mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-05 18:20:35 -08:00
366 lines
14 KiB
Python
366 lines
14 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import re
|
|
import json
|
|
import asyncio
|
|
import time
|
|
import datetime
|
|
from pathlib import Path
|
|
from typing import Optional, AsyncIterator, Iterator, Dict, Any, Tuple, List, Union
|
|
|
|
from ..typing import Messages
|
|
from ..providers.helper import filter_none
|
|
from ..providers.asyncio import to_async_iterator
|
|
from ..providers.response import Reasoning, FinishReason, Sources, Usage, ProviderInfo
|
|
from ..providers.types import ProviderType
|
|
from ..cookies import get_cookies_dir
|
|
from .web_search import do_search, get_search_message
|
|
from .files import read_bucket, get_bucket_dir
|
|
from .. import debug
|
|
|
|
# Constants
|
|
BUCKET_INSTRUCTIONS = """
|
|
Instruction: Make sure to add the sources of cites using [[domain]](Url) notation after the reference. Example: [[a-z0-9.]](http://example.com)
|
|
"""
|
|
|
|
TOOL_NAMES = {
|
|
"SEARCH": "search_tool",
|
|
"CONTINUE": "continue_tool",
|
|
"BUCKET": "bucket_tool"
|
|
}
|
|
|
|
class ToolHandler:
|
|
"""Handles processing of different tool types"""
|
|
|
|
@staticmethod
|
|
def validate_arguments(data: dict) -> dict:
|
|
"""Validate and parse tool arguments"""
|
|
if "arguments" in data:
|
|
if isinstance(data["arguments"], str):
|
|
data["arguments"] = json.loads(data["arguments"])
|
|
if not isinstance(data["arguments"], dict):
|
|
raise ValueError("Tool function arguments must be a dictionary or a json string")
|
|
else:
|
|
return filter_none(**data["arguments"])
|
|
else:
|
|
return {}
|
|
|
|
@staticmethod
|
|
async def process_search_tool(messages: Messages, tool: dict) -> Messages:
|
|
"""Process search tool requests"""
|
|
messages = messages.copy()
|
|
args = ToolHandler.validate_arguments(tool["function"])
|
|
messages[-1]["content"], sources = await do_search(
|
|
messages[-1]["content"],
|
|
**args
|
|
)
|
|
return messages, sources
|
|
|
|
@staticmethod
|
|
def process_continue_tool(messages: Messages, tool: dict, provider: Any) -> Tuple[Messages, Dict[str, Any]]:
|
|
"""Process continue tool requests"""
|
|
kwargs = {}
|
|
if provider not in ("OpenaiAccount", "HuggingFaceAPI"):
|
|
messages = messages.copy()
|
|
last_line = messages[-1]["content"].strip().splitlines()[-1]
|
|
content = f"Carry on from this point:\n{last_line}"
|
|
messages.append({"role": "user", "content": content})
|
|
else:
|
|
# Enable provider native continue
|
|
kwargs["action"] = "continue"
|
|
return messages, kwargs
|
|
|
|
@staticmethod
|
|
def process_bucket_tool(messages: Messages, tool: dict) -> Messages:
|
|
"""Process bucket tool requests"""
|
|
messages = messages.copy()
|
|
|
|
def on_bucket(match):
|
|
return "".join(read_bucket(get_bucket_dir(match.group(1))))
|
|
|
|
has_bucket = False
|
|
for message in messages:
|
|
if "content" in message and isinstance(message["content"], str):
|
|
new_message_content = re.sub(r'{"bucket_id":\s*"([^"]*)"}', on_bucket, message["content"])
|
|
if new_message_content != message["content"]:
|
|
has_bucket = True
|
|
message["content"] = new_message_content
|
|
|
|
last_message_content = messages[-1]["content"]
|
|
if has_bucket and isinstance(last_message_content, str):
|
|
if "\nSource: " in last_message_content:
|
|
messages[-1]["content"] = last_message_content + BUCKET_INSTRUCTIONS
|
|
|
|
return messages
|
|
|
|
@staticmethod
|
|
async def process_tools(messages: Messages, tool_calls: List[dict], provider: Any) -> Tuple[Messages, Dict[str, Any]]:
|
|
"""Process all tool calls and return updated messages and kwargs"""
|
|
if not tool_calls:
|
|
return messages, {}
|
|
|
|
extra_kwargs = {}
|
|
messages = messages.copy()
|
|
sources = None
|
|
|
|
for tool in tool_calls:
|
|
if tool.get("type") != "function":
|
|
continue
|
|
|
|
function_name = tool.get("function", {}).get("name")
|
|
|
|
if function_name == TOOL_NAMES["SEARCH"]:
|
|
messages, sources = await ToolHandler.process_search_tool(messages, tool)
|
|
|
|
elif function_name == TOOL_NAMES["CONTINUE"]:
|
|
messages, kwargs = ToolHandler.process_continue_tool(messages, tool, provider)
|
|
extra_kwargs.update(kwargs)
|
|
|
|
elif function_name == TOOL_NAMES["BUCKET"]:
|
|
messages = ToolHandler.process_bucket_tool(messages, tool)
|
|
|
|
return messages, sources, extra_kwargs
|
|
|
|
class AuthManager:
|
|
"""Handles API key management"""
|
|
aliases = {
|
|
"GeminiPro": "Gemini",
|
|
"PollinationsAI": "Pollinations",
|
|
"OpenaiAPI": "Openai",
|
|
}
|
|
|
|
@classmethod
|
|
def load_api_key(cls, provider: ProviderType) -> Optional[str]:
|
|
"""Load API key from config file"""
|
|
if not provider.needs_auth and not hasattr(provider, "login_url"):
|
|
return None
|
|
provider_name = provider.get_parent()
|
|
env_var = f"{provider_name.upper()}_API_KEY"
|
|
api_key = os.environ.get(env_var)
|
|
if not api_key and provider_name in cls.aliases:
|
|
env_var = f"{cls.aliases[provider_name].upper()}_API_KEY"
|
|
api_key = os.environ.get(env_var)
|
|
if api_key:
|
|
print(f"Loading API key for {provider_name} from environment variable {env_var}")
|
|
return api_key
|
|
return None
|
|
|
|
class ThinkingProcessor:
|
|
"""Processes thinking chunks"""
|
|
|
|
@staticmethod
|
|
def process_thinking_chunk(chunk: str, start_time: float = 0) -> Tuple[float, List[Union[str, Reasoning]]]:
|
|
"""Process a thinking chunk and return timing and results."""
|
|
results = []
|
|
|
|
# Handle non-thinking chunk
|
|
if not start_time and "<think>" not in chunk and "</think>" not in chunk:
|
|
return 0, [chunk]
|
|
|
|
# Handle thinking start
|
|
if "<think>" in chunk and "`<think>`" not in chunk:
|
|
before_think, *after = chunk.split("<think>", 1)
|
|
|
|
if before_think:
|
|
results.append(before_think)
|
|
|
|
results.append(Reasoning(status="🤔 Is thinking...", is_thinking="<think>"))
|
|
|
|
if after:
|
|
if "</think>" in after[0]:
|
|
after, *after_end = after[0].split("</think>", 1)
|
|
results.append(Reasoning(after))
|
|
results.append(Reasoning(status="", is_thinking="</think>"))
|
|
if after_end:
|
|
results.append(after_end[0])
|
|
return 0, results
|
|
else:
|
|
results.append(Reasoning(after[0]))
|
|
|
|
return time.time(), results
|
|
|
|
# Handle thinking end
|
|
if "</think>" in chunk:
|
|
before_end, *after = chunk.split("</think>", 1)
|
|
|
|
if before_end:
|
|
results.append(Reasoning(before_end))
|
|
|
|
thinking_duration = time.time() - start_time if start_time > 0 else 0
|
|
|
|
status = f"Thought for {thinking_duration:.2f}s" if thinking_duration > 1 else ""
|
|
results.append(Reasoning(status=status, is_thinking="</think>"))
|
|
|
|
# Make sure to handle text after the closing tag
|
|
if after and after[0].strip():
|
|
results.append(after[0])
|
|
|
|
return 0, results
|
|
|
|
# Handle ongoing thinking
|
|
if start_time:
|
|
return start_time, [Reasoning(chunk)]
|
|
|
|
return start_time, [chunk]
|
|
|
|
|
|
async def perform_web_search(messages: Messages, web_search_param: Any) -> Tuple[Messages, Optional[Sources]]:
|
|
"""Perform web search and return updated messages and sources"""
|
|
messages = messages.copy()
|
|
sources = None
|
|
|
|
if not web_search_param:
|
|
return messages, sources
|
|
|
|
try:
|
|
search_query = web_search_param if isinstance(web_search_param, str) and web_search_param != "true" else None
|
|
messages[-1]["content"], sources = await do_search(messages[-1]["content"], search_query)
|
|
except Exception as e:
|
|
debug.error(f"Couldn't do web search:", e)
|
|
|
|
return messages, sources
|
|
|
|
|
|
async def async_iter_run_tools(
|
|
provider: ProviderType,
|
|
model: str,
|
|
messages: Messages,
|
|
tool_calls: Optional[List[dict]] = None,
|
|
**kwargs
|
|
) -> AsyncIterator:
|
|
"""Asynchronously run tools and yield results"""
|
|
# Process web search
|
|
sources = None
|
|
web_search = kwargs.get('web_search')
|
|
if web_search:
|
|
messages, sources = await perform_web_search(messages, web_search)
|
|
|
|
# Get API key
|
|
if not kwargs.get("api_key"):
|
|
api_key = AuthManager.load_api_key(provider)
|
|
if api_key:
|
|
kwargs["api_key"] = api_key
|
|
|
|
# Process tool calls
|
|
if tool_calls:
|
|
messages, sources, extra_kwargs = await ToolHandler.process_tools(messages, tool_calls, provider)
|
|
kwargs.update(extra_kwargs)
|
|
|
|
# Generate response
|
|
response = to_async_iterator(provider.async_create_function(model=model, messages=messages, **kwargs))
|
|
|
|
model_info = model
|
|
async for chunk in response:
|
|
if isinstance(chunk, ProviderInfo):
|
|
model_info = getattr(chunk, 'model', model_info)
|
|
elif isinstance(chunk, Usage):
|
|
usage = {"user": kwargs.get("user"), "model": model_info, "provider": provider.get_parent(), **chunk.get_dict()}
|
|
usage_dir = Path(get_cookies_dir()) / ".usage"
|
|
usage_file = usage_dir / f"{datetime.date.today()}.jsonl"
|
|
usage_dir.mkdir(parents=True, exist_ok=True)
|
|
with usage_file.open("a" if usage_file.exists() else "w") as f:
|
|
f.write(f"{json.dumps(usage)}\n")
|
|
yield chunk
|
|
|
|
# Yield sources if available
|
|
if sources:
|
|
yield sources
|
|
|
|
def iter_run_tools(
|
|
provider: ProviderType,
|
|
model: str,
|
|
messages: Messages,
|
|
tool_calls: Optional[List[dict]] = None,
|
|
**kwargs
|
|
) -> Iterator:
|
|
"""Run tools synchronously and yield results"""
|
|
# Process web search
|
|
web_search = kwargs.get('web_search')
|
|
sources = None
|
|
|
|
if web_search:
|
|
try:
|
|
messages = messages.copy()
|
|
search_query = web_search if isinstance(web_search, str) and web_search != "true" else None
|
|
# Note: Using asyncio.run inside sync function is not ideal, but maintaining original pattern
|
|
messages[-1]["content"], sources = asyncio.run(do_search(messages[-1]["content"], search_query))
|
|
except Exception as e:
|
|
debug.error(f"Couldn't do web search:", e)
|
|
|
|
# Get API key if needed
|
|
if not kwargs.get("api_key"):
|
|
api_key = AuthManager.load_api_key(provider)
|
|
if api_key:
|
|
kwargs["api_key"] = api_key
|
|
|
|
# Process tool calls
|
|
if tool_calls:
|
|
for tool in tool_calls:
|
|
if tool.get("type") == "function":
|
|
function_name = tool.get("function", {}).get("name")
|
|
|
|
if function_name == TOOL_NAMES["SEARCH"]:
|
|
tool["function"]["arguments"] = ToolHandler.validate_arguments(tool["function"])
|
|
messages[-1]["content"] = get_search_message(
|
|
messages[-1]["content"],
|
|
raise_search_exceptions=True,
|
|
**tool["function"]["arguments"]
|
|
)
|
|
elif function_name == TOOL_NAMES["CONTINUE"]:
|
|
if provider.__name__ not in ("OpenaiAccount", "HuggingFace"):
|
|
last_line = messages[-1]["content"].strip().splitlines()[-1]
|
|
content = f"Carry on from this point:\n{last_line}"
|
|
messages.append({"role": "user", "content": content})
|
|
else:
|
|
# Enable provider native continue
|
|
kwargs["action"] = "continue"
|
|
elif function_name == TOOL_NAMES["BUCKET"]:
|
|
def on_bucket(match):
|
|
return "".join(read_bucket(get_bucket_dir(match.group(1))))
|
|
has_bucket = False
|
|
for message in messages:
|
|
if "content" in message and isinstance(message["content"], str):
|
|
new_message_content = re.sub(r'{"bucket_id":"([^"]*)"}', on_bucket, message["content"])
|
|
if new_message_content != message["content"]:
|
|
has_bucket = True
|
|
message["content"] = new_message_content
|
|
last_message = messages[-1]["content"]
|
|
if has_bucket and isinstance(last_message, str):
|
|
if "\nSource: " in last_message:
|
|
messages[-1]["content"] = last_message + BUCKET_INSTRUCTIONS
|
|
|
|
# Process response chunks
|
|
thinking_start_time = 0
|
|
processor = ThinkingProcessor()
|
|
model_info = model
|
|
for chunk in provider.create_function(model=model, messages=messages, provider=provider, **kwargs):
|
|
if isinstance(chunk, FinishReason):
|
|
if sources is not None:
|
|
yield sources
|
|
sources = None
|
|
yield chunk
|
|
continue
|
|
elif isinstance(chunk, Sources):
|
|
sources = None
|
|
elif isinstance(chunk, ProviderInfo):
|
|
model_info = getattr(chunk, 'model', model_info)
|
|
elif isinstance(chunk, Usage):
|
|
usage = {"user": kwargs.get("user"), "model": model_info, "provider": provider.get_parent(), **chunk.get_dict()}
|
|
usage_dir = Path(get_cookies_dir()) / ".usage"
|
|
usage_file = usage_dir / f"{datetime.date.today()}.jsonl"
|
|
usage_dir.mkdir(parents=True, exist_ok=True)
|
|
with usage_file.open("a" if usage_file.exists() else "w") as f:
|
|
f.write(f"{json.dumps(usage)}\n")
|
|
|
|
if not isinstance(chunk, str):
|
|
yield chunk
|
|
continue
|
|
|
|
thinking_start_time, results = processor.process_thinking_chunk(chunk, thinking_start_time)
|
|
|
|
for result in results:
|
|
yield result
|
|
|
|
if sources is not None:
|
|
yield sources
|