# G4F REST API Documentation ## Overview G4F provides a FastAPI-based REST API that is fully compatible with OpenAI's API specifications. This allows you to use existing OpenAI-compatible tools and libraries with G4F's free AI providers. ## Getting Started ### Starting the API Server #### Command Line ```bash # Basic startup g4f api # Custom port and debug mode g4f api --port 8080 --debug # With GUI interface g4f api --gui --port 8080 # With authentication g4f api --g4f-api-key "your-secret-key" # With custom provider and model defaults g4f api --provider Copilot --model gpt-4o # Full configuration example g4f api \ --port 8080 \ --debug \ --gui \ --g4f-api-key "secret-key" \ --provider Copilot \ --model gpt-4o-mini \ --proxy "http://proxy.example.com:8080" \ --timeout 300 ``` #### Programmatic Startup ```python from g4f.api import run_api, AppConfig # Configure the application AppConfig.set_config( g4f_api_key="your-secret-key", provider="Copilot", model="gpt-4o-mini", gui=True, timeout=300 ) # Start the server run_api(host="0.0.0.0", port=8080, debug=True) ``` ### Base URL Once started, the API is available at: - **Default**: `http://localhost:1337` - **Custom port**: `http://localhost:` ## Authentication G4F API supports optional authentication via API keys. ### Setting Up Authentication ```bash # Start server with authentication g4f api --g4f-api-key "your-secret-key" ``` ### Using Authentication ```python import openai client = openai.OpenAI( api_key="your-secret-key", base_url="http://localhost:1337/v1" ) ``` ### HTTP Headers ```http Authorization: Bearer your-secret-key # OR g4f-api-key: your-secret-key ``` ## API Endpoints ### Chat Completions #### `POST /v1/chat/completions` Creates a chat completion response. **Request Body:** ```json { "model": "gpt-4o-mini", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Hello!"} ], "stream": false, "max_tokens": 1000, "temperature": 0.7, "top_p": 0.9, "frequency_penalty": 0, "presence_penalty": 0, "stop": ["Human:", "AI:"], "provider": "Copilot", "proxy": "http://proxy.example.com:8080", "response_format": {"type": "json_object"}, "tools": [ { "type": "function", "function": { "name": "get_weather", "description": "Get weather information", "parameters": { "type": "object", "properties": { "location": {"type": "string"} }, "required": ["location"] } } } ] } ``` **Parameters:** - `model` (string, required): Model to use for completion - `messages` (array, required): List of message objects - `stream` (boolean): Enable streaming responses - `max_tokens` (integer): Maximum tokens to generate - `temperature` (number): Sampling temperature (0-2) - `top_p` (number): Nucleus sampling parameter - `frequency_penalty` (number): Frequency penalty (-2 to 2) - `presence_penalty` (number): Presence penalty (-2 to 2) - `stop` (string|array): Stop sequences - `provider` (string): Specific provider to use - `proxy` (string): Proxy server URL - `response_format` (object): Response format specification - `tools` (array): Available tools/functions **Response (Non-streaming):** ```json { "id": "chatcmpl-abc123", "object": "chat.completion", "created": 1677652288, "model": "gpt-4o-mini", "provider": "Copilot", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "Hello! How can I help you today?" }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 10, "completion_tokens": 8, "total_tokens": 18 } } ``` **Response (Streaming):** ```http Content-Type: text/event-stream data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]} data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]} data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{},"finish_reason":"stop"}],"usage":{"prompt_tokens":10,"completion_tokens":8,"total_tokens":18}} data: [DONE] ``` #### Example Usage **cURL:** ```bash curl -X POST "http://localhost:1337/v1/chat/completions" \ -H "Content-Type: application/json" \ -H "g4f-api-key: your-secret-key" \ -d '{ "model": "gpt-4o-mini", "messages": [{"role": "user", "content": "Hello!"}], "stream": false }' ``` **Python:** ```python import openai client = openai.OpenAI( api_key="your-secret-key", base_url="http://localhost:1337/v1" ) response = client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": "Hello!"}] ) print(response.choices[0].message.content) ``` **JavaScript:** ```javascript const OpenAI = require('openai'); const client = new OpenAI({ apiKey: 'your-secret-key', baseURL: 'http://localhost:1337/v1' }); async function main() { const response = await client.chat.completions.create({ model: 'gpt-4o-mini', messages: [{ role: 'user', content: 'Hello!' }] }); console.log(response.choices[0].message.content); } main(); ``` ### Image Generation #### `POST /v1/images/generations` Generates images from text prompts. **Request Body:** ```json { "prompt": "A beautiful sunset over mountains", "model": "dall-e-3", "n": 1, "size": "1024x1024", "response_format": "url", "provider": "PollinationsAI" } ``` **Parameters:** - `prompt` (string, required): Text description of desired image - `model` (string): Image model to use - `n` (integer): Number of images to generate (1-4) - `size` (string): Image dimensions - `response_format` (string): "url" or "b64_json" - `provider` (string): Specific provider to use **Response:** ```json { "created": 1677652288, "data": [ { "url": "https://example.com/generated-image.jpg" } ] } ``` #### Example Usage **cURL:** ```bash curl -X POST "http://localhost:1337/v1/images/generations" \ -H "Content-Type: application/json" \ -H "g4f-api-key: your-secret-key" \ -d '{ "prompt": "A beautiful sunset", "model": "dall-e-3", "response_format": "url" }' ``` **Python:** ```python response = client.images.generate( prompt="A beautiful sunset over mountains", model="dall-e-3", size="1024x1024", response_format="url" ) print(response.data[0].url) ``` ### Models #### `GET /v1/models` Lists available models. **Response:** ```json { "object": "list", "data": [ { "id": "gpt-4o", "object": "model", "created": 0, "owned_by": "OpenAI", "image": false, "provider": false }, { "id": "gpt-4o-mini", "object": "model", "created": 0, "owned_by": "OpenAI", "image": false, "provider": false }, { "id": "Copilot", "object": "model", "created": 0, "owned_by": "Microsoft", "image": false, "provider": true } ] } ``` #### `GET /v1/models/{model_name}` Get information about a specific model. **Response:** ```json { "id": "gpt-4o", "object": "model", "created": 0, "owned_by": "OpenAI" } ``` ### Provider-Specific Endpoints #### `POST /api/{provider}/chat/completions` Use a specific provider for chat completions. **Example:** ```bash curl -X POST "http://localhost:1337/api/Copilot/chat/completions" \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4", "messages": [{"role": "user", "content": "Hello!"}] }' ``` #### `GET /api/{provider}/models` Get models available for a specific provider. **Response:** ```json { "object": "list", "data": [ { "id": "gpt-4", "object": "model", "created": 0, "owned_by": "Microsoft", "image": false, "vision": true } ] } ``` ### Providers #### `GET /v1/providers` Lists all available providers. **Response:** ```json { "object": "list", "data": [ { "provider": "Copilot", "models": ["gpt-4", "gpt-4-vision"], "image_models": [], "vision_models": ["gpt-4-vision"], "url": "https://copilot.microsoft.com", "working": true, "auth": false } ] } ``` #### `GET /v1/providers/{provider}` Get detailed information about a specific provider. **Response:** ```json { "provider": "Copilot", "models": ["gpt-4", "gpt-4-vision"], "image_models": [], "vision_models": ["gpt-4-vision"], "url": "https://copilot.microsoft.com", "working": true, "auth": false, "stream": true, "description": "Microsoft Copilot AI assistant" } ``` ### Audio #### `POST /v1/audio/transcriptions` Transcribe audio to text. **Request:** ```bash curl -X POST "http://localhost:1337/v1/audio/transcriptions" \ -H "g4f-api-key: your-secret-key" \ -F "file=@audio.mp3" \ -F "model=whisper-1" ``` #### `POST /v1/audio/speech` Generate speech from text. **Request Body:** ```json { "model": "tts-1", "input": "Hello, this is a test.", "voice": "alloy" } ``` ### File Upload and Media #### `POST /v1/upload_cookies` Upload cookie files for authentication. **Request:** ```bash curl -X POST "http://localhost:1337/v1/upload_cookies" \ -H "g4f-api-key: your-secret-key" \ -F "files=@cookies.json" ``` #### `GET /media/{filename}` Access generated media files. **Example:** ``` GET /media/generated-image-abc123.jpg ``` ## Advanced Features ### Conversation Management #### Conversation ID Use conversation IDs to maintain context across requests: ```json { "model": "gpt-4o", "messages": [{"role": "user", "content": "Hello!"}], "conversation_id": "conv-abc123" } ``` #### Provider-Specific Conversations ```bash curl -X POST "http://localhost:1337/api/Copilot/conv-123/chat/completions" \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4", "messages": [{"role": "user", "content": "Continue our conversation"}] }' ``` ### Vision Models Send images with text for vision-capable models: ```json { "model": "gpt-4o", "messages": [ { "role": "user", "content": [ {"type": "text", "text": "What's in this image?"}, { "type": "image_url", "image_url": { "url": "..." } } ] } ] } ``` ### Tool/Function Calling Define and use tools in your requests: ```json { "model": "gpt-4o", "messages": [{"role": "user", "content": "What's the weather in Paris?"}], "tools": [ { "type": "function", "function": { "name": "get_weather", "description": "Get current weather", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "City name"} }, "required": ["location"] } } } ] } ``` ### Custom Response Formats #### JSON Mode ```json { "model": "gpt-4o", "messages": [{"role": "user", "content": "Generate a JSON object with user info"}], "response_format": {"type": "json_object"} } ``` ## Error Handling ### Error Response Format ```json { "error": { "message": "Model not found", "type": "model_not_found", "code": "model_not_found" } } ``` ### Common HTTP Status Codes - **200**: Success - **400**: Bad Request (invalid parameters) - **401**: Unauthorized (missing or invalid API key) - **403**: Forbidden (insufficient permissions) - **404**: Not Found (model or provider not found) - **422**: Unprocessable Entity (validation error) - **500**: Internal Server Error ### Error Types #### Authentication Errors ```json { "error": { "message": "Invalid API key", "type": "authentication_error", "code": "invalid_api_key" } } ``` #### Model Errors ```json { "error": { "message": "Model 'invalid-model' not found", "type": "model_not_found", "code": "model_not_found" } } ``` #### Provider Errors ```json { "error": { "message": "Provider not working", "type": "provider_error", "code": "provider_not_working" } } ``` ## Configuration ### Environment Variables ```bash # Set API configuration via environment export G4F_PROXY="http://proxy.example.com:8080" export G4F_API_KEY="your-secret-key" export G4F_DEBUG="true" ``` ### Runtime Configuration ```python from g4f.api import AppConfig # Configure at runtime AppConfig.set_config( g4f_api_key="secret-key", provider="Copilot", model="gpt-4o", proxy="http://proxy.example.com:8080", timeout=300, ignored_providers=["SomeProvider"], gui=True, demo=False ) ``` ## Integration Examples ### OpenAI Python Client ```python import openai client = openai.OpenAI( api_key="g4f-api-key", base_url="http://localhost:1337/v1" ) # Standard usage response = client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": "Hello!"}] ) # Streaming stream = client.chat.completions.create( model="gpt-4o-mini", messages=[{"role": "user", "content": "Tell me a story"}], stream=True ) for chunk in stream: if chunk.choices[0].delta.content: print(chunk.choices[0].delta.content, end="") ``` ### LangChain Integration ```python from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage llm = ChatOpenAI( openai_api_base="http://localhost:1337/v1", openai_api_key="g4f-api-key", model_name="gpt-4o-mini" ) response = llm([HumanMessage(content="Hello!")]) print(response.content) ``` ### Node.js Integration ```javascript const { Configuration, OpenAIApi } = require("openai"); const configuration = new Configuration({ apiKey: "g4f-api-key", basePath: "http://localhost:1337/v1" }); const openai = new OpenAIApi(configuration); async function main() { const response = await openai.createChatCompletion({ model: "gpt-4o-mini", messages: [{ role: "user", content: "Hello!" }] }); console.log(response.data.choices[0].message.content); } ``` ## Performance and Scaling ### Rate Limiting G4F API doesn't implement built-in rate limiting, but you can add it using: ```python from slowapi import Limiter, _rate_limit_exceeded_handler from slowapi.util import get_remote_address from slowapi.errors import RateLimitExceeded from fastapi import Request limiter = Limiter(key_func=get_remote_address) @app.middleware("http") async def rate_limit_middleware(request: Request, call_next): # Custom rate limiting logic pass ``` ### Caching Implement response caching for improved performance: ```python from functools import lru_cache import hashlib @lru_cache(maxsize=1000) def get_cached_response(request_hash): # Cache implementation pass ``` ### Load Balancing Use multiple G4F instances behind a load balancer: ```yaml # docker-compose.yml version: '3.8' services: g4f-1: image: hlohaus789/g4f ports: - "1337:1337" g4f-2: image: hlohaus789/g4f ports: - "1338:1337" nginx: image: nginx ports: - "80:80" volumes: - ./nginx.conf:/etc/nginx/nginx.conf ``` ## Security Considerations ### API Key Management ```python import secrets # Generate secure API key api_key = secrets.token_urlsafe(32) # Validate API key format def is_valid_api_key(key): return len(key) >= 32 and key.isalnum() ``` ### Input Validation The API automatically validates: - Message format and structure - Model name validity - Parameter ranges and types - File upload security ### CORS Configuration ```python from fastapi.middleware.cors import CORSMiddleware app.add_middleware( CORSMiddleware, allow_origins=["https://yourdomain.com"], allow_credentials=True, allow_methods=["GET", "POST"], allow_headers=["*"], ) ``` ## Monitoring and Logging ### Enable Debug Logging ```bash g4f api --debug ``` ### Custom Logging ```python import logging # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger("g4f.api") ``` ### Health Checks ```bash # Check API health curl http://localhost:1337/v1/models ``` ## Deployment ### Docker Deployment ```dockerfile FROM hlohaus789/g4f:latest # Set environment variables ENV G4F_API_KEY=your-secret-key ENV G4F_DEBUG=false # Expose port EXPOSE 1337 # Start API CMD ["python", "-m", "g4f.cli", "api", "--host", "0.0.0.0", "--port", "1337"] ``` ### Production Deployment ```bash # Install production dependencies pip install gunicorn uvloop # Run with Gunicorn gunicorn g4f.api:create_app \ --workers 4 \ --worker-class uvicorn.workers.UvicornWorker \ --bind 0.0.0.0:1337 \ --access-logfile - \ --error-logfile - ``` This comprehensive REST API documentation covers all aspects of using G4F's API endpoints. The API is designed to be fully compatible with OpenAI's API, making it easy to integrate with existing tools and workflows.