gpt4free/g4f/Provider/GradientNetwork.py
copilot-swe-agent[bot] 21113c51a6 Remove redundant continue statement for cluster message handling
Co-authored-by: hlohaus <983577+hlohaus@users.noreply.github.com>
2025-11-29 04:39:45 +00:00

116 lines
3.8 KiB
Python

from __future__ import annotations
import json
from ..typing import AsyncResult, Messages
from ..providers.response import Reasoning
from ..requests import StreamSession
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
class GradientNetwork(AsyncGeneratorProvider, ProviderModelMixin):
"""
Provider for chat.gradient.network
Supports streaming text generation with Qwen and GPT OSS models.
"""
label = "Gradient Network"
url = "https://chat.gradient.network"
api_endpoint = "https://chat.gradient.network/api/generate"
working = True
needs_auth = False
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = "Qwen3 235B"
models = [
default_model,
"GPT OSS 120B",
]
model_aliases = {
"qwen-3-235b": "Qwen3 235B",
"qwen3-235b": "Qwen3 235B",
"gpt-oss-120b": "GPT OSS 120B",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
temperature: float = None,
max_tokens: int = None,
enable_thinking: bool = False,
**kwargs
) -> AsyncResult:
"""
Create an async generator for streaming chat responses.
Args:
model: The model name to use
messages: List of message dictionaries
proxy: Optional proxy URL
temperature: Optional temperature parameter
max_tokens: Optional max tokens parameter
enable_thinking: Enable the thinking/analysis channel (maps to enableThinking in API)
**kwargs: Additional arguments
Yields:
str: Content chunks from the response
Reasoning: Reasoning content when enable_thinking is True
"""
model = cls.get_model(model)
headers = {
"Accept": "application/x-ndjson",
"Content-Type": "application/json",
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36",
"Origin": cls.url,
"Referer": f"{cls.url}/",
}
payload = {
"model": model,
"messages": messages,
}
if temperature is not None:
payload["temperature"] = temperature
if max_tokens is not None:
payload["max_tokens"] = max_tokens
if enable_thinking:
payload["enableThinking"] = enable_thinking
async with StreamSession(headers=headers, proxy=proxy) as session:
async with session.post(
cls.api_endpoint,
json=payload,
) as response:
response.raise_for_status()
async for line in response.iter_lines():
if not line:
continue
try:
data = json.loads(line)
msg_type = data.get("type")
if msg_type == "reply":
# Response chunks with content or reasoningContent
reply_data = data.get("data", {})
content = reply_data.get("content")
reasoning_content = reply_data.get("reasoningContent")
if reasoning_content:
yield Reasoning(reasoning_content)
if content:
yield content
# Skip clusterInfo and blockUpdate GPU visualization messages
except json.JSONDecodeError:
# Skip non-JSON lines (may be partial data or empty)
continue