mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
461 lines
15 KiB
Python
461 lines
15 KiB
Python
"""MCP Tools for gpt4free
|
|
|
|
This module provides MCP tool implementations that wrap gpt4free capabilities:
|
|
- WebSearchTool: Web search using ddg search
|
|
- WebScrapeTool: Web page scraping and content extraction
|
|
- ImageGenerationTool: Image generation using various AI providers
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import Any, Dict
|
|
from abc import ABC, abstractmethod
|
|
|
|
from aiohttp import ClientSession
|
|
|
|
|
|
class MCPTool(ABC):
|
|
"""Base class for MCP tools"""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def description(self) -> str:
|
|
"""Tool description"""
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
"""JSON schema for tool input parameters"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute the tool with given arguments
|
|
|
|
Args:
|
|
arguments: Tool input arguments matching the input_schema
|
|
|
|
Returns:
|
|
Dict containing either results or an error key with error message
|
|
"""
|
|
pass
|
|
|
|
|
|
class WebSearchTool(MCPTool):
|
|
"""Web search tool using gpt4free's search capabilities"""
|
|
|
|
@property
|
|
def description(self) -> str:
|
|
return "Search the web for information using DuckDuckGo. Returns search results with titles, URLs, and snippets."
|
|
|
|
@property
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {
|
|
"type": "string",
|
|
"description": "The search query to execute"
|
|
},
|
|
"max_results": {
|
|
"type": "integer",
|
|
"description": "Maximum number of results to return (default: 5)",
|
|
"default": 5
|
|
},
|
|
"region": {
|
|
"type": "string",
|
|
"description": "Search region (default: en-us)"
|
|
}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute web search
|
|
|
|
Returns:
|
|
Dict[str, Any]: Search results or error message
|
|
"""
|
|
from ..Provider.search.CachedSearch import CachedSearch
|
|
|
|
query = arguments.get("query", "")
|
|
max_results = arguments.get("max_results", 5)
|
|
region = arguments.get("region", "en-us")
|
|
|
|
if not query:
|
|
return {
|
|
"error": "Query parameter is required"
|
|
}
|
|
|
|
try:
|
|
# Perform search - query parameter is used for search execution
|
|
# and prompt parameter holds the content to be searched
|
|
search_results = await anext(CachedSearch.create_async_generator(
|
|
"",
|
|
[],
|
|
prompt=query,
|
|
max_results=max_results,
|
|
region=region
|
|
))
|
|
|
|
return {
|
|
"query": query,
|
|
**search_results.get_dict()
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"error": f"Search failed: {str(e)}"
|
|
}
|
|
|
|
|
|
class WebScrapeTool(MCPTool):
|
|
"""Web scraping tool using gpt4free's scraping capabilities"""
|
|
|
|
@property
|
|
def description(self) -> str:
|
|
return "Scrape and extract text content from a web page URL. Returns cleaned text content with optional word limit."
|
|
|
|
@property
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"url": {
|
|
"type": "string",
|
|
"description": "The URL of the web page to scrape"
|
|
},
|
|
"max_words": {
|
|
"type": "integer",
|
|
"description": "Maximum number of words to extract (default: 1000)",
|
|
"default": 1000
|
|
}
|
|
},
|
|
"required": ["url"]
|
|
}
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute web scraping
|
|
|
|
Returns:
|
|
Dict[str, Any]: Scraped content or error message
|
|
"""
|
|
from ..tools.fetch_and_scrape import fetch_and_scrape
|
|
from aiohttp import ClientSession
|
|
|
|
url = arguments.get("url", "")
|
|
max_words = arguments.get("max_words", 1000)
|
|
|
|
if not url:
|
|
return {
|
|
"error": "URL parameter is required"
|
|
}
|
|
|
|
try:
|
|
# Scrape the URL
|
|
async with ClientSession() as session:
|
|
content = await fetch_and_scrape(
|
|
session=session,
|
|
url=url,
|
|
max_words=max_words,
|
|
add_metadata=True
|
|
)
|
|
|
|
if not content:
|
|
return {
|
|
"error": "Failed to scrape content from URL"
|
|
}
|
|
|
|
return {
|
|
"url": url,
|
|
"content": content,
|
|
"word_count": len(content.split())
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"error": f"Scraping failed: {str(e)}"
|
|
}
|
|
|
|
|
|
class ImageGenerationTool(MCPTool):
|
|
"""Image generation tool using gpt4free's image generation capabilities"""
|
|
|
|
@property
|
|
def description(self) -> str:
|
|
return "Generate images from text prompts using AI image generation providers. Returns a URL to the generated image."
|
|
|
|
@property
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"prompt": {
|
|
"type": "string",
|
|
"description": "The text prompt describing the image to generate"
|
|
},
|
|
"model": {
|
|
"type": "string",
|
|
"description": "The image generation model to use (default: flux)",
|
|
"default": "flux"
|
|
},
|
|
"width": {
|
|
"type": "integer",
|
|
"description": "Image width in pixels (default: 1024)",
|
|
"default": 1024
|
|
},
|
|
"height": {
|
|
"type": "integer",
|
|
"description": "Image height in pixels (default: 1024)",
|
|
"default": 1024
|
|
}
|
|
},
|
|
"required": ["prompt"]
|
|
}
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute image generation
|
|
|
|
Returns:
|
|
Dict[str, Any]: Generated image data or error message
|
|
"""
|
|
from ..client import AsyncClient
|
|
|
|
prompt = arguments.get("prompt", "")
|
|
model = arguments.get("model", "flux")
|
|
width = arguments.get("width", 1024)
|
|
height = arguments.get("height", 1024)
|
|
|
|
if not prompt:
|
|
return {
|
|
"error": "Prompt parameter is required"
|
|
}
|
|
|
|
try:
|
|
# Generate image using gpt4free client
|
|
client = AsyncClient()
|
|
|
|
response = await client.images.generate(
|
|
model=model,
|
|
prompt=prompt,
|
|
width=width,
|
|
height=height,
|
|
response_format="url"
|
|
)
|
|
|
|
# Get the image data with proper validation
|
|
if not response:
|
|
return {
|
|
"error": "Image generation failed: No response from provider"
|
|
}
|
|
|
|
if not hasattr(response, 'data') or not response.data:
|
|
return {
|
|
"error": "Image generation failed: No image data in response"
|
|
}
|
|
|
|
if len(response.data) == 0:
|
|
return {
|
|
"error": "Image generation failed: Empty image data array"
|
|
}
|
|
|
|
image_data = response.data[0]
|
|
|
|
# Check if image_data has url attribute
|
|
if not hasattr(image_data, 'url'):
|
|
return {
|
|
"error": "Image generation failed: No URL in image data"
|
|
}
|
|
|
|
image_url = image_data.url
|
|
|
|
# Return result based on URL type
|
|
if image_url.startswith('data:'):
|
|
return {
|
|
"prompt": prompt,
|
|
"model": model,
|
|
"width": width,
|
|
"height": height,
|
|
"image": image_url
|
|
}
|
|
else:
|
|
if arguments.get("origin") and image_url.startswith("/media/"):
|
|
image_url = f"{arguments.get('origin')}{image_url}"
|
|
return {
|
|
"prompt": prompt,
|
|
"model": model,
|
|
"width": width,
|
|
"height": height,
|
|
"image_url": image_url
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"error": f"Image generation failed: {str(e)}"
|
|
}
|
|
|
|
class MarkItDownTool(MCPTool):
|
|
"""MarkItDown tool for converting URLs to markdown format"""
|
|
|
|
@property
|
|
def description(self) -> str:
|
|
return "Convert a URL to markdown format using MarkItDown. Supports HTTP/HTTPS URLs and returns formatted markdown content."
|
|
|
|
@property
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"url": {
|
|
"type": "string",
|
|
"description": "The URL to convert to markdown format (must be HTTP/HTTPS)"
|
|
},
|
|
"max_content_length": {
|
|
"type": "integer",
|
|
"description": "Maximum content length for processing (default: 10000)",
|
|
"default": 10000
|
|
}
|
|
},
|
|
"required": ["url"]
|
|
}
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute MarkItDown conversion
|
|
|
|
Returns:
|
|
Dict[str, Any]: Markdown content or error message
|
|
"""
|
|
try:
|
|
from ..integration.markitdown import MarkItDown
|
|
except ImportError as e:
|
|
return {
|
|
"error": f"MarkItDown is not installed: {str(e)}"
|
|
}
|
|
|
|
url = arguments.get("url", "")
|
|
max_content_length = arguments.get("max_content_length", 10000)
|
|
|
|
if not url:
|
|
return {
|
|
"error": "URL parameter is required"
|
|
}
|
|
|
|
# Validate URL format
|
|
if not url.startswith(("http://", "https://")):
|
|
return {
|
|
"error": "URL must start with http:// or https://"
|
|
}
|
|
|
|
try:
|
|
# Initialize MarkItDown
|
|
md = MarkItDown()
|
|
|
|
# Convert URL to markdown
|
|
result = md.convert_url(url)
|
|
|
|
if not result:
|
|
return {
|
|
"error": "Failed to convert URL to markdown"
|
|
}
|
|
|
|
# Truncate if content exceeds max length
|
|
if len(result) > max_content_length:
|
|
result = result[:max_content_length] + "\n\n[Content truncated...]"
|
|
|
|
return {
|
|
"url": url,
|
|
"markdown_content": result,
|
|
"content_length": len(result),
|
|
"truncated": len(result) > max_content_length
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"error": f"MarkItDown conversion failed: {str(e)}"
|
|
}
|
|
|
|
class TextToAudioTool(MCPTool):
|
|
"""TextToAudio tool for generating audio from text prompts using Pollinations AI"""
|
|
|
|
@property
|
|
def description(self) -> str:
|
|
return "Generate an audio URL from a text prompt using Pollinations AI text-to-speech service. Returns a direct URL to the generated audio file."
|
|
|
|
@property
|
|
def input_schema(self) -> Dict[str, Any]:
|
|
return {
|
|
"type": "object",
|
|
"properties": {
|
|
"prompt": {
|
|
"type": "string",
|
|
"description": "The text prompt to the audio model (example: 'Read this: Hello, world!')"
|
|
},
|
|
"voice": {
|
|
"type": "string",
|
|
"description": "Voice option for text-to-speech (default: 'alloy')",
|
|
"default": "alloy"
|
|
},
|
|
"url_encode": {
|
|
"type": "boolean",
|
|
"description": "Whether to URL-encode the prompt text (default: True)",
|
|
"default": True
|
|
}
|
|
},
|
|
"required": ["prompt"]
|
|
}
|
|
|
|
async def execute(self, arguments: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Execute text-to-speech conversion
|
|
|
|
Returns:
|
|
Dict[str, Any]: Audio URL or error message
|
|
"""
|
|
try:
|
|
import urllib.parse
|
|
except ImportError as e:
|
|
return {
|
|
"error": f"urllib is not available: {str(e)}"
|
|
}
|
|
|
|
prompt = arguments.get("prompt", "")
|
|
voice = arguments.get("voice", "alloy")
|
|
url_encode = arguments.get("url_encode", True)
|
|
|
|
if not prompt:
|
|
return {
|
|
"error": "Prompt parameter is required"
|
|
}
|
|
|
|
# Validate prompt length (reasonable limit for text-to-speech)
|
|
if len(prompt) > 5000:
|
|
return {
|
|
"error": "Prompt is too long (max 5000 characters)"
|
|
}
|
|
|
|
try:
|
|
# Prepare the prompt for URL
|
|
if url_encode:
|
|
encoded_prompt = urllib.parse.quote(prompt)
|
|
else:
|
|
encoded_prompt = prompt.replace(" ", "%20") # Basic space encoding
|
|
|
|
# Construct the Pollinations AI text-to-speech URL
|
|
audio_url = f"/backend-api/v2/create?provider=Gemini&model=gemini-audio&cache=true&prompt={encoded_prompt}"
|
|
|
|
if arguments.get("origin"):
|
|
audio_url = f"{arguments.get('origin')}{audio_url}"
|
|
async with ClientSession() as session:
|
|
async with session.get(audio_url, max_redirects=0) as resp:
|
|
audio_url = str(resp.url)
|
|
|
|
return {
|
|
"prompt": prompt,
|
|
"voice": voice,
|
|
"audio_url": audio_url
|
|
}
|
|
|
|
except Exception as e:
|
|
return {
|
|
"error": f"Text-to-speech URL generation failed: {str(e)}"
|
|
}
|