gpt4free/g4f/models.py
Heiner Lohaus 2df2d6b0cf Read FinishReason and Usage from Gemini API
Add "Custom Provider": Set  API Url in the settings
Remove Discord link from result, add them to  attr: Jmuz
Fix Bug: File content are added to the prompt
Changed response from /v1/models API
Disable Pizzagpt Provider
2025-01-14 17:07:39 +01:00

914 lines
20 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from .Provider import IterListProvider, ProviderType
from .Provider import (
Airforce,
AutonomousAI,
Blackbox,
BlackboxCreateAgent,
BingCreateImages,
CablyAI,
ChatGLM,
ChatGpt,
ChatGptEs,
ChatGptt,
ClaudeSon,
Cloudflare,
Copilot,
CopilotAccount,
DarkAI,
DDG,
DeepInfraChat,
GigaChat,
Gemini,
GeminiPro,
HuggingChat,
HuggingFace,
HuggingSpace,
Jmuz,
Liaobots,
Mhystical,
MetaAI,
MicrosoftDesigner,
OpenaiChat,
OpenaiAccount,
PerplexityLabs,
Pi,
PollinationsAI,
Reka,
ReplicateHome,
RubiksAI,
TeachAnything,
)
@dataclass(unsafe_hash=True)
class Model:
"""
Represents a machine learning model configuration.
Attributes:
name (str): Name of the model.
base_provider (str): Default provider for the model.
best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
"""
name: str
base_provider: str
best_provider: ProviderType = None
@staticmethod
def __all__() -> list[str]:
"""Returns a list of all model names."""
return _all_models
class ImageModel(Model):
pass
### Default ###
default = Model(
name = "",
base_provider = "",
best_provider = IterListProvider([
DDG,
Blackbox,
Copilot,
ChatGptEs,
ChatGptt,
PollinationsAI,
Jmuz,
CablyAI,
OpenaiChat,
DarkAI,
ClaudeSon,
DeepInfraChat,
Airforce,
Cloudflare,
])
)
############
### Text ###
############
### OpenAI ###
# gpt-3.5
gpt_35_turbo = Model(
name = 'gpt-3.5-turbo',
base_provider = 'OpenAI',
best_provider = IterListProvider([DarkAI, ChatGpt])
)
# gpt-4
gpt_4 = Model(
name = 'gpt-4',
base_provider = 'OpenAI',
best_provider = IterListProvider([DDG, Blackbox, Jmuz, ChatGptEs, ChatGptt, PollinationsAI, Copilot, OpenaiChat, Liaobots, Mhystical])
)
# gpt-4o
gpt_4o = Model(
name = 'gpt-4o',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, ChatGptt, Jmuz, ChatGptEs, PollinationsAI, DarkAI, ChatGpt, Liaobots, OpenaiChat])
)
gpt_4o_mini = Model(
name = 'gpt-4o-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([DDG, ChatGptEs, ChatGptt, Jmuz, ChatGpt, RubiksAI, Liaobots, OpenaiChat])
)
# o1
o1 = Model(
name = 'o1',
base_provider = 'OpenAI',
best_provider = OpenaiAccount
)
o1_preview = Model(
name = 'o1-preview',
base_provider = 'OpenAI',
best_provider = Liaobots
)
o1_mini = Model(
name = 'o1-mini',
base_provider = 'OpenAI',
best_provider = Liaobots
)
### GigaChat ###
gigachat = Model(
name = 'GigaChat:latest',
base_provider = 'gigachat',
best_provider = GigaChat
)
### Meta ###
meta = Model(
name = "meta-ai",
base_provider = "Meta",
best_provider = MetaAI
)
# llama 2
llama_2_7b = Model(
name = "llama-2-7b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Cloudflare, Airforce])
)
# llama 3
llama_3_8b = Model(
name = "llama-3-8b",
base_provider = "Meta Llama",
best_provider = Cloudflare
)
# llama 3.1
llama_3_1_8b = Model(
name = "llama-3.1-8b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, Jmuz, DeepInfraChat, Cloudflare, Airforce, PerplexityLabs])
)
llama_3_1_70b = Model(
name = "llama-3.1-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([DDG, Jmuz, Blackbox, DeepInfraChat, BlackboxCreateAgent, TeachAnything, DarkAI, Airforce, RubiksAI, PerplexityLabs])
)
llama_3_1_405b = Model(
name = "llama-3.1-405b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, Jmuz])
)
# llama 3.2
llama_3_2_1b = Model(
name = "llama-3.2-1b",
base_provider = "Meta Llama",
best_provider = Cloudflare
)
llama_3_2_3b = Model(
name = "llama-3.2-3b",
base_provider = "Meta Llama",
best_provider = PollinationsAI
)
llama_3_2_11b = Model(
name = "llama-3.2-11b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Jmuz, HuggingChat, HuggingFace])
)
llama_3_2_90b = Model(
name = "llama-3.2-90b",
base_provider = "Meta Llama",
best_provider = IterListProvider([AutonomousAI, Jmuz])
)
# llama 3.3
llama_3_3_70b = Model(
name = "llama-3.3-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, PollinationsAI, AutonomousAI, Jmuz, HuggingChat, HuggingFace, PerplexityLabs])
)
### Mistral ###
mixtral_7b = Model(
name = "mixtral-7b",
base_provider = "Mistral",
best_provider = Blackbox
)
mixtral_8x7b = Model(
name = "mixtral-8x7b",
base_provider = "Mistral",
best_provider = IterListProvider([DDG, Jmuz])
)
mistral_nemo = Model(
name = "mistral-nemo",
base_provider = "Mistral",
best_provider = IterListProvider([PollinationsAI, HuggingChat, HuggingFace])
)
mistral_large = Model(
name = "mistral-large",
base_provider = "Mistral",
best_provider = PollinationsAI
)
### NousResearch ###
hermes_2_dpo = Model(
name = "hermes-2-dpo",
base_provider = "NousResearch",
best_provider = IterListProvider([Blackbox, Airforce])
)
hermes_2_pro = Model(
name = "hermes-2-pro",
base_provider = "NousResearch",
best_provider = Airforce
)
hermes_3 = Model(
name = "hermes-3",
base_provider = "NousResearch",
best_provider = IterListProvider([AutonomousAI, HuggingChat, HuggingFace])
)
### Microsoft ###
phi_2 = Model(
name = "phi-2",
base_provider = "Microsoft",
best_provider = Airforce
)
phi_3_5_mini = Model(
name = "phi-3.5-mini",
base_provider = "Microsoft",
best_provider = IterListProvider([HuggingChat, HuggingFace])
)
### Google DeepMind ###
# gemini
gemini = Model(
name = 'gemini',
base_provider = 'Google',
best_provider = IterListProvider([Jmuz, Gemini])
)
# gemini-1.5
gemini_1_5_pro = Model(
name = 'gemini-1.5-pro',
base_provider = 'Google DeepMind',
best_provider = IterListProvider([Blackbox, Jmuz, Gemini, GeminiPro, Liaobots])
)
gemini_1_5_flash = Model(
name = 'gemini-1.5-flash',
base_provider = 'Google DeepMind',
best_provider = IterListProvider([Blackbox, Jmuz, Gemini, GeminiPro, Liaobots])
)
# gemini-2.0
gemini_2_0_flash = Model(
name = 'gemini-2.0-flash',
base_provider = 'Google DeepMind',
best_provider = IterListProvider([GeminiPro, Liaobots])
)
gemini_2_0_flash_thinking = Model(
name = 'gemini-2.0-flash-thinking',
base_provider = 'Google DeepMind',
best_provider = Liaobots
)
# gemma
gemma_2b = Model(
name = 'gemma-2b',
base_provider = 'Google',
best_provider = ReplicateHome
)
### Anthropic ###
# claude 3
claude_3_haiku = Model(
name = 'claude-3-haiku',
base_provider = 'Anthropic',
best_provider = IterListProvider([DDG, Jmuz])
)
claude_3_sonnet = Model(
name = 'claude-3-sonnet',
base_provider = 'Anthropic',
best_provider = Liaobots
)
claude_3_opus = Model(
name = 'claude-3-opus',
base_provider = 'Anthropic',
best_provider = IterListProvider([Jmuz, Liaobots])
)
# claude 3.5
claude_3_5_sonnet = Model(
name = 'claude-3.5-sonnet',
base_provider = 'Anthropic',
best_provider = IterListProvider([Blackbox, PollinationsAI, Jmuz, ClaudeSon, Liaobots])
)
### Reka AI ###
reka_core = Model(
name = 'reka-core',
base_provider = 'Reka AI',
best_provider = Reka
)
### Blackbox AI ###
blackboxai = Model(
name = 'blackboxai',
base_provider = 'Blackbox AI',
best_provider = Blackbox
)
blackboxai_pro = Model(
name = 'blackboxai-pro',
base_provider = 'Blackbox AI',
best_provider = Blackbox
)
### CohereForAI ###
command_r_plus = Model(
name = 'command-r-plus',
base_provider = 'CohereForAI',
best_provider = HuggingChat
)
command_r = Model(
name = 'command-r',
base_provider = 'CohereForAI',
best_provider = PollinationsAI
)
### Qwen ###
# qwen 1_5
qwen_1_5_7b = Model(
name = 'qwen-1.5-7b',
base_provider = 'Qwen',
best_provider = Cloudflare
)
# qwen 2
qwen_2_72b = Model(
name = 'qwen-2-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([PollinationsAI, DeepInfraChat])
)
# qwen 2.5
qwen_2_5_72b = Model(
name = 'qwen-2.5-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([Jmuz, HuggingSpace])
)
qwen_2_5_coder_32b = Model(
name = 'qwen-2.5-coder-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([Jmuz, PollinationsAI, AutonomousAI, DeepInfraChat, HuggingChat])
)
qwq_32b = Model(
name = 'qwq-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, Jmuz, HuggingSpace, DeepInfraChat, HuggingChat])
)
### Inflection ###
pi = Model(
name = 'pi',
base_provider = 'Inflection',
best_provider = Pi
)
### DeepSeek ###
deepseek_chat = Model(
name = 'deepseek-chat',
base_provider = 'DeepSeek',
best_provider = IterListProvider([Blackbox, Jmuz, PollinationsAI])
)
deepseek_coder = Model(
name = 'deepseek-coder',
base_provider = 'DeepSeek',
best_provider = Airforce
)
### WizardLM ###
wizardlm_2_8x22b = Model(
name = 'wizardlm-2-8x22b',
base_provider = 'WizardLM',
best_provider = IterListProvider([Jmuz, DeepInfraChat])
)
### OpenChat ###
openchat_3_5 = Model(
name = 'openchat-3.5',
base_provider = 'OpenChat',
best_provider = Airforce
)
### x.ai ###
grok_2 = Model(
name = 'grok-2',
base_provider = 'x.ai',
best_provider = Liaobots
)
### Perplexity AI ###
sonar_online = Model(
name = 'sonar-online',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_chat = Model(
name = 'sonar-chat',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
### Nvidia ###
nemotron_70b = Model(
name = 'nemotron-70b',
base_provider = 'Nvidia',
best_provider = IterListProvider([DeepInfraChat, HuggingChat, HuggingFace])
)
### Teknium ###
openhermes_2_5 = Model(
name = 'openhermes-2.5',
base_provider = 'Teknium',
best_provider = Airforce
)
### Liquid ###
lfm_40b = Model(
name = 'lfm-40b',
base_provider = 'Liquid',
best_provider = IterListProvider([Airforce, PerplexityLabs])
)
### DiscoResearch ###
german_7b = Model(
name = 'german-7b',
base_provider = 'DiscoResearch',
best_provider = Airforce
)
### HuggingFaceH4 ###
zephyr_7b = Model(
name = 'zephyr-7b',
base_provider = 'HuggingFaceH4',
best_provider = Airforce
)
### Inferless ###
neural_7b = Model(
name = 'neural-7b',
base_provider = 'Inferless',
best_provider = Airforce
)
### Databricks ###
dbrx_instruct = Model(
name = 'dbrx-instruct',
base_provider = 'Databricks',
best_provider = Blackbox
)
### PollinationsAI ###
p1 = Model(
name = 'p1',
base_provider = 'PollinationsAI',
best_provider = PollinationsAI
)
### CablyAI ###
cably_80b = Model(
name = 'cably-80b',
base_provider = 'CablyAI',
best_provider = CablyAI
)
### THUDM ###
glm_4 = Model(
name = 'glm-4',
base_provider = 'THUDM',
best_provider = ChatGLM
)
### Uncensored AI ###
evil = Model(
name = 'evil',
base_provider = 'Evil Mode - Experimental',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
### Other ###
midijourney = Model(
name = 'midijourney',
base_provider = 'Other',
best_provider = PollinationsAI
)
turbo = Model(
name = 'turbo',
base_provider = 'Other',
best_provider = PollinationsAI
)
unity = Model(
name = 'unity',
base_provider = 'Other',
best_provider = PollinationsAI
)
rtist = Model(
name = 'rtist',
base_provider = 'Other',
best_provider = PollinationsAI
)
#############
### Image ###
#############
### Stability AI ###
sdxl = ImageModel(
name = 'sdxl',
base_provider = 'Stability AI',
best_provider = IterListProvider([ReplicateHome, Airforce])
)
sd_3 = ImageModel(
name = 'sd-3',
base_provider = 'Stability AI',
best_provider = ReplicateHome
)
sd_3_5 = ImageModel(
name = 'sd-3.5',
base_provider = 'Stability AI',
best_provider = HuggingSpace
)
### Playground ###
playground_v2_5 = ImageModel(
name = 'playground-v2.5',
base_provider = 'Playground AI',
best_provider = ReplicateHome
)
### Flux AI ###
flux = ImageModel(
name = 'flux',
base_provider = 'Flux AI',
best_provider = IterListProvider([Blackbox, BlackboxCreateAgent, PollinationsAI, Airforce])
)
flux_pro = ImageModel(
name = 'flux-pro',
base_provider = 'Flux AI',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
flux_dev = ImageModel(
name = 'flux-dev',
base_provider = 'Flux AI',
best_provider = IterListProvider([HuggingSpace, HuggingChat, HuggingFace])
)
flux_schnell = ImageModel(
name = 'flux-schnell',
base_provider = 'Flux AI',
best_provider = IterListProvider([HuggingSpace, HuggingFace])
)
flux_realism = ImageModel(
name = 'flux-realism',
base_provider = 'Flux AI',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
flux_cablyai = ImageModel(
name = 'flux-cablyai',
base_provider = 'Flux AI',
best_provider = PollinationsAI
)
flux_anime = ImageModel(
name = 'flux-anime',
base_provider = 'Flux AI',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
flux_3d = ImageModel(
name = 'flux-3d',
base_provider = 'Flux AI',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
flux_disney = ImageModel(
name = 'flux-disney',
base_provider = 'Flux AI',
best_provider = Airforce
)
flux_pixel = ImageModel(
name = 'flux-pixel',
base_provider = 'Flux AI',
best_provider = Airforce
)
flux_4o = ImageModel(
name = 'flux-4o',
base_provider = 'Flux AI',
best_provider = Airforce
)
### OpenAI ###
dall_e_3 = ImageModel(
name = 'dall-e-3',
base_provider = 'OpenAI',
best_provider = IterListProvider([Airforce, PollinationsAI, CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages])
)
### Midjourney ###
midjourney = ImageModel(
name = 'midjourney',
base_provider = 'Midjourney',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
### Other ###
any_dark = ImageModel(
name = 'any-dark',
base_provider = 'Other',
best_provider = IterListProvider([PollinationsAI, Airforce])
)
class ModelUtils:
"""
Utility class for mapping string identifiers to Model instances.
Attributes:
convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances.
"""
convert: dict[str, Model] = {
############
### Text ###
############
### OpenAI ###
# gpt-3
'gpt-3': gpt_35_turbo,
# gpt-3.5
gpt_35_turbo.name: gpt_35_turbo,
# gpt-4
gpt_4.name: gpt_4,
# gpt-4o
gpt_4o.name: gpt_4o,
gpt_4o_mini.name: gpt_4o_mini,
# o1
o1.name: o1,
o1_preview.name: o1_preview,
o1_mini.name: o1_mini,
### Meta ###
meta.name: meta,
# llama-2
llama_2_7b.name: llama_2_7b,
# llama-3
llama_3_8b.name: llama_3_8b,
# llama-3.1
llama_3_1_8b.name: llama_3_1_8b,
llama_3_1_70b.name: llama_3_1_70b,
llama_3_1_405b.name: llama_3_1_405b,
# llama-3.2
llama_3_2_1b.name: llama_3_2_1b,
llama_3_2_3b.name: llama_3_2_3b,
llama_3_2_11b.name: llama_3_2_11b,
llama_3_2_90b.name: llama_3_2_90b,
# llama-3.3
llama_3_3_70b.name: llama_3_3_70b,
### Mistral ###
mixtral_7b.name: mixtral_7b,
mixtral_8x7b.name: mixtral_8x7b,
mistral_nemo.name: mistral_nemo,
mistral_large.name: mistral_large,
### NousResearch ###
hermes_2_dpo.name: hermes_2_dpo,
hermes_2_pro.name: hermes_2_pro,
hermes_3.name: hermes_3,
### Microsoft ###
phi_2.name: phi_2,
phi_3_5_mini.name: phi_3_5_mini,
### Google ###
# gemini
gemini.name: gemini,
# gemini-1.5
gemini_1_5_pro.name: gemini_1_5_pro,
gemini_1_5_flash.name: gemini_1_5_flash,
# gemini-2.0
gemini_2_0_flash.name: gemini_2_0_flash,
gemini_2_0_flash_thinking.name: gemini_2_0_flash_thinking,
# gemma
gemma_2b.name: gemma_2b,
### Anthropic ###
# claude 3
claude_3_opus.name: claude_3_opus,
claude_3_sonnet.name: claude_3_sonnet,
claude_3_haiku.name: claude_3_haiku,
# claude 3.5
claude_3_5_sonnet.name: claude_3_5_sonnet,
### Reka AI ###
reka_core.name: reka_core,
### Blackbox AI ###
blackboxai.name: blackboxai,
blackboxai_pro.name: blackboxai_pro,
### CohereForAI ###
command_r_plus.name: command_r_plus,
command_r.name: command_r,
### GigaChat ###
gigachat.name: gigachat,
### Qwen ###
# qwen 1_5
qwen_1_5_7b.name: qwen_1_5_7b,
# qwen 2
qwen_2_72b.name: qwen_2_72b,
# qwen 2.5
qwen_2_5_72b.name: qwen_2_5_72b,
qwen_2_5_coder_32b.name: qwen_2_5_coder_32b,
qwq_32b.name: qwq_32b,
### Inflection ###
pi.name: pi,
### WizardLM ###
wizardlm_2_8x22b.name: wizardlm_2_8x22b,
### OpenChat ###
openchat_3_5.name: openchat_3_5,
### x.ai ###
grok_2.name: grok_2,
### Perplexity AI ###
sonar_online.name: sonar_online,
sonar_chat.name: sonar_chat,
### DeepSeek ###
deepseek_chat.name: deepseek_chat,
deepseek_coder.name: deepseek_coder,
### TheBloke ###
german_7b.name: german_7b,
### Nvidia ###
nemotron_70b.name: nemotron_70b,
### Teknium ###
openhermes_2_5.name: openhermes_2_5,
### Liquid ###
lfm_40b.name: lfm_40b,
### HuggingFaceH4 ###
zephyr_7b.name: zephyr_7b,
### Inferless ###
neural_7b.name: neural_7b,
### Databricks ###
dbrx_instruct.name: dbrx_instruct,
### PollinationsAI ###
p1.name: p1,
### CablyAI ###
cably_80b.name: cably_80b,
### THUDM ###
glm_4.name: glm_4,
### Uncensored AI ###
evil.name: evil,
### Other ###
midijourney.name: midijourney,
turbo.name: turbo,
unity.name: unity,
rtist.name: rtist,
#############
### Image ###
#############
### Stability AI ###
sdxl.name: sdxl,
sd_3.name: sd_3,
sd_3_5.name: sd_3_5,
### Playground ###
playground_v2_5.name: playground_v2_5,
### Flux AI ###
flux.name: flux,
flux_pro.name: flux_pro,
flux_dev.name: flux_dev,
flux_schnell.name: flux_schnell,
flux_realism.name: flux_realism,
flux_cablyai.name: flux_cablyai,
flux_anime.name: flux_anime,
flux_3d.name: flux_3d,
flux_disney.name: flux_disney,
flux_pixel.name: flux_pixel,
flux_4o.name: flux_4o,
### OpenAI ###
dall_e_3.name: dall_e_3,
### Midjourney ###
midjourney.name: midjourney,
### Other ###
any_dark.name: any_dark,
}
# Create a list of all models and his providers
__models__ = {
model.name: (model, providers)
for model, providers in [
(model, [provider for provider in model.best_provider.providers if provider.working]
if isinstance(model.best_provider, IterListProvider)
else [model.best_provider]
if model.best_provider is not None and model.best_provider.working
else [])
for model in ModelUtils.convert.values()]
if providers
}
_all_models = list(__models__.keys())