gpt4free/g4f/Provider/hf/__init__.py
hlohaus 46d0b87008 Add example for video generation
Add support for images in messages
2025-03-27 09:38:31 +01:00

74 lines
No EOL
2.8 KiB
Python

from __future__ import annotations
import random
from ...typing import AsyncResult, Messages
from ...providers.response import ImageResponse
from ...errors import ModelNotSupportedError, MissingAuthError
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .HuggingChat import HuggingChat
from .HuggingFaceAPI import HuggingFaceAPI
from .HuggingFaceInference import HuggingFaceInference
from .HuggingFaceMedia import HuggingFaceMedia
from .models import model_aliases, vision_models, default_vision_model
from ... import debug
class HuggingFace(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://huggingface.co"
login_url = "https://huggingface.co/settings/tokens"
working = True
supports_message_history = True
@classmethod
def get_models(cls, **kwargs) -> list[str]:
if not cls.models:
cls.models = HuggingFaceInference.get_models()
cls.image_models = HuggingFaceInference.image_models
return cls.models
model_aliases = model_aliases
vision_models = vision_models
default_vision_model = default_vision_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
**kwargs
) -> AsyncResult:
if "tools" not in kwargs and "media" not in kwargs and random.random() >= 0.5:
try:
is_started = False
async for chunk in HuggingFaceInference.create_async_generator(model, messages, **kwargs):
if isinstance(chunk, (str, ImageResponse)):
is_started = True
yield chunk
if is_started:
return
except Exception as e:
if is_started:
raise e
debug.error(f"{cls.__name__} {type(e).__name__}; {e}")
if not cls.image_models:
cls.get_models()
try:
async for chunk in HuggingFaceMedia.create_async_generator(model, messages, **kwargs):
yield chunk
return
except ModelNotSupportedError:
pass
if model in cls.image_models:
if "api_key" not in kwargs:
async for chunk in HuggingChat.create_async_generator(model, messages, **kwargs):
yield chunk
else:
async for chunk in HuggingFaceInference.create_async_generator(model, messages, **kwargs):
yield chunk
return
try:
async for chunk in HuggingFaceAPI.create_async_generator(model, messages, **kwargs):
yield chunk
except (ModelNotSupportedError, MissingAuthError):
async for chunk in HuggingFaceInference.create_async_generator(model, messages, **kwargs):
yield chunk