gpt4free/g4f/api/stubs.py
hlohaus 1296b3f64f refactor: update audio parameter handling in EdgeTTS and stubs
- Remove the unused `language`, `locale`, and `extra_parameters` parameters from the `EdgeTTS` function signature in `g4f/Provider/audio/EdgeTTS.py`.
- Update voice selection logic to check for `"locale"` and `"language"` keys in the `audio` dictionary, defaulting to `cls.default_locale` when neither is provided, and modify the error message accordingly.
- Refactor extraction of extra parameters by building a dict from the `audio` dictionary for keys `"rate"`, `"volume"`, and `"pitch"`.
- In `g4f/api/stubs.py`, remove the try/except block for importing `Annotated` and import `Messages` from `..typing` instead.
- Add an optional `audio: Optional[dict] = None` field to the `ImageGenerationConfig` model.
2025-04-19 03:51:37 +02:00

116 lines
No EOL
3.6 KiB
Python

from __future__ import annotations
from pydantic import BaseModel, Field, model_validator
from typing import Union, Optional
from ..typing import Messages
class ChatCompletionsConfig(BaseModel):
messages: Messages = Field(examples=[[{"role": "system", "content": ""}, {"role": "user", "content": ""}]])
model: str = Field(default="")
provider: Optional[str] = None
stream: bool = False
image: Optional[str] = None
image_name: Optional[str] = None
images: Optional[list[tuple[str, str]]] = None
media: Optional[list[tuple[str, str]]] = None
modalities: Optional[list[str]] = ["text", "audio"]
temperature: Optional[float] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
top_p: Optional[float] = None
max_tokens: Optional[int] = None
stop: Union[list[str], str, None] = None
api_key: Optional[str] = None
api_base: str = None
web_search: Optional[bool] = None
proxy: Optional[str] = None
conversation_id: Optional[str] = None
conversation: Optional[dict] = None
return_conversation: Optional[bool] = None
history_disabled: Optional[bool] = None
timeout: Optional[int] = None
tool_calls: list = Field(default=[], examples=[[
{
"function": {
"arguments": {"query":"search query", "max_results":5, "max_words": 2500, "backend": "auto", "add_text": True, "timeout": 5},
"name": "search_tool"
},
"type": "function"
}
]])
tools: list = None
parallel_tool_calls: bool = None
tool_choice: Optional[str] = None
reasoning_effort: Optional[str] = None
logit_bias: Optional[dict] = None
modalities: Optional[list[str]] = None
audio: Optional[dict] = None
response_format: Optional[dict] = None
extra_data: Optional[dict] = None
class ImageGenerationConfig(BaseModel):
prompt: str
model: Optional[str] = None
provider: Optional[str] = None
response_format: Optional[str] = None
api_key: Optional[str] = None
proxy: Optional[str] = None
width: Optional[int] = None
height: Optional[int] = None
num_inference_steps: Optional[int] = None
seed: Optional[int] = None
guidance_scale: Optional[int] = None
aspect_ratio: Optional[str] = None
n: Optional[int] = None
negative_prompt: Optional[str] = None
resolution: Optional[str] = None
audio: Optional[dict] = None
@model_validator(mode='before')
def parse_size(cls, values):
if values.get('width') is not None and values.get('height') is not None:
return values
size = values.get('size')
if size:
try:
width, height = map(int, size.split('x'))
values['width'] = width
values['height'] = height
except (ValueError, AttributeError): pass # If the format is incorrect, we simply ignore it.
return values
class ProviderResponseModel(BaseModel):
id: str
object: str = "provider"
created: int
url: Optional[str]
label: Optional[str]
class ProviderResponseDetailModel(ProviderResponseModel):
models: list[str]
image_models: list[str]
vision_models: list[str]
params: list[str]
class ModelResponseModel(BaseModel):
id: str
object: str = "model"
created: int
owned_by: Optional[str]
class UploadResponseModel(BaseModel):
bucket_id: str
url: str
class ErrorResponseModel(BaseModel):
error: ErrorResponseMessageModel
model: Optional[str] = None
provider: Optional[str] = None
class ErrorResponseMessageModel(BaseModel):
message: str
class FileResponseModel(BaseModel):
filename: str