gpt4free/g4f/Provider/PollinationsAI.py
hlohaus 06546649db feat: add LM Arena provider, async‑ify Copilot & surface follow‑up suggestions
* **Provider/Blackbox.py**
  * Raise `RateLimitError` when `"You have reached your request limit for the hour"` substring is detected
* **Provider/Copilot.py**
  * Convert class to `AsyncGeneratorProvider`; rename `create_completion` → `create_async_generator`
  * Swap `curl_cffi.requests.Session` for `AsyncSession`; reduce default timeout to **30 s**
  * Fully async websocket flow (`await session.ws_connect`, `await wss.send/recv/close`)
  * Emit new response types: `TitleGeneration`, `SourceLink`, aggregated `Sources`
  * Track request completion with `done` flag; collect citations in `sources` dict
* **Provider/DuckDuckGo.py**
  * Replace `duckduckgo_search.DDGS` with `duckai.DuckAI`
  * Change base class to `AbstractProvider`; drop nodriver‑based auth
* **Provider/PollinationsAI.py**
  * Re‑build text/audio model lists ensuring uniqueness; remove unused `extra_text_models`
  * Fix image seed logic (`i==1` for first retry); propagate streaming `error` field via `ResponseError`
* **Provider/hf_space**
  * **New file** `LMArenaProvider.py` implementing async queue/stream client
  * Register `LMArenaProvider` in `hf_space/__init__.py`; delete `G4F` import
* **Provider/needs_auth/CopilotAccount.py**
  * Inherit order changed to `Copilot, AsyncAuthedProvider`
  * Refactor token & cookie propagation; add `cookies_to_dict` helper
* **Provider/needs_auth/OpenaiChat.py**
  * Parse reasoning thoughts/summary; yield `Reasoning` responses
  * Tighten access‑token validation and nodriver JS evaluations (`return_by_value`)
  * Extend `Conversation` with `p` and `thoughts_summary`
* **providers/response.py**
  * Add `SourceLink` response class returning single formatted citation link
* **providers/base_provider.py**
  * Serialize `AuthResult` with custom `json.dump` to handle non‑serializable fields
  * Gracefully skip empty cache files when loading auth data
* **image/copy_images.py**
  * Ignore file extensions longer than 4 chars when inferring type
* **requests/__init__.py**
  * Use `return_by_value=True` for `navigator.userAgent` extraction
* **models.py**
  * Remove `G4F` from model provider lists; update `janus_pro_7b` best providers
* **GUI server/api.py**
  * Stream `SuggestedFollowups` to client (`"suggestions"` event)
* **GUI static assets**
  * **style.css**: bold chat title, add `.suggestions` styles, remove padding from `.chat-body`
  * **chat.v1.js**
    * Capture `suggestions` packets, render buttons, and send as quick replies
    * Re‑order finish‑reason logic; adjust token count placement and system‑prompt toggling
  * **chat-top-panel / footer** interactions updated accordingly
* **gui/client/static/js/chat.v1.js** & **css** further UI refinements (scroll handling, token counting, hide prompt toggle)
* Minor updates across multiple files to match new async interfaces and headers (`userAgent`, `raise_for_status`)
2025-04-17 01:21:58 +02:00

361 lines
14 KiB
Python

from __future__ import annotations
import json
import random
import requests
import asyncio
from urllib.parse import quote_plus
from typing import Optional
from aiohttp import ClientSession
from .helper import filter_none, format_image_prompt
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..typing import AsyncResult, Messages, MediaListType
from ..image import is_data_an_audio
from ..errors import ModelNotFoundError, ResponseError
from ..requests.raise_for_status import raise_for_status
from ..requests.aiohttp import get_connector
from ..image.copy_images import save_response_media
from ..image import use_aspect_ratio
from ..providers.response import FinishReason, Usage, ToolCalls, ImageResponse
from ..tools.media import render_messages
from .. import debug
DEFAULT_HEADERS = {
"accept": "*/*",
'accept-language': 'en-US,en;q=0.9',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"referer": "https://pollinations.ai/",
"origin": "https://pollinations.ai",
}
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
label = "Pollinations AI"
url = "https://pollinations.ai"
working = True
supports_system_message = True
supports_message_history = True
# API endpoints
text_api_endpoint = "https://text.pollinations.ai"
openai_endpoint = "https://text.pollinations.ai/openai"
image_api_endpoint = "https://image.pollinations.ai/"
# Models configuration
default_model = "openai"
default_image_model = "flux"
default_vision_model = default_model
default_audio_model = "openai-audio"
text_models = [default_model]
image_models = [default_image_model]
audio_models = [default_audio_model]
extra_image_models = ["flux-pro", "flux-dev", "flux-schnell", "midjourney", "dall-e-3", "turbo"]
vision_models = [default_vision_model, "gpt-4o-mini", "openai", "openai-large", "searchgpt"]
_models_loaded = False
# https://github.com/pollinations/pollinations/blob/master/text.pollinations.ai/generateTextPortkey.js#L15
model_aliases = {
### Text Models ###
"gpt-4o-mini": "openai",
"gpt-4": "openai-large",
"gpt-4o": "openai-large",
"qwen-2.5-coder-32b": "qwen-coder",
"llama-3.3-70b": "llama",
"llama-4-scout": "llamascout",
"mistral-nemo": "mistral",
"llama-3.1-8b": "llamalight",
"llama-3.3-70b": "llama-scaleway",
"phi-4": "phi",
"gemini-2.0": "gemini",
"gemini-2.0-flash": "gemini",
"gemini-2.0-flash-thinking": "gemini-thinking",
"deepseek-r1": "deepseek-reasoning-large",
"deepseek-r1": "deepseek-reasoning",
"deepseek-v3": "deepseek",
"llama-3.2-11b": "llama-vision",
"gpt-4o-audio": "openai-audio",
### Image Models ###
"sdxl-turbo": "turbo",
}
@classmethod
def get_models(cls, **kwargs):
if not cls._models_loaded:
try:
# Update of image models
image_response = requests.get("https://image.pollinations.ai/models")
if image_response.ok:
new_image_models = image_response.json()
else:
new_image_models = []
# Combine image models without duplicates
all_image_models = [cls.default_image_model] # Start with default model
# Add extra image models if not already in the list
for model in cls.extra_image_models + new_image_models:
if model not in all_image_models:
all_image_models.append(model)
cls.image_models = all_image_models
text_response = requests.get("https://text.pollinations.ai/models")
text_response.raise_for_status()
models = text_response.json()
# Purpose of audio models
cls.audio_models = {
model.get("name"): model.get("voices")
for model in models
if "output_modalities" in model and "audio" in model["output_modalities"]
}
# Create a set of unique text models starting with default model
unique_text_models = cls.text_models.copy()
# Add models from vision_models
unique_text_models.extend(cls.vision_models)
# Add models from the API response
for model in models:
model_name = model.get("name")
if model_name and "input_modalities" in model and "text" in model["input_modalities"]:
unique_text_models.append(model_name)
# Convert to list and update text_models
cls.text_models = list(dict.fromkeys(unique_text_models))
cls._models_loaded = True
except Exception as e:
# Save default models in case of an error
if not cls.text_models:
cls.text_models = [cls.default_model]
if not cls.image_models:
cls.image_models = [cls.default_image_model]
debug.error(f"Failed to fetch models: {e}")
# Return unique models across all categories
all_models = cls.text_models.copy()
all_models.extend(cls.image_models)
all_models.extend(cls.audio_models.keys())
return list(dict.fromkeys(all_models))
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = True,
proxy: str = None,
cache: bool = False,
# Image generation parameters
prompt: str = None,
aspect_ratio: str = "1:1",
width: int = None,
height: int = None,
seed: Optional[int] = None,
nologo: bool = True,
private: bool = False,
enhance: bool = False,
safe: bool = False,
n: int = 1,
# Text generation parameters
media: MediaListType = None,
temperature: float = None,
presence_penalty: float = None,
top_p: float = None,
frequency_penalty: float = None,
response_format: Optional[dict] = None,
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "tool_choice", "reasoning_effort", "logit_bias", "voice", "modalities", "audio"],
**kwargs
) -> AsyncResult:
# Load model list
cls.get_models()
if not model:
has_audio = "audio" in kwargs
if not has_audio and media is not None:
for media_data, filename in media:
if is_data_an_audio(media_data, filename):
has_audio = True
break
model = next(iter(cls.audio_models)) if has_audio else model
try:
model = cls.get_model(model)
except ModelNotFoundError:
if model not in cls.image_models:
raise
if model in cls.image_models:
async for chunk in cls._generate_image(
model=model,
prompt=format_image_prompt(messages, prompt),
proxy=proxy,
aspect_ratio=aspect_ratio,
width=width,
height=height,
seed=seed,
cache=cache,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe,
n=n
):
yield chunk
else:
async for result in cls._generate_text(
model=model,
messages=messages,
media=media,
proxy=proxy,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
seed=seed,
cache=cache,
stream=stream,
extra_parameters=extra_parameters,
**kwargs
):
yield result
@classmethod
async def _generate_image(
cls,
model: str,
prompt: str,
proxy: str,
aspect_ratio: str,
width: int,
height: int,
seed: Optional[int],
cache: bool,
nologo: bool,
private: bool,
enhance: bool,
safe: bool,
n: int
) -> AsyncResult:
params = use_aspect_ratio({
"width": width,
"height": height,
"model": model,
"nologo": str(nologo).lower(),
"private": str(private).lower(),
"enhance": str(enhance).lower(),
"safe": str(safe).lower()
}, aspect_ratio)
query = "&".join(f"{k}={quote_plus(str(v))}" for k, v in params.items() if v is not None)
prompt = quote_plus(prompt)[:2048-256-len(query)]
url = f"{cls.image_api_endpoint}prompt/{prompt}?{query}"
def get_image_url(i: int, seed: Optional[int] = None):
if i == 1:
if not cache and seed is None:
seed = random.randint(0, 2**32)
else:
seed = random.randint(0, 2**32)
return f"{url}&seed={seed}" if seed else url
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
async def get_image(i: int, seed: Optional[int] = None):
async with session.get(get_image_url(i, seed), allow_redirects=False) as response:
try:
await raise_for_status(response)
except Exception as e:
debug.error(f"Error fetching image: {e}")
return str(response.url)
return str(response.url)
yield ImageResponse(await asyncio.gather(*[
get_image(i, seed) for i in range(int(n))
]), prompt)
@classmethod
async def _generate_text(
cls,
model: str,
messages: Messages,
media: MediaListType,
proxy: str,
temperature: float,
presence_penalty: float,
top_p: float,
frequency_penalty: float,
response_format: Optional[dict],
seed: Optional[int],
cache: bool,
stream: bool,
extra_parameters: list[str],
**kwargs
) -> AsyncResult:
if not cache and seed is None:
seed = random.randint(0, 2**32)
json_mode = False
if response_format and response_format.get("type") == "json_object":
json_mode = True
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
if model in cls.audio_models:
url = cls.text_api_endpoint
stream = False
else:
url = cls.openai_endpoint
extra_parameters = {param: kwargs[param] for param in extra_parameters if param in kwargs}
data = filter_none(**{
"messages": list(render_messages(messages, media)),
"model": model,
"temperature": temperature,
"presence_penalty": presence_penalty,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"jsonMode": json_mode,
"stream": stream,
"seed": seed,
"cache": cache,
**extra_parameters
})
async with session.post(url, json=data) as response:
await raise_for_status(response)
async for chunk in save_response_media(response, format_image_prompt(messages), [model]):
yield chunk
return
if response.headers["content-type"].startswith("text/plain"):
yield await response.text()
return
elif response.headers["content-type"].startswith("text/event-stream"):
async for line in response.content:
if line.startswith(b"data: "):
if line[6:].startswith(b"[DONE]"):
break
result = json.loads(line[6:])
if "error" in result:
raise ResponseError(result["error"].get("message", result["error"]))
if "usage" in result:
yield Usage(**result["usage"])
choices = result.get("choices", [{}])
choice = choices.pop() if choices else {}
content = choice.get("delta", {}).get("content")
if content:
yield content
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)
return
result = await response.json()
if "choices" in result:
choice = result["choices"][0]
message = choice.get("message", {})
content = message.get("content", "")
if content:
yield content
if "tool_calls" in message:
yield ToolCalls(message["tool_calls"])
else:
raise ResponseError(result)
if "usage" in result:
yield Usage(**result["usage"])
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)