18 KiB
G4F REST API Documentation
Overview
G4F provides a FastAPI-based REST API that is fully compatible with OpenAI's API specifications. This allows you to use existing OpenAI-compatible tools and libraries with G4F's free AI providers.
Getting Started
Starting the API Server
Command Line
# Basic startup
g4f api
# Custom port and debug mode
g4f api --port 8080 --debug
# With GUI interface
g4f api --gui --port 8080
# With authentication
g4f api --g4f-api-key "your-secret-key"
# With custom provider and model defaults
g4f api --provider Copilot --model gpt-4o
# Full configuration example
g4f api \
--port 8080 \
--debug \
--gui \
--g4f-api-key "secret-key" \
--provider Copilot \
--model gpt-4o-mini \
--proxy "http://proxy.example.com:8080" \
--timeout 300
Programmatic Startup
from g4f.api import run_api, AppConfig
# Configure the application
AppConfig.set_config(
g4f_api_key="your-secret-key",
provider="Copilot",
model="gpt-4o-mini",
gui=True,
timeout=300
)
# Start the server
run_api(host="0.0.0.0", port=8080, debug=True)
Base URL
Once started, the API is available at:
- Default:
http://localhost:1337 - Custom port:
http://localhost:<PORT>
Authentication
G4F API supports optional authentication via API keys.
Setting Up Authentication
# Start server with authentication
g4f api --g4f-api-key "your-secret-key"
Using Authentication
import openai
client = openai.OpenAI(
api_key="your-secret-key",
base_url="http://localhost:1337/v1"
)
HTTP Headers
Authorization: Bearer your-secret-key
# OR
g4f-api-key: your-secret-key
API Endpoints
Chat Completions
POST /v1/chat/completions
Creates a chat completion response.
Request Body:
{
"model": "gpt-4o-mini",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
"stream": false,
"max_tokens": 1000,
"temperature": 0.7,
"top_p": 0.9,
"frequency_penalty": 0,
"presence_penalty": 0,
"stop": ["Human:", "AI:"],
"provider": "Copilot",
"proxy": "http://proxy.example.com:8080",
"response_format": {"type": "json_object"},
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get weather information",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
}
}
]
}
Parameters:
model(string, required): Model to use for completionmessages(array, required): List of message objectsstream(boolean): Enable streaming responsesmax_tokens(integer): Maximum tokens to generatetemperature(number): Sampling temperature (0-2)top_p(number): Nucleus sampling parameterfrequency_penalty(number): Frequency penalty (-2 to 2)presence_penalty(number): Presence penalty (-2 to 2)stop(string|array): Stop sequencesprovider(string): Specific provider to useproxy(string): Proxy server URLresponse_format(object): Response format specificationtools(array): Available tools/functions
Response (Non-streaming):
{
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-4o-mini",
"provider": "Copilot",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I help you today?"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 8,
"total_tokens": 18
}
}
Response (Streaming):
Content-Type: text/event-stream
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{},"finish_reason":"stop"}],"usage":{"prompt_tokens":10,"completion_tokens":8,"total_tokens":18}}
data: [DONE]
Example Usage
cURL:
curl -X POST "http://localhost:1337/v1/chat/completions" \
-H "Content-Type: application/json" \
-H "g4f-api-key: your-secret-key" \
-d '{
"model": "gpt-4o-mini",
"messages": [{"role": "user", "content": "Hello!"}],
"stream": false
}'
Python:
import openai
client = openai.OpenAI(
api_key="your-secret-key",
base_url="http://localhost:1337/v1"
)
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message.content)
JavaScript:
const OpenAI = require('openai');
const client = new OpenAI({
apiKey: 'your-secret-key',
baseURL: 'http://localhost:1337/v1'
});
async function main() {
const response = await client.chat.completions.create({
model: 'gpt-4o-mini',
messages: [{ role: 'user', content: 'Hello!' }]
});
console.log(response.choices[0].message.content);
}
main();
Image Generation
POST /v1/images/generations
Generates images from text prompts.
Request Body:
{
"prompt": "A beautiful sunset over mountains",
"model": "dall-e-3",
"n": 1,
"size": "1024x1024",
"response_format": "url",
"provider": "PollinationsAI"
}
Parameters:
prompt(string, required): Text description of desired imagemodel(string): Image model to usen(integer): Number of images to generate (1-4)size(string): Image dimensionsresponse_format(string): "url" or "b64_json"provider(string): Specific provider to use
Response:
{
"created": 1677652288,
"data": [
{
"url": "https://example.com/generated-image.jpg"
}
]
}
Example Usage
cURL:
curl -X POST "http://localhost:1337/v1/images/generations" \
-H "Content-Type: application/json" \
-H "g4f-api-key: your-secret-key" \
-d '{
"prompt": "A beautiful sunset",
"model": "dall-e-3",
"response_format": "url"
}'
Python:
response = client.images.generate(
prompt="A beautiful sunset over mountains",
model="dall-e-3",
size="1024x1024",
response_format="url"
)
print(response.data[0].url)
Models
GET /v1/models
Lists available models.
Response:
{
"object": "list",
"data": [
{
"id": "gpt-4o",
"object": "model",
"created": 0,
"owned_by": "OpenAI",
"image": false,
"provider": false
},
{
"id": "gpt-4o-mini",
"object": "model",
"created": 0,
"owned_by": "OpenAI",
"image": false,
"provider": false
},
{
"id": "Copilot",
"object": "model",
"created": 0,
"owned_by": "Microsoft",
"image": false,
"provider": true
}
]
}
GET /v1/models/{model_name}
Get information about a specific model.
Response:
{
"id": "gpt-4o",
"object": "model",
"created": 0,
"owned_by": "OpenAI"
}
Provider-Specific Endpoints
POST /api/{provider}/chat/completions
Use a specific provider for chat completions.
Example:
curl -X POST "http://localhost:1337/api/Copilot/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "Hello!"}]
}'
GET /api/{provider}/models
Get models available for a specific provider.
Response:
{
"object": "list",
"data": [
{
"id": "gpt-4",
"object": "model",
"created": 0,
"owned_by": "Microsoft",
"image": false,
"vision": true
}
]
}
Providers
GET /v1/providers
Lists all available providers.
Response:
{
"object": "list",
"data": [
{
"provider": "Copilot",
"models": ["gpt-4", "gpt-4-vision"],
"image_models": [],
"vision_models": ["gpt-4-vision"],
"url": "https://copilot.microsoft.com",
"working": true,
"auth": false
}
]
}
GET /v1/providers/{provider}
Get detailed information about a specific provider.
Response:
{
"provider": "Copilot",
"models": ["gpt-4", "gpt-4-vision"],
"image_models": [],
"vision_models": ["gpt-4-vision"],
"url": "https://copilot.microsoft.com",
"working": true,
"auth": false,
"stream": true,
"description": "Microsoft Copilot AI assistant"
}
Audio
POST /v1/audio/transcriptions
Transcribe audio to text.
Request:
curl -X POST "http://localhost:1337/v1/audio/transcriptions" \
-H "g4f-api-key: your-secret-key" \
-F "file=@audio.mp3" \
-F "model=whisper-1"
POST /v1/audio/speech
Generate speech from text.
Request Body:
{
"model": "tts-1",
"input": "Hello, this is a test.",
"voice": "alloy"
}
File Upload and Media
POST /v1/upload_cookies
Upload cookie files for authentication.
Request:
curl -X POST "http://localhost:1337/v1/upload_cookies" \
-H "g4f-api-key: your-secret-key" \
-F "files=@cookies.json"
GET /media/{filename}
Access generated media files.
Example:
GET /media/generated-image-abc123.jpg
Advanced Features
Conversation Management
Conversation ID
Use conversation IDs to maintain context across requests:
{
"model": "gpt-4o",
"messages": [{"role": "user", "content": "Hello!"}],
"conversation_id": "conv-abc123"
}
Provider-Specific Conversations
curl -X POST "http://localhost:1337/api/Copilot/conv-123/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4",
"messages": [{"role": "user", "content": "Continue our conversation"}]
}'
Vision Models
Send images with text for vision-capable models:
{
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
]
}
Tool/Function Calling
Define and use tools in your requests:
{
"model": "gpt-4o",
"messages": [{"role": "user", "content": "What's the weather in Paris?"}],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"}
},
"required": ["location"]
}
}
}
]
}
Custom Response Formats
JSON Mode
{
"model": "gpt-4o",
"messages": [{"role": "user", "content": "Generate a JSON object with user info"}],
"response_format": {"type": "json_object"}
}
Error Handling
Error Response Format
{
"error": {
"message": "Model not found",
"type": "model_not_found",
"code": "model_not_found"
}
}
Common HTTP Status Codes
- 200: Success
- 400: Bad Request (invalid parameters)
- 401: Unauthorized (missing or invalid API key)
- 403: Forbidden (insufficient permissions)
- 404: Not Found (model or provider not found)
- 422: Unprocessable Entity (validation error)
- 500: Internal Server Error
Error Types
Authentication Errors
{
"error": {
"message": "Invalid API key",
"type": "authentication_error",
"code": "invalid_api_key"
}
}
Model Errors
{
"error": {
"message": "Model 'invalid-model' not found",
"type": "model_not_found",
"code": "model_not_found"
}
}
Provider Errors
{
"error": {
"message": "Provider not working",
"type": "provider_error",
"code": "provider_not_working"
}
}
Configuration
Environment Variables
# Set API configuration via environment
export G4F_PROXY="http://proxy.example.com:8080"
export G4F_API_KEY="your-secret-key"
export G4F_DEBUG="true"
Runtime Configuration
from g4f.api import AppConfig
# Configure at runtime
AppConfig.set_config(
g4f_api_key="secret-key",
provider="Copilot",
model="gpt-4o",
proxy="http://proxy.example.com:8080",
timeout=300,
ignored_providers=["SomeProvider"],
gui=True,
demo=False
)
Integration Examples
OpenAI Python Client
import openai
client = openai.OpenAI(
api_key="g4f-api-key",
base_url="http://localhost:1337/v1"
)
# Standard usage
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Hello!"}]
)
# Streaming
stream = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Tell me a story"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="")
LangChain Integration
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
llm = ChatOpenAI(
openai_api_base="http://localhost:1337/v1",
openai_api_key="g4f-api-key",
model_name="gpt-4o-mini"
)
response = llm([HumanMessage(content="Hello!")])
print(response.content)
Node.js Integration
const { Configuration, OpenAIApi } = require("openai");
const configuration = new Configuration({
apiKey: "g4f-api-key",
basePath: "http://localhost:1337/v1"
});
const openai = new OpenAIApi(configuration);
async function main() {
const response = await openai.createChatCompletion({
model: "gpt-4o-mini",
messages: [{ role: "user", content: "Hello!" }]
});
console.log(response.data.choices[0].message.content);
}
Performance and Scaling
Rate Limiting
G4F API doesn't implement built-in rate limiting, but you can add it using:
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from fastapi import Request
limiter = Limiter(key_func=get_remote_address)
@app.middleware("http")
async def rate_limit_middleware(request: Request, call_next):
# Custom rate limiting logic
pass
Caching
Implement response caching for improved performance:
from functools import lru_cache
import hashlib
@lru_cache(maxsize=1000)
def get_cached_response(request_hash):
# Cache implementation
pass
Load Balancing
Use multiple G4F instances behind a load balancer:
# docker-compose.yml
version: '3.8'
services:
g4f-1:
image: hlohaus789/g4f
ports:
- "1337:1337"
g4f-2:
image: hlohaus789/g4f
ports:
- "1338:1337"
nginx:
image: nginx
ports:
- "80:80"
volumes:
- ./nginx.conf:/etc/nginx/nginx.conf
Security Considerations
API Key Management
import secrets
# Generate secure API key
api_key = secrets.token_urlsafe(32)
# Validate API key format
def is_valid_api_key(key):
return len(key) >= 32 and key.isalnum()
Input Validation
The API automatically validates:
- Message format and structure
- Model name validity
- Parameter ranges and types
- File upload security
CORS Configuration
from fastapi.middleware.cors import CORSMiddleware
app.add_middleware(
CORSMiddleware,
allow_origins=["https://yourdomain.com"],
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
Monitoring and Logging
Enable Debug Logging
g4f api --debug
Custom Logging
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("g4f.api")
Health Checks
# Check API health
curl http://localhost:1337/v1/models
Deployment
Docker Deployment
FROM hlohaus789/g4f:latest
# Set environment variables
ENV G4F_API_KEY=your-secret-key
ENV G4F_DEBUG=false
# Expose port
EXPOSE 1337
# Start API
CMD ["python", "-m", "g4f.cli", "api", "--host", "0.0.0.0", "--port", "1337"]
Production Deployment
# Install production dependencies
pip install gunicorn uvloop
# Run with Gunicorn
gunicorn g4f.api:create_app \
--workers 4 \
--worker-class uvicorn.workers.UvicornWorker \
--bind 0.0.0.0:1337 \
--access-logfile - \
--error-logfile -
This comprehensive REST API documentation covers all aspects of using G4F's API endpoints. The API is designed to be fully compatible with OpenAI's API, making it easy to integrate with existing tools and workflows.