|
|
|
|
@classmethod
|
|
async def upload_image(
|
|
cls,
|
|
session: StreamSession,
|
|
headers: dict,
|
|
image: ImageType,
|
|
image_name: str = None
|
|
) -> ImageRequest:
|
|
"""
|
|
Upload an image to the service and get the download URL
|
|
|
|
Args:
|
|
session: The StreamSession object to use for requests
|
|
headers: The headers to include in the requests
|
|
image: The image to upload, either a PIL Image object or a bytes object
|
|
|
|
Returns:
|
|
An ImageRequest object that contains the download URL, file name, and other data
|
|
"""
|
|
# Convert the image to a PIL Image object and get the extension
|
|
data_bytes = to_bytes(image)
|
|
image = to_image(data_bytes)
|
|
extension = image.format.lower()
|
|
data = {
|
|
"file_name": "" if image_name is None else image_name,
|
|
"file_size": len(data_bytes),
|
|
"use_case": "multimodal"
|
|
}
|
|
# Post the image data to the service and get the image data
|
|
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
|
|
cls._update_request_args(session)
|
|
await raise_for_status(response)
|
|
image_data = {
|
|
**data,
|
|
**await response.json(),
|
|
"mime_type": is_accepted_format(data_bytes),
|
|
"extension": extension,
|
|
"height": image.height,
|
|
"width": image.width
|
|
}
|
|
# Put the image bytes to the upload URL and check the status
|
|
async with session.put(
|
|
image_data["upload_url"],
|
|
data=data_bytes,
|
|
headers={
|
|
"Content-Type": image_data["mime_type"],
|
|
"x-ms-blob-type": "BlockBlob"
|
|
}
|
|
) as response:
|
|
await raise_for_status(response)
|
|
# Post the file ID to the service and get the download URL
|
|
async with session.post(
|
|
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
|
|
json={},
|
|
headers=headers
|
|
) as response:
|
|
cls._update_request_args(session)
|
|
await raise_for_status(response)
|
|
image_data["download_url"] = (await response.json())["download_url"]
|
|
return ImageRequest(image_data)
|
|
|
|
@classmethod
|
|
async def get_default_model(cls, session: StreamSession, headers: dict):
|
|
"""
|
|
Get the default model name from the service
|
|
|
|
Args:
|
|
session: The StreamSession object to use for requests
|
|
headers: The headers to include in the requests
|
|
|
|
Returns:
|
|
The default model name as a string
|
|
"""
|
|
if not cls.default_model:
|
|
url = f"{cls.url}/backend-anon/models" if cls._api_key is None else f"{cls.url}/backend-api/models"
|
|
async with session.get(url, headers=headers) as response:
|
|
cls._update_request_args(session)
|
|
if response.status == 401:
|
|
raise MissingAuthError('Add a .har file for OpenaiChat' if cls._api_key is None else "Invalid api key")
|
|
await raise_for_status(response)
|
|
data = await response.json()
|
|
if "categories" in data:
|
|
cls.default_model = data["categories"][-1]["default_model"]
|
|
return cls.default_model
|
|
raise ResponseError(data)
|
|
return cls.default_model
|
|
|
|
@classmethod
|
|
def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
|
|
"""
|
|
Create a list of messages for the user input
|
|
|
|
Args:
|
|
prompt: The user input as a string
|
|
image_response: The image response object, if any
|
|
|
|
Returns:
|
|
A list of messages with the user input and the image, if any
|
|
"""
|
|
# Create a message object with the user role and the content
|
|
messages = [{
|
|
"id": str(uuid.uuid4()),
|
|
"author": {"role": message["role"]},
|
|
"content": {"content_type": "text", "parts": [message["content"]]},
|
|
} for message in messages]
|
|
|
|
# Check if there is an image response
|
|
if image_request is not None:
|
|
# Change content in last user message
|
|
messages[-1]["content"] = {
|
|
"content_type": "multimodal_text",
|
|
"parts": [{
|
|
"asset_pointer": f"file-service://{image_request.get('file_id')}",
|
|
"height": image_request.get("height"),
|
|
"size_bytes": image_request.get("file_size"),
|
|
"width": image_request.get("width"),
|
|
}, messages[-1]["content"]["parts"][0]]
|
|
}
|
|
# Add the metadata object with the attachments
|
|
messages[-1]["metadata"] = {
|
|
"attachments": [{
|
|
"height": image_request.get("height"),
|
|
"id": image_request.get("file_id"),
|
|
"mimeType": image_request.get("mime_type"),
|
|
"name": image_request.get("file_name"),
|
|
"size": image_request.get("file_size"),
|
|
"width": image_request.get("width"),
|
|
}]
|
|
}
|
|
return messages
|
|
|
|
@classmethod
|
|
async def get_generated_image(cls, session: StreamSession, headers: dict, line: dict) -> ImageResponse:
|
|
"""
|
|
Retrieves the image response based on the message content.
|
|
|
|
This method processes the message content to extract image information and retrieves the
|
|
corresponding image from the backend API. It then returns an ImageResponse object containing
|
|
the image URL and the prompt used to generate the image.
|
|
|
|
Args:
|
|
session (StreamSession): The StreamSession object used for making HTTP requests.
|
|
headers (dict): HTTP headers to be used for the request.
|
|
line (dict): A dictionary representing the line of response that contains image information.
|
|
|
|
Returns:
|
|
ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
|
|
|
|
Raises:
|
|
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
|
|
"""
|
|
if "parts" not in line["message"]["content"]:
|
|
return
|
|
first_part = line["message"]["content"]["parts"][0]
|
|
if "asset_pointer" not in first_part or "metadata" not in first_part:
|
|
return
|
|
if first_part["metadata"] is None or first_part["metadata"]["dalle"] is None:
|
|
return
|
|
prompt = first_part["metadata"]["dalle"]["prompt"]
|
|
file_id = first_part["asset_pointer"].split("file-service://", 1)[1]
|
|
try:
|
|
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
|
|
cls._update_request_args(session)
|
|
await raise_for_status(response)
|
|
download_url = (await response.json())["download_url"]
|
|
return ImageResponse(download_url, prompt)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error in downloading image: {e}")
|
|
|
|
@classmethod
|
|
async def delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str):
|
|
"""
|
|
Deletes a conversation by setting its visibility to False.
|
|
|
|
This method sends an HTTP PATCH request to update the visibility of a conversation.
|
|
It's used to effectively delete a conversation from being accessed or displayed in the future.
|
|
|
|
Args:
|
|
session (StreamSession): The StreamSession object used for making HTTP requests.
|
|
headers (dict): HTTP headers to be used for the request.
|
|
conversation_id (str): The unique identifier of the conversation to be deleted.
|
|
|
|
Raises:
|
|
HTTPError: If the HTTP request fails or returns an unsuccessful status code.
|
|
"""
|
|
async with session.patch(
|
|
f"{cls.url}/backend-api/conversation/{conversation_id}",
|
|
json={"is_visible": False},
|
|
headers=headers
|
|
) as response:
|
|
cls._update_request_args(session)
|
|
...
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
timeout: int = 180,
|
|
api_key: str = None,
|
|
cookies: Cookies = None,
|
|
auto_continue: bool = False,
|
|
history_disabled: bool = True,
|
|
action: str = "next",
|
|
conversation_id: str = None,
|
|
conversation: Conversation = None,
|
|
parent_id: str = None,
|
|
image: ImageType = None,
|
|
image_name: str = None,
|
|
return_conversation: bool = False,
|
|
max_retries: int = 3,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
"""
|
|
Create an asynchronous generator for the conversation.
|
|
|
|
Args:
|
|
model (str): The model name.
|
|
messages (Messages): The list of previous messages.
|
|
proxy (str): Proxy to use for requests.
|
|
timeout (int): Timeout for requests.
|
|
api_key (str): Access token for authentication.
|
|
cookies (dict): Cookies to use for authentication.
|
|
auto_continue (bool): Flag to automatically continue the conversation.
|
|
history_disabled (bool): Flag to disable history and training.
|
|
action (str): Type of action ('next', 'continue', 'variant').
|
|
conversation_id (str): ID of the conversation.
|
|
parent_id (str): ID of the parent message.
|
|
image (ImageType): Image to include in the conversation.
|
|
return_conversation (bool): Flag to include response fields in the output.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Yields:
|
|
AsyncResult: Asynchronous results from the generator.
|
|
|
|
Raises:
|
|
RuntimeError: If an error occurs during processing.
|
|
"""
|
|
async with StreamSession(
|
|
proxy=proxy,
|
|
impersonate="chrome",
|
|
timeout=timeout
|
|
) as session:
|
|
if cls._expires is not None and cls._expires < time.time():
|
|
cls._headers = cls._api_key = None
|
|
arkose_token = None
|
|
proofTokens = None
|
|
try:
|
|
arkose_token, api_key, cookies, headers, proofTokens = await getArkoseAndAccessToken(proxy)
|
|
cls._create_request_args(cookies, headers)
|
|
cls._set_api_key(api_key)
|
|
except NoValidHarFileError as e:
|
|
if cls._api_key is None and cls.needs_auth:
|
|
raise e
|
|
cls._create_request_args()
|
|
|
|
if cls.default_model is None:
|
|
cls.default_model = cls.get_model(await cls.get_default_model(session, cls._headers))
|
|
|
|
try:
|
|
image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None
|
|
except Exception as e:
|
|
image_request = None
|
|
if debug.logging:
|
|
print("OpenaiChat: Upload image failed")
|
|
print(f"{e.__class__.__name__}: {e}")
|
|
|
|
model = cls.get_model(model)
|
|
model = "text-davinci-002-render-sha" if model == "gpt-3.5-turbo" else model
|
|
if conversation is None:
|
|
conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id)
|
|
else:
|
|
conversation = copy(conversation)
|
|
if cls._api_key is None:
|
|
auto_continue = False
|
|
conversation.finish_reason = None
|
|
while conversation.finish_reason is None:
|
|
async with session.post(
|
|
f"{cls.url}/backend-anon/sentinel/chat-requirements"
|
|
if cls._api_key is None else
|
|
f"{cls.url}/backend-api/sentinel/chat-requirements",
|
|
json={"p": generate_proof_token(True, user_agent=cls._headers["user-agent"], proofTokens=proofTokens)},
|
|
headers=cls._headers
|
|
) as response:
|
|
cls._update_request_args(session)
|
|
await raise_for_status(response)
|
|
requirements = await response.json()
|
|
text_data = json.loads(requirements.get("text", "{}"))
|
|
need_arkose = text_data.get("turnstile", {}).get("required", False)
|
|
if need_arkose:
|
|
arkose_token = text_data.get("turnstile", {}).get("dx")
|
|
else:
|
|
need_arkose = requirements.get("arkose", {}).get("required", False)
|
|
chat_token = requirements["token"]
|
|
|
|
if need_arkose and arkose_token is None:
|
|
arkose_token, api_key, cookies, headers, proofTokens = await getArkoseAndAccessToken(proxy)
|
|
cls._create_request_args(cookies, headers)
|
|
cls._set_api_key(api_key)
|
|
if arkose_token is None:
|
|
raise MissingAuthError("No arkose token found in .har file")
|
|
|
|
if "proofofwork" in requirements:
|
|
proofofwork = generate_proof_token(
|
|
**requirements["proofofwork"],
|
|
user_agent=cls._headers["user-agent"],
|
|
proofTokens=proofTokens
|
|
)
|
|
if debug.logging:
|
|
print(
|
|
'Arkose:', False if not need_arkose else arkose_token[:12]+"...",
|
|
'Proofofwork:', False if proofofwork is None else proofofwork[:12]+"...",
|
|
)
|
|
ws = None
|
|
if need_arkose:
|
|
async with session.post(f"{cls.url}/backend-api/register-websocket", headers=cls._headers) as response:
|
|
wss_url = (await response.json()).get("wss_url")
|
|
if wss_url:
|
|
ws = await session.ws_connect(wss_url)
|
|
websocket_request_id = str(uuid.uuid4())
|
|
data = {
|
|
"action": action,
|
|
"conversation_mode": {"kind": "primary_assistant"},
|
|
"force_paragen": False,
|
|
"force_rate_limit": False,
|
|
"conversation_id": conversation.conversation_id,
|
|
"parent_message_id": conversation.message_id,
|
|
"model": model,
|
|
"history_and_training_disabled": history_disabled and not auto_continue and not return_conversation,
|
|
"websocket_request_id": websocket_request_id
|
|
}
|
|
if action != "continue":
|
|
messages = messages if conversation_id is None else [messages[-1]]
|
|
data["messages"] = cls.create_messages(messages, image_request)
|
|
headers = {
|
|
"accept": "text/event-stream",
|
|
"Openai-Sentinel-Chat-Requirements-Token": chat_token,
|
|
**cls._headers
|
|
}
|
|
if need_arkose:
|
|
headers["Openai-Sentinel-Arkose-Token"] = arkose_token
|
|
if proofofwork is not None:
|
|
headers["Openai-Sentinel-Proof-Token"] = proofofwork
|
|
async with session.post(
|
|
f"{cls.url}/backend-anon/conversation"
|
|
if cls._api_key is None else
|
|
f"{cls.url}/backend-api/conversation",
|
|
json=data,
|
|
headers=headers
|
|
) as response:
|
|
cls._update_request_args(session)
|
|
if response.status == 403 and max_retries > 0:
|
|
max_retries -= 1
|
|
if debug.logging:
|
|
print(f"Retry: Error {response.status}: {await response.text()}")
|
|
await asyncio.sleep(5)
|
|
continue
|
|
await raise_for_status(response)
|
|
async for chunk in cls.iter_messages_chunk(response.iter_lines(), session, conversation, ws):
|
|
if return_conversation:
|
|
history_disabled = False
|
|
return_conversation = False
|
|
yield conversation
|
|
yield chunk
|
|
if auto_continue and conversation.finish_reason == "max_tokens":
|
|
conversation.finish_reason = None
|
|
action = "continue"
|
|
await asyncio.sleep(5)
|
|
else:
|
|
break
|
|
if history_disabled and auto_continue:
|
|
await cls.delete_conversation(session, cls._headers, conversation.conversation_id)
|
|
|
|
@staticmethod
|
|
async def iter_messages_ws(ws: ClientWebSocketResponse, conversation_id: str, is_curl: bool) -> AsyncIterator:
|
|
while True:
|
|
if is_curl:
|
|
message = json.loads(ws.recv()[0])
|
|
else:
|
|
message = await ws.receive_json()
|
|
if message["conversation_id"] == conversation_id:
|
|
yield base64.b64decode(message["body"])
|
|
|
|
@classmethod
|
|
async def iter_messages_chunk(
|
|
cls,
|
|
messages: AsyncIterator,
|
|
session: StreamSession,
|
|
fields: Conversation,
|
|
ws = None
|
|
) -> AsyncIterator:
|
|
last_message: int = 0
|
|
async for message in messages:
|
|
if message.startswith(b'{"wss_url":'):
|
|
message = json.loads(message)
|
|
ws = await session.ws_connect(message["wss_url"]) if ws is None else ws
|
|
try:
|
|
async for chunk in cls.iter_messages_chunk(
|
|
cls.iter_messages_ws(ws, message["conversation_id"], hasattr(ws, "recv")),
|
|
session, fields
|
|
):
|
|
yield chunk
|
|
finally:
|
|
await ws.aclose() if hasattr(ws, "aclose") else await ws.close()
|
|
break
|
|
async for chunk in cls.iter_messages_line(session, message, fields):
|
|
if fields.finish_reason is not None:
|
|
break
|
|
elif isinstance(chunk, str):
|
|
if len(chunk) > last_message:
|
|
yield chunk[last_message:]
|
|
last_message = len(chunk)
|
|
else:
|
|
yield chunk
|
|
if fields.finish_reason is not None:
|
|
break
|
|
|
|
@classmethod
|
|
async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator:
|
|
if not line.startswith(b"data: "):
|
|
return
|
|
elif line.startswith(b"data: [DONE]"):
|
|
if fields.finish_reason is None:
|
|
fields.finish_reason = "error"
|
|
return
|
|
try:
|
|
line = json.loads(line[6:])
|
|
except:
|
|
return
|
|
if "message" not in line:
|
|
return
|
|
if "error" in line and line["error"]:
|
|
raise RuntimeError(line["error"])
|
|
if "message_type" not in line["message"]["metadata"]:
|
|
return
|
|
image_response = await cls.get_generated_image(session, cls._headers, line)
|
|
if image_response is not None:
|
|
yield image_response
|
|
if line["message"]["author"]["role"] != "assistant":
|
|
return
|
|
if line["message"]["content"]["content_type"] != "text":
|
|
return
|
|
if line["message"]["metadata"]["message_type"] not in ("next", "continue", "variant"):
|
|
return
|
|
if line["message"]["recipient"] != "all":
|
|
return
|
|
if fields.conversation_id is None:
|
|
fields.conversation_id = line["conversation_id"]
|
|
fields.message_id = line["message"]["id"]
|
|
if "parts" in line["message"]["content"]:
|
|
yield line["message"]["content"]["parts"][0]
|
|
if "finish_details" in line["message"]["metadata"]:
|
|
fields.finish_reason = line["message"]["metadata"]["finish_details"]["type"]
|
|
|
|
@classmethod
|
|
async def webview_access_token(cls) -> str:
|
|
window = webview.create_window("OpenAI Chat", cls.url)
|
|
await asyncio.sleep(3)
|
|
prompt_input = None
|
|
while not prompt_input:
|
|
try:
|
|
await asyncio.sleep(1)
|
|
prompt_input = window.dom.get_element("#prompt-textarea")
|
|
except:
|
|
...
|
|
window.evaluate_js("""
|
|
this._fetch = this.fetch;
|
|
this.fetch = async (url, options) => {
|
|
const response = await this._fetch(url, options);
|
|
if (url == "https://chatgpt.com/backend-api/conversation") {
|
|
this._headers = options.headers;
|
|
return response;
|
|
}
|
|
return response;
|
|
};
|
|
""")
|
|
window.evaluate_js("""
|
|
document.querySelector('.from-token-main-surface-secondary').click();
|
|
""")
|
|
headers = None
|
|
while headers is None:
|
|
headers = window.evaluate_js("this._headers")
|
|
await asyncio.sleep(1)
|
|
headers["User-Agent"] = window.evaluate_js("this.navigator.userAgent")
|
|
cookies = [list(*cookie.items()) for cookie in window.get_cookies()]
|
|
window.destroy()
|
|
cls._cookies = dict([(name, cookie.value) for name, cookie in cookies])
|
|
cls._headers = headers
|
|
cls._expires = int(time.time()) + 60 * 60 * 4
|
|
cls._update_cookie_header()
|
|
|
|
@classmethod
|
|
async def nodriver_access_token(cls, proxy: str = None):
|
|
try:
|
|
import nodriver as uc
|
|
except ImportError:
|
|
return
|
|
try:
|
|
from platformdirs import user_config_dir
|
|
user_data_dir = user_config_dir("g4f-nodriver")
|
|
except:
|
|
user_data_dir = None
|
|
if debug.logging:
|
|
print(f"Open nodriver with user_dir: {user_data_dir}")
|
|
browser = await uc.start(
|
|
user_data_dir=user_data_dir,
|
|
browser_args=None if proxy is None else [f"--proxy-server={proxy}"],
|
|
)
|
|
page = await browser.get("https://chatgpt.com/")
|
|
await page.select("[id^=headlessui-menu-button-]", 240)
|
|
api_key = await page.evaluate(
|
|
"(async () => {"
|
|
"let session = await fetch('/api/auth/session');"
|
|
"let data = await session.json();"
|
|
"let accessToken = data['accessToken'];"
|
|
"let expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 4 * 1000);"
|
|
"document.cookie = 'access_token=' + accessToken + ';expires=' + expires.toUTCString() + ';path=/';"
|
|
"return accessToken;"
|
|
"})();",
|
|
await_promise=True
|
|
)
|
|
cookies = {}
|
|
for c in await page.browser.cookies.get_all():
|
|
if c.domain.endswith("chatgpt.com"):
|
|
cookies[c.name] = c.value
|
|
user_agent = await page.evaluate("window.navigator.userAgent")
|
|
await page.close()
|
|
cls._create_request_args(cookies, user_agent=user_agent)
|
|
cls._set_api_key(api_key)
|
|
|
|
@classmethod
|
|
def browse_access_token(cls, proxy: str = None, timeout: int = 1200) -> None:
|
|
"""
|
|
Browse to obtain an access token.
|
|
|
|
Args:
|
|
proxy (str): Proxy to use for browsing.
|
|
|
|
Returns:
|
|
tuple[str, dict]: A tuple containing the access token and cookies.
|
|
"""
|
|
driver = get_browser(proxy=proxy)
|
|
try:
|
|
driver.get(f"{cls.url}/")
|
|
WebDriverWait(driver, timeout).until(EC.presence_of_element_located((By.ID, "prompt-textarea")))
|
|
access_token = driver.execute_script(
|
|
"let session = await fetch('/api/auth/session');"
|
|
"let data = await session.json();"
|
|
"let accessToken = data['accessToken'];"
|
|
"let expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 4 * 1000);"
|
|
"document.cookie = 'access_token=' + accessToken + ';expires=' + expires.toUTCString() + ';path=/';"
|
|
"return accessToken;"
|
|
)
|
|
args = get_args_from_browser(f"{cls.url}/", driver, do_bypass_cloudflare=False)
|
|
cls._headers = args["headers"]
|
|
cls._cookies = args["cookies"]
|
|
cls._update_cookie_header()
|
|
cls._set_api_key(access_token)
|
|
finally:
|
|
driver.close()
|
|
|
|
@classmethod
|
|
async def fetch_access_token(cls, session: StreamSession, headers: dict):
|
|
async with session.get(
|
|
f"{cls.url}/api/auth/session",
|
|
headers=headers
|
|
) as response:
|
|
if response.ok:
|
|
data = await response.json()
|
|
if "accessToken" in data:
|
|
return data["accessToken"]
|
|
|
|
@staticmethod
|
|
def get_default_headers() -> dict:
|
|
return {
|
|
**DEFAULT_HEADERS,
|
|
"content-type": "application/json",
|
|
}
|
|
|
|
@classmethod
|
|
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
|
|
cls._headers = cls.get_default_headers() if headers is None else headers
|
|
if user_agent is not None:
|
|
cls._headers["user-agent"] = user_agent
|
|
cls._cookies = {} if cookies is None else {k: v for k, v in cookies.items() if k != "access_token"}
|
|
cls._update_cookie_header()
|
|
|
|
@classmethod
|
|
def _update_request_args(cls, session: StreamSession):
|
|
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
|
|
cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value
|
|
cls._update_cookie_header()
|
|
|
|
@classmethod
|
|
def _set_api_key(cls, api_key: str):
|
|
cls._api_key = api_key
|
|
cls._expires = int(time.time()) + 60 * 60 * 4
|
|
cls._headers["authorization"] = f"Bearer {api_key}"
|
|
|
|
@classmethod
|
|
def _update_cookie_header(cls):
|
|
cls._headers["cookie"] = format_cookies(cls._cookies)
|
|
if "oai-did" in cls._cookies:
|
|
cls._headers["oai-device-id"] = cls._cookies["oai-did"]
|
|
|
|
class Conversation(BaseConversation):
|
|
"""
|
|
Class to encapsulate response fields.
|
|
"""
|
|
def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None):
|
|
self.conversation_id = conversation_id
|
|
self.message_id = message_id
|
|
self.finish_reason = finish_reason
|
|
|
|
class Response():
|
|
"""
|
|
Class to encapsulate a response from the chat service.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
generator: AsyncResult,
|
|
action: str,
|
|
messages: Messages,
|
|
options: dict
|
|
):
|
|
self._generator = generator
|
|
self.action = action
|
|
self.is_end = False
|
|
self._message = None
|
|
self._messages = messages
|
|
self._options = options
|
|
self._fields = None
|
|
|
|
async def generator(self) -> AsyncIterator:
|
|
if self._generator is not None:
|
|
self._generator = None
|
|
chunks = []
|
|
async for chunk in self._generator:
|
|
if isinstance(chunk, Conversation):
|
|
self._fields = chunk
|
|
else:
|
|
yield chunk
|
|
chunks.append(str(chunk))
|
|
self._message = "".join(chunks)
|
|
if self._fields is None:
|
|
raise RuntimeError("Missing response fields")
|
|
self.is_end = self._fields.finish_reason == "stop"
|
|
|
|
def __aiter__(self):
|
|
return self.generator()
|
|
|
|
async def get_message(self) -> str:
|
|
await self.generator()
|
|
return self._message
|
|
|
|
async def get_fields(self) -> dict:
|
|
await self.generator()
|
|
return {
|
|
"conversation_id": self._fields.conversation_id,
|
|
"parent_id": self._fields.message_id
|
|
}
|
|
|
|
async def create_next(self, prompt: str, **kwargs) -> Response:
|
|
return await OpenaiChat.create(
|
|
**self._options,
|
|
prompt=prompt,
|
|
messages=await self.get_messages(),
|
|
action="next",
|
|
**await self.get_fields(),
|
|
**kwargs
|
|
)
|
|
|
|
async def do_continue(self, **kwargs) -> Response:
|
|
fields = await self.get_fields()
|
|
if self.is_end:
|
|
raise RuntimeError("Can't continue message. Message already finished.")
|
|
return await OpenaiChat.create(
|
|
**self._options,
|
|
messages=await self.get_messages(),
|
|
action="continue",
|
|
**fields,
|
|
**kwargs
|
|
)
|
|
|
|
async def create_variant(self, **kwargs) -> Response:
|
|
if self.action != "next":
|
|
raise RuntimeError("Can't create variant from continue or variant request.")
|
|
return await OpenaiChat.create(
|
|
**self._options,
|
|
messages=self._messages,
|
|
action="variant",
|
|
**await self.get_fields(),
|
|
**kwargs
|
|
)
|
|
|
|
async def get_messages(self) -> list:
|
|
messages = self._messages
|
|
messages.append({"role": "assistant", "content": await self.message()})
|
|
return messages
|