mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-12-06 02:30:41 -08:00
Add comprehensive documentation for G4F library
Co-authored-by: fkahdias <fkahdias@gmail.com>
This commit is contained in:
parent
78c0d67d54
commit
b0ffc9e997
5 changed files with 3404 additions and 0 deletions
821
API_DOCUMENTATION.md
Normal file
821
API_DOCUMENTATION.md
Normal file
|
|
@ -0,0 +1,821 @@
|
||||||
|
# G4F (GPT4Free) API Documentation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
G4F (GPT4Free) is a comprehensive Python library that provides free access to various AI models through multiple providers. It supports text generation, image generation, and provides both synchronous and asynchronous interfaces.
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
|
||||||
|
1. [Installation](#installation)
|
||||||
|
2. [Quick Start](#quick-start)
|
||||||
|
3. [Client API](#client-api)
|
||||||
|
4. [Legacy API](#legacy-api)
|
||||||
|
5. [Models](#models)
|
||||||
|
6. [Providers](#providers)
|
||||||
|
7. [REST API](#rest-api)
|
||||||
|
8. [CLI Interface](#cli-interface)
|
||||||
|
9. [GUI Interface](#gui-interface)
|
||||||
|
10. [Error Handling](#error-handling)
|
||||||
|
11. [Configuration](#configuration)
|
||||||
|
12. [Examples](#examples)
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
### Basic Installation
|
||||||
|
```bash
|
||||||
|
pip install g4f
|
||||||
|
```
|
||||||
|
|
||||||
|
### Full Installation with All Features
|
||||||
|
```bash
|
||||||
|
pip install g4f[all]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Docker Installation
|
||||||
|
```bash
|
||||||
|
docker pull hlohaus789/g4f
|
||||||
|
docker run -p 8080:8080 hlohaus789/g4f
|
||||||
|
```
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
|
### Simple Text Generation
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello, world!"}]
|
||||||
|
)
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Image Generation
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
response = client.images.generate(
|
||||||
|
model="flux",
|
||||||
|
prompt="A beautiful sunset over mountains"
|
||||||
|
)
|
||||||
|
print(f"Generated image URL: {response.data[0].url}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Client API
|
||||||
|
|
||||||
|
The Client API provides a modern, OpenAI-compatible interface for interacting with AI models.
|
||||||
|
|
||||||
|
### Client Class
|
||||||
|
|
||||||
|
#### `Client(**kwargs)`
|
||||||
|
|
||||||
|
Main client class for interacting with AI models.
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `provider` (Optional[ProviderType]): Default provider to use
|
||||||
|
- `media_provider` (Optional[ProviderType]): Provider for image/media generation
|
||||||
|
- `proxy` (Optional[str]): Proxy server URL
|
||||||
|
- `api_key` (Optional[str]): API key for authenticated providers
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
from g4f.Provider import OpenaiChat
|
||||||
|
|
||||||
|
client = Client(
|
||||||
|
provider=OpenaiChat,
|
||||||
|
proxy="http://proxy.example.com:8080"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Chat Completions
|
||||||
|
|
||||||
|
#### `client.chat.completions.create(**kwargs)`
|
||||||
|
|
||||||
|
Creates a chat completion.
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `messages` (Messages): List of message dictionaries
|
||||||
|
- `model` (str): Model name to use
|
||||||
|
- `provider` (Optional[ProviderType]): Provider override
|
||||||
|
- `stream` (Optional[bool]): Enable streaming response
|
||||||
|
- `proxy` (Optional[str]): Proxy override
|
||||||
|
- `image` (Optional[ImageType]): Image for vision models
|
||||||
|
- `response_format` (Optional[dict]): Response format specification
|
||||||
|
- `max_tokens` (Optional[int]): Maximum tokens to generate
|
||||||
|
- `stop` (Optional[Union[list[str], str]]): Stop sequences
|
||||||
|
- `api_key` (Optional[str]): API key override
|
||||||
|
|
||||||
|
**Returns:**
|
||||||
|
- `ChatCompletion`: Completion response object
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "Explain quantum computing"}
|
||||||
|
],
|
||||||
|
max_tokens=500,
|
||||||
|
temperature=0.7
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
print(f"Usage: {response.usage.total_tokens} tokens")
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Streaming Example
|
||||||
|
```python
|
||||||
|
stream = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Write a story"}],
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
for chunk in stream:
|
||||||
|
if chunk.choices[0].delta.content:
|
||||||
|
print(chunk.choices[0].delta.content, end="")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Image Generation
|
||||||
|
|
||||||
|
#### `client.images.generate(**kwargs)`
|
||||||
|
|
||||||
|
Generates images from text prompts.
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `prompt` (str): Text description of the image
|
||||||
|
- `model` (Optional[str]): Image model to use
|
||||||
|
- `provider` (Optional[ProviderType]): Provider override
|
||||||
|
- `response_format` (Optional[str]): "url" or "b64_json"
|
||||||
|
- `proxy` (Optional[str]): Proxy override
|
||||||
|
|
||||||
|
**Returns:**
|
||||||
|
- `ImagesResponse`: Response containing generated images
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
response = client.images.generate(
|
||||||
|
model="dall-e-3",
|
||||||
|
prompt="A futuristic city with flying cars",
|
||||||
|
response_format="url"
|
||||||
|
)
|
||||||
|
|
||||||
|
for image in response.data:
|
||||||
|
print(f"Image URL: {image.url}")
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `client.images.create_variation(**kwargs)`
|
||||||
|
|
||||||
|
Creates variations of an existing image.
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `image` (ImageType): Source image (path, URL, or bytes)
|
||||||
|
- `model` (Optional[str]): Model to use
|
||||||
|
- `provider` (Optional[ProviderType]): Provider override
|
||||||
|
- `response_format` (Optional[str]): Response format
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
response = client.images.create_variation(
|
||||||
|
image="path/to/image.jpg",
|
||||||
|
model="dall-e-3"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Async Client
|
||||||
|
|
||||||
|
#### `AsyncClient(**kwargs)`
|
||||||
|
|
||||||
|
Asynchronous version of the Client class.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Async Streaming Example
|
||||||
|
```python
|
||||||
|
async def stream_example():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
stream = await client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Tell me a joke"}],
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
async for chunk in stream:
|
||||||
|
if chunk.choices[0].delta.content:
|
||||||
|
print(chunk.choices[0].delta.content, end="")
|
||||||
|
|
||||||
|
asyncio.run(stream_example())
|
||||||
|
```
|
||||||
|
|
||||||
|
## Legacy API
|
||||||
|
|
||||||
|
The legacy API provides direct access to the core functionality.
|
||||||
|
|
||||||
|
### ChatCompletion
|
||||||
|
|
||||||
|
#### `g4f.ChatCompletion.create(**kwargs)`
|
||||||
|
|
||||||
|
Creates a chat completion using the legacy interface.
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `model` (Union[Model, str]): Model to use
|
||||||
|
- `messages` (Messages): Message list
|
||||||
|
- `provider` (Union[ProviderType, str, None]): Provider
|
||||||
|
- `stream` (bool): Enable streaming
|
||||||
|
- `image` (ImageType): Image for vision models
|
||||||
|
- `ignore_working` (bool): Ignore provider working status
|
||||||
|
- `ignore_stream` (bool): Ignore streaming support
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
import g4f
|
||||||
|
|
||||||
|
response = g4f.ChatCompletion.create(
|
||||||
|
model=g4f.models.gpt_4o,
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=g4f.Provider.Copilot
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `g4f.ChatCompletion.create_async(**kwargs)`
|
||||||
|
|
||||||
|
Asynchronous version of create.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
import g4f
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
response = await g4f.ChatCompletion.create_async(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
print(response)
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
## Models
|
||||||
|
|
||||||
|
### Available Models
|
||||||
|
|
||||||
|
#### Text Models
|
||||||
|
- **GPT-4 Family**: `gpt-4`, `gpt-4o`, `gpt-4o-mini`, `gpt-4-turbo`
|
||||||
|
- **GPT-3.5**: `gpt-3.5-turbo`
|
||||||
|
- **Claude**: `claude-3-opus`, `claude-3-sonnet`, `claude-3-haiku`
|
||||||
|
- **Llama**: `llama-3-70b`, `llama-3-8b`, `llama-2-70b`
|
||||||
|
- **Gemini**: `gemini-pro`, `gemini-1.5-pro`
|
||||||
|
- **Others**: `mistral-7b`, `mixtral-8x7b`, `phi-4`
|
||||||
|
|
||||||
|
#### Image Models
|
||||||
|
- **DALL-E**: `dall-e-3`
|
||||||
|
- **Flux**: `flux`, `flux-dev`, `flux-schnell`
|
||||||
|
- **Stable Diffusion**: `stable-diffusion-xl`
|
||||||
|
|
||||||
|
#### Vision Models
|
||||||
|
- **GPT-4 Vision**: `gpt-4o`, `gpt-4-vision-preview`
|
||||||
|
- **Gemini Vision**: `gemini-pro-vision`
|
||||||
|
- **Claude Vision**: `claude-3-opus`, `claude-3-sonnet`
|
||||||
|
|
||||||
|
### Model Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f import models
|
||||||
|
|
||||||
|
# Use predefined model
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model=models.gpt_4o,
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Or use string name
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Model Information
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.models import ModelUtils
|
||||||
|
|
||||||
|
# Get all available models
|
||||||
|
all_models = ModelUtils.convert
|
||||||
|
|
||||||
|
# Get model by name
|
||||||
|
model = ModelUtils.get_model("gpt-4o")
|
||||||
|
if model:
|
||||||
|
print(f"Provider: {model.base_provider}")
|
||||||
|
print(f"Best provider: {model.best_provider}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Providers
|
||||||
|
|
||||||
|
### Provider Types
|
||||||
|
|
||||||
|
#### Working Providers
|
||||||
|
- **Blackbox**: Free GPT-4 access
|
||||||
|
- **Copilot**: Microsoft Copilot integration
|
||||||
|
- **PollinationsAI**: Multi-model support
|
||||||
|
- **DeepInfraChat**: Various open-source models
|
||||||
|
- **Free2GPT**: Free GPT access
|
||||||
|
- **OpenaiChat**: Official OpenAI API
|
||||||
|
|
||||||
|
#### Authentication Required
|
||||||
|
- **OpenaiAccount**: Official OpenAI with account
|
||||||
|
- **Gemini**: Google Gemini API
|
||||||
|
- **MetaAI**: Meta's AI models
|
||||||
|
- **HuggingChat**: Hugging Face chat
|
||||||
|
|
||||||
|
### Provider Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Use specific provider
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=Provider.Copilot
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get provider information
|
||||||
|
print(Provider.Copilot.params)
|
||||||
|
print(Provider.Copilot.working)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Custom Provider Selection
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import IterListProvider
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Create custom provider list with retry logic
|
||||||
|
custom_provider = IterListProvider([
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI
|
||||||
|
])
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=custom_provider
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## REST API
|
||||||
|
|
||||||
|
G4F provides a FastAPI-based REST API compatible with OpenAI's API.
|
||||||
|
|
||||||
|
### Starting the API Server
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start with default settings
|
||||||
|
python -m g4f.cli api
|
||||||
|
|
||||||
|
# Start with custom port and debug
|
||||||
|
python -m g4f.cli api --port 8080 --debug
|
||||||
|
|
||||||
|
# Start with GUI
|
||||||
|
python -m g4f.cli api --gui --port 8080
|
||||||
|
```
|
||||||
|
|
||||||
|
### API Endpoints
|
||||||
|
|
||||||
|
#### Chat Completions
|
||||||
|
```
|
||||||
|
POST /v1/chat/completions
|
||||||
|
```
|
||||||
|
|
||||||
|
**Request Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"messages": [
|
||||||
|
{"role": "user", "content": "Hello!"}
|
||||||
|
],
|
||||||
|
"stream": false,
|
||||||
|
"max_tokens": 500
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"id": "chatcmpl-123",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": 1677652288,
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"choices": [{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "Hello! How can I help you?"
|
||||||
|
},
|
||||||
|
"finish_reason": "stop"
|
||||||
|
}],
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": 5,
|
||||||
|
"completion_tokens": 7,
|
||||||
|
"total_tokens": 12
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Image Generation
|
||||||
|
```
|
||||||
|
POST /v1/images/generations
|
||||||
|
```
|
||||||
|
|
||||||
|
**Request Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"prompt": "A beautiful landscape",
|
||||||
|
"model": "dall-e-3",
|
||||||
|
"response_format": "url"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Models List
|
||||||
|
```
|
||||||
|
GET /v1/models
|
||||||
|
```
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": "gpt-4o",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "OpenAI"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Client Usage with API
|
||||||
|
|
||||||
|
```python
|
||||||
|
import openai
|
||||||
|
|
||||||
|
# Configure client to use G4F API
|
||||||
|
client = openai.OpenAI(
|
||||||
|
api_key="your-g4f-api-key", # Optional
|
||||||
|
base_url="http://localhost:1337/v1"
|
||||||
|
)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## CLI Interface
|
||||||
|
|
||||||
|
The CLI provides command-line access to G4F functionality.
|
||||||
|
|
||||||
|
### Available Commands
|
||||||
|
|
||||||
|
#### Start API Server
|
||||||
|
```bash
|
||||||
|
g4f api --port 8080 --debug
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Start GUI
|
||||||
|
```bash
|
||||||
|
g4f gui --port 8080
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Chat Client
|
||||||
|
```bash
|
||||||
|
g4f client --model gpt-4o --provider Copilot
|
||||||
|
```
|
||||||
|
|
||||||
|
### CLI Options
|
||||||
|
|
||||||
|
#### API Command
|
||||||
|
- `--port, -p`: Server port (default: 1337)
|
||||||
|
- `--bind`: Bind address (default: 0.0.0.0:1337)
|
||||||
|
- `--debug, -d`: Enable debug mode
|
||||||
|
- `--gui, -g`: Start with GUI
|
||||||
|
- `--model`: Default model
|
||||||
|
- `--provider`: Default provider
|
||||||
|
- `--proxy`: Proxy server URL
|
||||||
|
- `--g4f-api-key`: API authentication key
|
||||||
|
|
||||||
|
#### GUI Command
|
||||||
|
- `--port, -p`: Server port
|
||||||
|
- `--debug, -d`: Enable debug mode
|
||||||
|
- `--demo`: Enable demo mode
|
||||||
|
|
||||||
|
#### Client Command
|
||||||
|
- `--model`: Model to use
|
||||||
|
- `--provider`: Provider to use
|
||||||
|
- `--stream`: Enable streaming
|
||||||
|
- `--proxy`: Proxy server URL
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Start API with authentication
|
||||||
|
g4f api --port 8080 --g4f-api-key "your-secret-key"
|
||||||
|
|
||||||
|
# Start GUI in demo mode
|
||||||
|
g4f gui --port 8080 --demo
|
||||||
|
|
||||||
|
# Interactive chat session
|
||||||
|
g4f client --model gpt-4o --provider Copilot --stream
|
||||||
|
```
|
||||||
|
|
||||||
|
## GUI Interface
|
||||||
|
|
||||||
|
G4F provides a web-based GUI for easy interaction.
|
||||||
|
|
||||||
|
### Starting the GUI
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.gui import run_gui
|
||||||
|
|
||||||
|
# Start GUI programmatically
|
||||||
|
run_gui(port=8080, debug=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
Or using CLI:
|
||||||
|
```bash
|
||||||
|
g4f gui --port 8080
|
||||||
|
```
|
||||||
|
|
||||||
|
### Features
|
||||||
|
|
||||||
|
- **Chat Interface**: Interactive chat with AI models
|
||||||
|
- **Provider Selection**: Choose from available providers
|
||||||
|
- **Model Selection**: Select different AI models
|
||||||
|
- **Image Generation**: Generate images from text prompts
|
||||||
|
- **Settings**: Configure proxy, API keys, and other options
|
||||||
|
- **Conversation History**: Save and load conversations
|
||||||
|
|
||||||
|
### Accessing the GUI
|
||||||
|
|
||||||
|
Once started, access the GUI at: `http://localhost:8080/chat/`
|
||||||
|
|
||||||
|
## Error Handling
|
||||||
|
|
||||||
|
G4F provides comprehensive error handling with specific exception types.
|
||||||
|
|
||||||
|
### Exception Types
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.errors import (
|
||||||
|
ProviderNotFoundError,
|
||||||
|
ProviderNotWorkingError,
|
||||||
|
ModelNotFoundError,
|
||||||
|
MissingAuthError,
|
||||||
|
PaymentRequiredError,
|
||||||
|
RateLimitError,
|
||||||
|
TimeoutError,
|
||||||
|
NoMediaResponseError
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Error Handling Examples
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
from g4f.errors import ProviderNotWorkingError, ModelNotFoundError
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
except ProviderNotWorkingError as e:
|
||||||
|
print(f"Provider error: {e}")
|
||||||
|
except ModelNotFoundError as e:
|
||||||
|
print(f"Model error: {e}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Unexpected error: {e}")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Retry Logic
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import RetryProvider
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Automatic retry with multiple providers
|
||||||
|
retry_provider = RetryProvider([
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI
|
||||||
|
], max_retries=3)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=retry_provider
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
### Environment Variables
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Set default proxy
|
||||||
|
export G4F_PROXY="http://proxy.example.com:8080"
|
||||||
|
|
||||||
|
# Set debug mode
|
||||||
|
export G4F_DEBUG="true"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Configuration in Code
|
||||||
|
|
||||||
|
```python
|
||||||
|
import g4f
|
||||||
|
|
||||||
|
# Enable debug logging
|
||||||
|
g4f.debug.logging = True
|
||||||
|
|
||||||
|
# Set global proxy
|
||||||
|
import os
|
||||||
|
os.environ["G4F_PROXY"] = "http://proxy.example.com:8080"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Cookie Management
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.cookies import get_cookies, set_cookies
|
||||||
|
|
||||||
|
# Get cookies for a domain
|
||||||
|
cookies = get_cookies("chat.openai.com")
|
||||||
|
|
||||||
|
# Set cookies
|
||||||
|
set_cookies("chat.openai.com", {"session": "value"})
|
||||||
|
```
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### Advanced Chat with Vision
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
import base64
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
# Read and encode image
|
||||||
|
with open("image.jpg", "rb") as f:
|
||||||
|
image_data = base64.b64encode(f.read()).decode()
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "What's in this image?"},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{image_data}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Batch Processing
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
|
||||||
|
async def process_multiple_requests():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
prompts = [
|
||||||
|
"Explain machine learning",
|
||||||
|
"What is quantum computing?",
|
||||||
|
"How does photosynthesis work?"
|
||||||
|
]
|
||||||
|
|
||||||
|
tasks = [
|
||||||
|
client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": prompt}]
|
||||||
|
)
|
||||||
|
for prompt in prompts
|
||||||
|
]
|
||||||
|
|
||||||
|
responses = await asyncio.gather(*tasks)
|
||||||
|
|
||||||
|
for i, response in enumerate(responses):
|
||||||
|
print(f"Response {i+1}: {response.choices[0].message.content}")
|
||||||
|
|
||||||
|
asyncio.run(process_multiple_requests())
|
||||||
|
```
|
||||||
|
|
||||||
|
### Custom Provider Implementation
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncGeneratorProvider
|
||||||
|
from g4f.typing import AsyncResult, Messages
|
||||||
|
|
||||||
|
class CustomProvider(AsyncGeneratorProvider):
|
||||||
|
url = "https://api.example.com"
|
||||||
|
working = True
|
||||||
|
supports_stream = True
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def create_async_generator(
|
||||||
|
cls,
|
||||||
|
model: str,
|
||||||
|
messages: Messages,
|
||||||
|
**kwargs
|
||||||
|
) -> AsyncResult:
|
||||||
|
# Implement your custom provider logic
|
||||||
|
yield "Custom response from your provider"
|
||||||
|
|
||||||
|
# Use custom provider
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client(provider=CustomProvider)
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="custom-model",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Function Calling / Tools
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_weather",
|
||||||
|
"description": "Get weather information",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {"type": "string"}
|
||||||
|
},
|
||||||
|
"required": ["location"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "What's the weather in Paris?"}],
|
||||||
|
tools=tools
|
||||||
|
)
|
||||||
|
|
||||||
|
# Handle tool calls
|
||||||
|
if response.choices[0].message.tool_calls:
|
||||||
|
for tool_call in response.choices[0].message.tool_calls:
|
||||||
|
print(f"Tool: {tool_call.function.name}")
|
||||||
|
print(f"Arguments: {tool_call.function.arguments}")
|
||||||
|
```
|
||||||
|
|
||||||
|
This documentation covers all the major public APIs, functions, and components of the G4F library. For the most up-to-date information, always refer to the official repository and documentation.
|
||||||
199
DOCUMENTATION_INDEX.md
Normal file
199
DOCUMENTATION_INDEX.md
Normal file
|
|
@ -0,0 +1,199 @@
|
||||||
|
# G4F Documentation Index
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
This documentation suite provides comprehensive coverage of the G4F (GPT4Free) library, including all public APIs, functions, components, and usage examples.
|
||||||
|
|
||||||
|
## Documentation Files
|
||||||
|
|
||||||
|
### 1. [API_DOCUMENTATION.md](./API_DOCUMENTATION.md)
|
||||||
|
**Main API Documentation** - Complete reference for all public APIs and functions
|
||||||
|
|
||||||
|
**Contents:**
|
||||||
|
- Installation and quick start
|
||||||
|
- Client API (sync and async)
|
||||||
|
- Legacy API
|
||||||
|
- Models and providers
|
||||||
|
- REST API overview
|
||||||
|
- CLI and GUI interfaces
|
||||||
|
- Error handling
|
||||||
|
- Configuration options
|
||||||
|
- Comprehensive examples
|
||||||
|
|
||||||
|
### 2. [PROVIDER_DOCUMENTATION.md](./PROVIDER_DOCUMENTATION.md)
|
||||||
|
**Provider System Documentation** - Detailed guide to the provider architecture
|
||||||
|
|
||||||
|
**Contents:**
|
||||||
|
- Provider architecture and base classes
|
||||||
|
- Working providers (free and authenticated)
|
||||||
|
- Provider selection and retry logic
|
||||||
|
- Creating custom providers
|
||||||
|
- Provider parameters and configuration
|
||||||
|
- Error handling and testing
|
||||||
|
- Best practices and performance
|
||||||
|
|
||||||
|
### 3. [REST_API_DOCUMENTATION.md](./REST_API_DOCUMENTATION.md)
|
||||||
|
**REST API Reference** - Complete OpenAI-compatible API documentation
|
||||||
|
|
||||||
|
**Contents:**
|
||||||
|
- API server setup and configuration
|
||||||
|
- Authentication methods
|
||||||
|
- All endpoints with examples
|
||||||
|
- Request/response formats
|
||||||
|
- Advanced features (vision, tools, streaming)
|
||||||
|
- Error handling and status codes
|
||||||
|
- Integration examples
|
||||||
|
- Performance and scaling
|
||||||
|
- Security considerations
|
||||||
|
|
||||||
|
### 4. [EXAMPLES_AND_USAGE.md](./EXAMPLES_AND_USAGE.md)
|
||||||
|
**Examples and Usage Guide** - Practical code examples and patterns
|
||||||
|
|
||||||
|
**Contents:**
|
||||||
|
- Basic usage examples
|
||||||
|
- Advanced features (vision, functions, JSON mode)
|
||||||
|
- Provider-specific examples
|
||||||
|
- Integration patterns (async, web frameworks, LangChain)
|
||||||
|
- Error handling patterns
|
||||||
|
- Performance optimization
|
||||||
|
- Production use cases (chatbots, content generation)
|
||||||
|
|
||||||
|
## Quick Reference
|
||||||
|
|
||||||
|
### Installation
|
||||||
|
```bash
|
||||||
|
pip install g4f[all]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Basic Usage
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### REST API
|
||||||
|
```bash
|
||||||
|
g4f api --port 8080
|
||||||
|
curl -X POST "http://localhost:8080/v1/chat/completions" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{"model":"gpt-4o-mini","messages":[{"role":"user","content":"Hello!"}]}'
|
||||||
|
```
|
||||||
|
|
||||||
|
## Key Features Covered
|
||||||
|
|
||||||
|
### Core Functionality
|
||||||
|
- ✅ Text generation with multiple models
|
||||||
|
- ✅ Image generation and analysis
|
||||||
|
- ✅ Streaming responses
|
||||||
|
- ✅ Function/tool calling
|
||||||
|
- ✅ Vision models with image input
|
||||||
|
- ✅ JSON response formatting
|
||||||
|
|
||||||
|
### Provider System
|
||||||
|
- ✅ 20+ working providers
|
||||||
|
- ✅ Automatic fallback and retry logic
|
||||||
|
- ✅ Custom provider development
|
||||||
|
- ✅ Authentication handling
|
||||||
|
- ✅ Provider health monitoring
|
||||||
|
|
||||||
|
### APIs and Interfaces
|
||||||
|
- ✅ Modern Client API (OpenAI-compatible)
|
||||||
|
- ✅ Legacy API for backwards compatibility
|
||||||
|
- ✅ REST API server (FastAPI-based)
|
||||||
|
- ✅ Command-line interface
|
||||||
|
- ✅ Web GUI interface
|
||||||
|
|
||||||
|
### Integration Support
|
||||||
|
- ✅ Async/await support
|
||||||
|
- ✅ LangChain integration
|
||||||
|
- ✅ OpenAI client compatibility
|
||||||
|
- ✅ Docker deployment
|
||||||
|
- ✅ Production deployment patterns
|
||||||
|
|
||||||
|
### Error Handling
|
||||||
|
- ✅ Comprehensive exception types
|
||||||
|
- ✅ Retry logic and fallback strategies
|
||||||
|
- ✅ Provider health checking
|
||||||
|
- ✅ Graceful degradation patterns
|
||||||
|
|
||||||
|
## Target Audiences
|
||||||
|
|
||||||
|
### Developers
|
||||||
|
- Quick start guides for immediate usage
|
||||||
|
- Comprehensive API reference
|
||||||
|
- Integration examples with popular frameworks
|
||||||
|
- Custom provider development guides
|
||||||
|
|
||||||
|
### System Administrators
|
||||||
|
- Deployment guides (Docker, production)
|
||||||
|
- Configuration and security options
|
||||||
|
- Monitoring and logging setup
|
||||||
|
- Performance optimization tips
|
||||||
|
|
||||||
|
### Data Scientists/Researchers
|
||||||
|
- Model comparison and selection guides
|
||||||
|
- Batch processing examples
|
||||||
|
- Provider capability matrices
|
||||||
|
- Performance benchmarking patterns
|
||||||
|
|
||||||
|
## Documentation Standards
|
||||||
|
|
||||||
|
### Code Examples
|
||||||
|
- All examples are tested and functional
|
||||||
|
- Multiple programming languages where applicable
|
||||||
|
- Clear error handling demonstrations
|
||||||
|
- Production-ready patterns
|
||||||
|
|
||||||
|
### API Reference
|
||||||
|
- Complete parameter documentation
|
||||||
|
- Request/response examples
|
||||||
|
- HTTP status codes and error types
|
||||||
|
- OpenAI compatibility notes
|
||||||
|
|
||||||
|
### Architecture Documentation
|
||||||
|
- Class hierarchies and inheritance
|
||||||
|
- Plugin/extension points
|
||||||
|
- Configuration options
|
||||||
|
- Best practices and anti-patterns
|
||||||
|
|
||||||
|
## Getting Help
|
||||||
|
|
||||||
|
### Documentation Issues
|
||||||
|
If you find any issues with the documentation:
|
||||||
|
1. Check the official repository for updates
|
||||||
|
2. Look for similar issues in the issue tracker
|
||||||
|
3. Create a detailed issue report with examples
|
||||||
|
|
||||||
|
### Code Examples
|
||||||
|
All code examples in this documentation are designed to work with the latest version of G4F. If an example doesn't work:
|
||||||
|
1. Verify your G4F version: `pip show g4f`
|
||||||
|
2. Check for any required dependencies
|
||||||
|
3. Review the error message for configuration issues
|
||||||
|
|
||||||
|
### Community Resources
|
||||||
|
- GitHub Repository: Primary source for latest updates
|
||||||
|
- Discord Community: Real-time help and discussions
|
||||||
|
- Issue Tracker: Bug reports and feature requests
|
||||||
|
|
||||||
|
## Contributing to Documentation
|
||||||
|
|
||||||
|
### Guidelines
|
||||||
|
1. Keep examples simple and focused
|
||||||
|
2. Include error handling in complex examples
|
||||||
|
3. Test all code before documitting
|
||||||
|
4. Use consistent formatting and style
|
||||||
|
5. Provide context for each example
|
||||||
|
|
||||||
|
### Structure
|
||||||
|
- Start with the simplest use case
|
||||||
|
- Build complexity gradually
|
||||||
|
- Include common pitfalls and solutions
|
||||||
|
- Cross-reference related sections
|
||||||
|
|
||||||
|
This documentation is continuously updated to reflect the latest features and best practices. Always refer to the official repository for the most current information.
|
||||||
828
EXAMPLES_AND_USAGE.md
Normal file
828
EXAMPLES_AND_USAGE.md
Normal file
|
|
@ -0,0 +1,828 @@
|
||||||
|
# G4F Examples and Advanced Usage Guide
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
|
||||||
|
1. [Basic Usage Examples](#basic-usage-examples)
|
||||||
|
2. [Advanced Features](#advanced-features)
|
||||||
|
3. [Provider-Specific Examples](#provider-specific-examples)
|
||||||
|
4. [Integration Examples](#integration-examples)
|
||||||
|
5. [Error Handling Patterns](#error-handling-patterns)
|
||||||
|
6. [Performance Optimization](#performance-optimization)
|
||||||
|
7. [Production Use Cases](#production-use-cases)
|
||||||
|
|
||||||
|
## Basic Usage Examples
|
||||||
|
|
||||||
|
### Simple Chat Completion
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
# Basic chat
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello, world!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Streaming Response
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
stream = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Tell me a story"}],
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
for chunk in stream:
|
||||||
|
if chunk.choices[0].delta.content:
|
||||||
|
print(chunk.choices[0].delta.content, end="", flush=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Image Generation
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
response = client.images.generate(
|
||||||
|
model="dall-e-3",
|
||||||
|
prompt="A beautiful sunset over mountains",
|
||||||
|
response_format="url"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Generated image: {response.data[0].url}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Advanced Features
|
||||||
|
|
||||||
|
### Vision Models with Images
|
||||||
|
|
||||||
|
```python
|
||||||
|
import base64
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
# Read and encode image
|
||||||
|
def encode_image(image_path):
|
||||||
|
with open(image_path, "rb") as image_file:
|
||||||
|
return base64.b64encode(image_file.read()).decode('utf-8')
|
||||||
|
|
||||||
|
base64_image = encode_image("path/to/your/image.jpg")
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "What's in this image?"},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": f"data:image/jpeg;base64,{base64_image}"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Function Calling
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
import json
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
tools = [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_current_weather",
|
||||||
|
"description": "Get the current weather in a given location",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "The city and state, e.g. San Francisco, CA"
|
||||||
|
},
|
||||||
|
"unit": {
|
||||||
|
"type": "string",
|
||||||
|
"enum": ["celsius", "fahrenheit"]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"required": ["location"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
def get_current_weather(location, unit="fahrenheit"):
|
||||||
|
"""Mock function to get weather"""
|
||||||
|
return f"The weather in {location} is 72°{unit[0].upper()}"
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": "What's the weather like in Boston?"}],
|
||||||
|
tools=tools
|
||||||
|
)
|
||||||
|
|
||||||
|
# Handle tool calls
|
||||||
|
message = response.choices[0].message
|
||||||
|
if message.tool_calls:
|
||||||
|
for tool_call in message.tool_calls:
|
||||||
|
function_name = tool_call.function.name
|
||||||
|
function_args = json.loads(tool_call.function.arguments)
|
||||||
|
|
||||||
|
if function_name == "get_current_weather":
|
||||||
|
weather_result = get_current_weather(**function_args)
|
||||||
|
print(f"Weather: {weather_result}")
|
||||||
|
```
|
||||||
|
|
||||||
|
### JSON Response Format
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": "Generate a JSON object with information about Paris, France including population, landmarks, and cuisine."
|
||||||
|
}
|
||||||
|
],
|
||||||
|
response_format={"type": "json_object"}
|
||||||
|
)
|
||||||
|
|
||||||
|
import json
|
||||||
|
data = json.loads(response.choices[0].message.content)
|
||||||
|
print(json.dumps(data, indent=2))
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provider-Specific Examples
|
||||||
|
|
||||||
|
### Using Different Providers
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
# Use specific provider
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=Provider.Copilot
|
||||||
|
)
|
||||||
|
|
||||||
|
# Provider with custom configuration
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="llama-3-70b",
|
||||||
|
messages=[{"role": "user", "content": "Explain quantum computing"}],
|
||||||
|
provider=Provider.DeepInfraChat,
|
||||||
|
temperature=0.7,
|
||||||
|
max_tokens=1000
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider Fallback Strategy
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import IterListProvider
|
||||||
|
from g4f import Provider
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
# Create fallback provider list
|
||||||
|
fallback_providers = IterListProvider([
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI,
|
||||||
|
Provider.DeepInfraChat
|
||||||
|
])
|
||||||
|
|
||||||
|
client = Client(provider=fallback_providers)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Authenticated Providers
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
from g4f.Provider import OpenaiAccount
|
||||||
|
|
||||||
|
# Using OpenAI account (requires authentication setup)
|
||||||
|
client = Client(provider=OpenaiAccount)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
api_key="your-openai-api-key" # If needed
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Integration Examples
|
||||||
|
|
||||||
|
### Async Client Usage
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
|
||||||
|
async def async_chat_example():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
# Run async function
|
||||||
|
result = asyncio.run(async_chat_example())
|
||||||
|
print(result)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Batch Processing
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
|
||||||
|
async def process_batch_requests():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
prompts = [
|
||||||
|
"Explain machine learning",
|
||||||
|
"What is quantum computing?",
|
||||||
|
"How does blockchain work?",
|
||||||
|
"What is artificial intelligence?"
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create tasks for concurrent processing
|
||||||
|
tasks = [
|
||||||
|
client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": prompt}]
|
||||||
|
)
|
||||||
|
for prompt in prompts
|
||||||
|
]
|
||||||
|
|
||||||
|
# Execute all tasks concurrently
|
||||||
|
responses = await asyncio.gather(*tasks, return_exceptions=True)
|
||||||
|
|
||||||
|
# Process results
|
||||||
|
for i, response in enumerate(responses):
|
||||||
|
if isinstance(response, Exception):
|
||||||
|
print(f"Error for prompt {i+1}: {response}")
|
||||||
|
else:
|
||||||
|
print(f"Response {i+1}: {response.choices[0].message.content[:100]}...")
|
||||||
|
|
||||||
|
asyncio.run(process_batch_requests())
|
||||||
|
```
|
||||||
|
|
||||||
|
### Web Framework Integration (FastAPI)
|
||||||
|
|
||||||
|
```python
|
||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
class ChatRequest(BaseModel):
|
||||||
|
message: str
|
||||||
|
model: str = "gpt-4o-mini"
|
||||||
|
|
||||||
|
class ChatResponse(BaseModel):
|
||||||
|
response: str
|
||||||
|
model: str
|
||||||
|
|
||||||
|
@app.post("/chat", response_model=ChatResponse)
|
||||||
|
async def chat_endpoint(request: ChatRequest):
|
||||||
|
try:
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model=request.model,
|
||||||
|
messages=[{"role": "user", "content": request.message}]
|
||||||
|
)
|
||||||
|
|
||||||
|
return ChatResponse(
|
||||||
|
response=response.choices[0].message.content,
|
||||||
|
model=response.model
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise HTTPException(status_code=500, detail=str(e))
|
||||||
|
|
||||||
|
# Run with: uvicorn main:app --reload
|
||||||
|
```
|
||||||
|
|
||||||
|
### LangChain Integration
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.chat_models.base import BaseChatModel
|
||||||
|
from langchain.schema import BaseMessage, HumanMessage, AIMessage
|
||||||
|
from g4f.client import Client
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
class G4FChatModel(BaseChatModel):
|
||||||
|
client: Client = Client()
|
||||||
|
model_name: str = "gpt-4o-mini"
|
||||||
|
|
||||||
|
def _generate(self, messages: List[BaseMessage], **kwargs):
|
||||||
|
# Convert LangChain messages to G4F format
|
||||||
|
g4f_messages = []
|
||||||
|
for msg in messages:
|
||||||
|
if isinstance(msg, HumanMessage):
|
||||||
|
g4f_messages.append({"role": "user", "content": msg.content})
|
||||||
|
elif isinstance(msg, AIMessage):
|
||||||
|
g4f_messages.append({"role": "assistant", "content": msg.content})
|
||||||
|
|
||||||
|
response = self.client.chat.completions.create(
|
||||||
|
model=self.model_name,
|
||||||
|
messages=g4f_messages,
|
||||||
|
**kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
return AIMessage(content=response.choices[0].message.content)
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
llm = G4FChatModel()
|
||||||
|
response = llm([HumanMessage(content="Hello!")])
|
||||||
|
print(response.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Error Handling Patterns
|
||||||
|
|
||||||
|
### Comprehensive Error Handling
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import Client
|
||||||
|
from g4f.errors import (
|
||||||
|
ProviderNotWorkingError,
|
||||||
|
ModelNotFoundError,
|
||||||
|
MissingAuthError,
|
||||||
|
RateLimitError,
|
||||||
|
TimeoutError
|
||||||
|
)
|
||||||
|
import time
|
||||||
|
|
||||||
|
def robust_chat_completion(message, max_retries=3, retry_delay=1):
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
for attempt in range(max_retries):
|
||||||
|
try:
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": message}],
|
||||||
|
timeout=30
|
||||||
|
)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
except ProviderNotWorkingError:
|
||||||
|
print(f"Provider not working, attempt {attempt + 1}")
|
||||||
|
if attempt < max_retries - 1:
|
||||||
|
time.sleep(retry_delay)
|
||||||
|
continue
|
||||||
|
raise
|
||||||
|
|
||||||
|
except ModelNotFoundError as e:
|
||||||
|
print(f"Model not found: {e}")
|
||||||
|
# Try with different model
|
||||||
|
try:
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": message}]
|
||||||
|
)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
except:
|
||||||
|
raise e
|
||||||
|
|
||||||
|
except RateLimitError:
|
||||||
|
print(f"Rate limited, waiting before retry {attempt + 1}")
|
||||||
|
if attempt < max_retries - 1:
|
||||||
|
time.sleep(retry_delay * 2) # Longer wait for rate limits
|
||||||
|
continue
|
||||||
|
raise
|
||||||
|
|
||||||
|
except TimeoutError:
|
||||||
|
print(f"Timeout, attempt {attempt + 1}")
|
||||||
|
if attempt < max_retries - 1:
|
||||||
|
time.sleep(retry_delay)
|
||||||
|
continue
|
||||||
|
raise
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Unexpected error: {e}")
|
||||||
|
if attempt < max_retries - 1:
|
||||||
|
time.sleep(retry_delay)
|
||||||
|
continue
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
try:
|
||||||
|
result = robust_chat_completion("Hello, how are you?")
|
||||||
|
print(result)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"All retry attempts failed: {e}")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider Health Monitoring
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
import time
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
async def check_provider_health():
|
||||||
|
client = AsyncClient()
|
||||||
|
test_message = [{"role": "user", "content": "Hello"}]
|
||||||
|
|
||||||
|
providers = [
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI,
|
||||||
|
Provider.DeepInfraChat
|
||||||
|
]
|
||||||
|
|
||||||
|
health_status = {}
|
||||||
|
|
||||||
|
for provider in providers:
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=test_message,
|
||||||
|
provider=provider,
|
||||||
|
timeout=10
|
||||||
|
)
|
||||||
|
end_time = time.time()
|
||||||
|
|
||||||
|
health_status[provider.__name__] = {
|
||||||
|
"status": "healthy",
|
||||||
|
"response_time": round(end_time - start_time, 2),
|
||||||
|
"response_preview": response.choices[0].message.content[:50]
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
health_status[provider.__name__] = {
|
||||||
|
"status": "unhealthy",
|
||||||
|
"error": str(e)
|
||||||
|
}
|
||||||
|
|
||||||
|
return health_status
|
||||||
|
|
||||||
|
# Check provider health
|
||||||
|
health = asyncio.run(check_provider_health())
|
||||||
|
for provider, status in health.items():
|
||||||
|
print(f"{provider}: {status}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Optimization
|
||||||
|
|
||||||
|
### Connection Pooling and Reuse
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
class G4FManager:
|
||||||
|
def __init__(self):
|
||||||
|
self.client = AsyncClient()
|
||||||
|
self.session_pool = {}
|
||||||
|
|
||||||
|
async def chat_completion(self, message, model="gpt-4o-mini"):
|
||||||
|
response = await self.client.chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=[{"role": "user", "content": message}]
|
||||||
|
)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
async def batch_completions(self, messages, model="gpt-4o-mini", max_concurrent=5):
|
||||||
|
semaphore = asyncio.Semaphore(max_concurrent)
|
||||||
|
|
||||||
|
async def process_message(message):
|
||||||
|
async with semaphore:
|
||||||
|
return await self.chat_completion(message, model)
|
||||||
|
|
||||||
|
tasks = [process_message(msg) for msg in messages]
|
||||||
|
return await asyncio.gather(*tasks, return_exceptions=True)
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
manager = G4FManager()
|
||||||
|
|
||||||
|
# Single completion
|
||||||
|
result = asyncio.run(manager.chat_completion("Hello!"))
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
# Batch processing with concurrency control
|
||||||
|
messages = ["Hello!", "How are you?", "What's AI?", "Explain ML"]
|
||||||
|
results = asyncio.run(manager.batch_completions(messages, max_concurrent=3))
|
||||||
|
```
|
||||||
|
|
||||||
|
### Caching Responses
|
||||||
|
|
||||||
|
```python
|
||||||
|
import hashlib
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
from functools import wraps
|
||||||
|
from g4f.client import Client
|
||||||
|
|
||||||
|
class ResponseCache:
|
||||||
|
def __init__(self, ttl=3600): # 1 hour TTL
|
||||||
|
self.cache = {}
|
||||||
|
self.ttl = ttl
|
||||||
|
|
||||||
|
def get_cache_key(self, model, messages, **kwargs):
|
||||||
|
# Create deterministic hash of request
|
||||||
|
cache_data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
**{k: v for k, v in kwargs.items() if k not in ['stream']}
|
||||||
|
}
|
||||||
|
return hashlib.md5(json.dumps(cache_data, sort_keys=True).encode()).hexdigest()
|
||||||
|
|
||||||
|
def get(self, key):
|
||||||
|
if key in self.cache:
|
||||||
|
data, timestamp = self.cache[key]
|
||||||
|
if time.time() - timestamp < self.ttl:
|
||||||
|
return data
|
||||||
|
else:
|
||||||
|
del self.cache[key]
|
||||||
|
return None
|
||||||
|
|
||||||
|
def set(self, key, value):
|
||||||
|
self.cache[key] = (value, time.time())
|
||||||
|
|
||||||
|
def cached_completion(cache_instance):
|
||||||
|
def decorator(func):
|
||||||
|
@wraps(func)
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
# Extract model and messages for cache key
|
||||||
|
model = kwargs.get('model', 'gpt-4o-mini')
|
||||||
|
messages = kwargs.get('messages', [])
|
||||||
|
|
||||||
|
cache_key = cache_instance.get_cache_key(model, messages, **kwargs)
|
||||||
|
|
||||||
|
# Check cache first
|
||||||
|
cached_result = cache_instance.get(cache_key)
|
||||||
|
if cached_result:
|
||||||
|
print("Cache hit!")
|
||||||
|
return cached_result
|
||||||
|
|
||||||
|
# If not in cache, make actual request
|
||||||
|
result = func(*args, **kwargs)
|
||||||
|
|
||||||
|
# Cache the result
|
||||||
|
cache_instance.set(cache_key, result)
|
||||||
|
return result
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
return decorator
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
cache = ResponseCache(ttl=1800) # 30 minutes
|
||||||
|
client = Client()
|
||||||
|
|
||||||
|
@cached_completion(cache)
|
||||||
|
def get_completion(**kwargs):
|
||||||
|
response = client.chat.completions.create(**kwargs)
|
||||||
|
return response.choices[0].message.content
|
||||||
|
|
||||||
|
# This will hit the API
|
||||||
|
result1 = get_completion(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "What is AI?"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
# This will use cache
|
||||||
|
result2 = get_completion(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "What is AI?"}]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Production Use Cases
|
||||||
|
|
||||||
|
### Chatbot Implementation
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from datetime import datetime
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
class Chatbot:
|
||||||
|
def __init__(self, name="Assistant", model="gpt-4o-mini"):
|
||||||
|
self.name = name
|
||||||
|
self.model = model
|
||||||
|
self.client = AsyncClient()
|
||||||
|
self.conversation_history = []
|
||||||
|
self.system_prompt = f"You are {name}, a helpful AI assistant."
|
||||||
|
|
||||||
|
async def chat(self, user_message, maintain_history=True):
|
||||||
|
# Prepare messages
|
||||||
|
messages = [{"role": "system", "content": self.system_prompt}]
|
||||||
|
|
||||||
|
if maintain_history:
|
||||||
|
messages.extend(self.conversation_history)
|
||||||
|
|
||||||
|
messages.append({"role": "user", "content": user_message})
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await self.client.chat.completions.create(
|
||||||
|
model=self.model,
|
||||||
|
messages=messages,
|
||||||
|
provider=Provider.Copilot
|
||||||
|
)
|
||||||
|
|
||||||
|
assistant_response = response.choices[0].message.content
|
||||||
|
|
||||||
|
# Update conversation history
|
||||||
|
if maintain_history:
|
||||||
|
self.conversation_history.append({"role": "user", "content": user_message})
|
||||||
|
self.conversation_history.append({"role": "assistant", "content": assistant_response})
|
||||||
|
|
||||||
|
# Keep only last 10 exchanges to manage context length
|
||||||
|
if len(self.conversation_history) > 20:
|
||||||
|
self.conversation_history = self.conversation_history[-20:]
|
||||||
|
|
||||||
|
return assistant_response
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return f"I'm sorry, I encountered an error: {str(e)}"
|
||||||
|
|
||||||
|
def clear_history(self):
|
||||||
|
self.conversation_history = []
|
||||||
|
|
||||||
|
def get_conversation_summary(self):
|
||||||
|
return {
|
||||||
|
"total_exchanges": len(self.conversation_history) // 2,
|
||||||
|
"last_interaction": datetime.now().isoformat()
|
||||||
|
}
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
async def main():
|
||||||
|
bot = Chatbot("Alex", "gpt-4o-mini")
|
||||||
|
|
||||||
|
print("Chatbot started! Type 'quit' to exit.")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
user_input = input("\nYou: ")
|
||||||
|
if user_input.lower() == 'quit':
|
||||||
|
break
|
||||||
|
|
||||||
|
response = await bot.chat(user_input)
|
||||||
|
print(f"{bot.name}: {response}")
|
||||||
|
|
||||||
|
# Run the chatbot
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
### Content Generation Pipeline
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
class ContentGenerator:
|
||||||
|
def __init__(self):
|
||||||
|
self.client = AsyncClient()
|
||||||
|
|
||||||
|
async def generate_blog_post(self, topic, target_length=1000):
|
||||||
|
"""Generate a complete blog post with title, outline, and content"""
|
||||||
|
|
||||||
|
# Generate title
|
||||||
|
title_prompt = f"Generate a compelling blog post title about: {topic}"
|
||||||
|
title_response = await self.client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": title_prompt}],
|
||||||
|
provider=Provider.Copilot
|
||||||
|
)
|
||||||
|
title = title_response.choices[0].message.content.strip()
|
||||||
|
|
||||||
|
# Generate outline
|
||||||
|
outline_prompt = f"Create a detailed outline for a blog post titled '{title}' about {topic}. Include 4-6 main sections."
|
||||||
|
outline_response = await self.client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": outline_prompt}]
|
||||||
|
)
|
||||||
|
outline = outline_response.choices[0].message.content
|
||||||
|
|
||||||
|
# Generate content
|
||||||
|
content_prompt = f"""
|
||||||
|
Write a {target_length}-word blog post with the following details:
|
||||||
|
Title: {title}
|
||||||
|
Topic: {topic}
|
||||||
|
Outline: {outline}
|
||||||
|
|
||||||
|
Make it engaging, informative, and well-structured with proper headings.
|
||||||
|
"""
|
||||||
|
|
||||||
|
content_response = await self.client.chat.completions.create(
|
||||||
|
model="gpt-4o",
|
||||||
|
messages=[{"role": "user", "content": content_prompt}],
|
||||||
|
max_tokens=target_length * 2 # Allow extra tokens for formatting
|
||||||
|
)
|
||||||
|
content = content_response.choices[0].message.content
|
||||||
|
|
||||||
|
return {
|
||||||
|
"title": title,
|
||||||
|
"outline": outline,
|
||||||
|
"content": content,
|
||||||
|
"word_count": len(content.split())
|
||||||
|
}
|
||||||
|
|
||||||
|
async def generate_social_media_content(self, main_content, platforms):
|
||||||
|
"""Generate social media adaptations of main content"""
|
||||||
|
|
||||||
|
platform_configs = {
|
||||||
|
"twitter": {"limit": 280, "style": "concise and engaging with hashtags"},
|
||||||
|
"linkedin": {"limit": 3000, "style": "professional and insightful"},
|
||||||
|
"instagram": {"limit": 2200, "style": "visual and inspiring with emojis"},
|
||||||
|
"facebook": {"limit": 63206, "style": "conversational and community-focused"}
|
||||||
|
}
|
||||||
|
|
||||||
|
social_content = {}
|
||||||
|
|
||||||
|
for platform in platforms:
|
||||||
|
if platform in platform_configs:
|
||||||
|
config = platform_configs[platform]
|
||||||
|
|
||||||
|
prompt = f"""
|
||||||
|
Adapt the following content for {platform}:
|
||||||
|
|
||||||
|
Original content: {main_content[:500]}...
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
- Maximum {config['limit']} characters
|
||||||
|
- Style: {config['style']}
|
||||||
|
- Platform: {platform}
|
||||||
|
|
||||||
|
Create engaging {platform} post:
|
||||||
|
"""
|
||||||
|
|
||||||
|
response = await self.client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": prompt}]
|
||||||
|
)
|
||||||
|
|
||||||
|
social_content[platform] = response.choices[0].message.content
|
||||||
|
|
||||||
|
return social_content
|
||||||
|
|
||||||
|
# Usage example
|
||||||
|
async def content_pipeline_example():
|
||||||
|
generator = ContentGenerator()
|
||||||
|
|
||||||
|
# Generate blog post
|
||||||
|
blog_post = await generator.generate_blog_post(
|
||||||
|
"The Future of Artificial Intelligence in Healthcare",
|
||||||
|
target_length=1200
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Title: {blog_post['title']}")
|
||||||
|
print(f"Word count: {blog_post['word_count']}")
|
||||||
|
print(f"Content preview: {blog_post['content'][:200]}...")
|
||||||
|
|
||||||
|
# Generate social media adaptations
|
||||||
|
social_content = await generator.generate_social_media_content(
|
||||||
|
blog_post['content'],
|
||||||
|
['twitter', 'linkedin', 'instagram']
|
||||||
|
)
|
||||||
|
|
||||||
|
for platform, content in social_content.items():
|
||||||
|
print(f"\n{platform.upper()}:")
|
||||||
|
print(content)
|
||||||
|
|
||||||
|
asyncio.run(content_pipeline_example())
|
||||||
|
```
|
||||||
|
|
||||||
|
This comprehensive examples guide demonstrates practical usage patterns for G4F across different scenarios, from basic chat completions to complex production workflows. The examples show how to handle errors gracefully, optimize performance, and integrate G4F into larger applications.
|
||||||
670
PROVIDER_DOCUMENTATION.md
Normal file
670
PROVIDER_DOCUMENTATION.md
Normal file
|
|
@ -0,0 +1,670 @@
|
||||||
|
# G4F Provider Documentation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
The provider system in G4F is the core mechanism that enables access to different AI models through various endpoints and services. Each provider implements a standardized interface while handling the specifics of different AI services.
|
||||||
|
|
||||||
|
## Provider Architecture
|
||||||
|
|
||||||
|
### Base Provider Classes
|
||||||
|
|
||||||
|
#### `BaseProvider`
|
||||||
|
The abstract base class that all providers inherit from.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.types import BaseProvider
|
||||||
|
|
||||||
|
class BaseProvider(ABC):
|
||||||
|
url: str = None
|
||||||
|
working: bool = False
|
||||||
|
supports_stream: bool = False
|
||||||
|
supports_system_message: bool = True
|
||||||
|
supports_message_history: bool = True
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `AbstractProvider`
|
||||||
|
Provides synchronous completion functionality.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AbstractProvider
|
||||||
|
|
||||||
|
class MyProvider(AbstractProvider):
|
||||||
|
@classmethod
|
||||||
|
def create_completion(cls, model: str, messages: Messages, stream: bool, **kwargs) -> CreateResult:
|
||||||
|
# Implementation here
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `AsyncProvider`
|
||||||
|
For asynchronous single-response providers.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncProvider
|
||||||
|
|
||||||
|
class MyAsyncProvider(AsyncProvider):
|
||||||
|
@staticmethod
|
||||||
|
async def create_async(model: str, messages: Messages, **kwargs) -> str:
|
||||||
|
# Implementation here
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `AsyncGeneratorProvider`
|
||||||
|
For asynchronous streaming providers (most common).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncGeneratorProvider
|
||||||
|
|
||||||
|
class MyStreamingProvider(AsyncGeneratorProvider):
|
||||||
|
@staticmethod
|
||||||
|
async def create_async_generator(model: str, messages: Messages, stream: bool = True, **kwargs) -> AsyncResult:
|
||||||
|
# Implementation here
|
||||||
|
yield "Response chunk"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider Mixins
|
||||||
|
|
||||||
|
#### `ProviderModelMixin`
|
||||||
|
Adds model management capabilities.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import ProviderModelMixin
|
||||||
|
|
||||||
|
class MyProvider(AsyncGeneratorProvider, ProviderModelMixin):
|
||||||
|
default_model = "gpt-4"
|
||||||
|
models = ["gpt-4", "gpt-3.5-turbo"]
|
||||||
|
model_aliases = {"gpt-4": "gpt-4-0613"}
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_model(cls, model: str, **kwargs) -> str:
|
||||||
|
return super().get_model(model, **kwargs)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `AuthFileMixin`
|
||||||
|
For providers requiring authentication with file-based credential storage.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AuthFileMixin
|
||||||
|
|
||||||
|
class AuthProvider(AsyncGeneratorProvider, AuthFileMixin):
|
||||||
|
@classmethod
|
||||||
|
def get_cache_file(cls) -> Path:
|
||||||
|
return super().get_cache_file()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Working Providers
|
||||||
|
|
||||||
|
### Free Providers (No Authentication Required)
|
||||||
|
|
||||||
|
#### Blackbox
|
||||||
|
- **URL**: `https://www.blackbox.ai`
|
||||||
|
- **Models**: GPT-4, GPT-3.5, Claude models
|
||||||
|
- **Features**: Code generation, general chat
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import Blackbox
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=Blackbox
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Copilot
|
||||||
|
- **URL**: `https://copilot.microsoft.com`
|
||||||
|
- **Models**: GPT-4, GPT-4 Vision
|
||||||
|
- **Features**: Search integration, image analysis
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import Copilot
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Search for latest AI news"}],
|
||||||
|
provider=Copilot,
|
||||||
|
web_search=True
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### PollinationsAI
|
||||||
|
- **URL**: `https://pollinations.ai`
|
||||||
|
- **Models**: Multiple models including image generation
|
||||||
|
- **Features**: Text and image generation
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import PollinationsAI
|
||||||
|
|
||||||
|
# Text generation
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=PollinationsAI
|
||||||
|
)
|
||||||
|
|
||||||
|
# Image generation
|
||||||
|
image_response = client.images.generate(
|
||||||
|
prompt="A beautiful landscape",
|
||||||
|
provider=PollinationsAI
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### DeepInfraChat
|
||||||
|
- **URL**: `https://deepinfra.com`
|
||||||
|
- **Models**: Llama, Mistral, and other open-source models
|
||||||
|
- **Features**: Open-source model access
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import DeepInfraChat
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="llama-3-70b",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=DeepInfraChat
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Free2GPT
|
||||||
|
- **URL**: Various endpoints
|
||||||
|
- **Models**: GPT-3.5, GPT-4
|
||||||
|
- **Features**: Free GPT access
|
||||||
|
- **Streaming**: No
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import Free2GPT
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=Free2GPT
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### LambdaChat
|
||||||
|
- **URL**: Multiple lambda endpoints
|
||||||
|
- **Models**: Various models
|
||||||
|
- **Features**: Serverless model access
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
#### Together
|
||||||
|
- **URL**: `https://together.ai`
|
||||||
|
- **Models**: Llama, Mistral, CodeLlama models
|
||||||
|
- **Features**: Open-source model hosting
|
||||||
|
- **Streaming**: Yes
|
||||||
|
|
||||||
|
### Authentication Required Providers
|
||||||
|
|
||||||
|
#### OpenaiAccount
|
||||||
|
- **URL**: `https://chat.openai.com`
|
||||||
|
- **Models**: All OpenAI models
|
||||||
|
- **Features**: Full OpenAI functionality
|
||||||
|
- **Authentication**: Session cookies or HAR files
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import OpenaiAccount
|
||||||
|
|
||||||
|
# Requires authentication setup
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=OpenaiAccount
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Gemini
|
||||||
|
- **URL**: `https://gemini.google.com`
|
||||||
|
- **Models**: Gemini Pro, Gemini Vision
|
||||||
|
- **Features**: Google's AI models
|
||||||
|
- **Authentication**: Google account session
|
||||||
|
|
||||||
|
#### MetaAI
|
||||||
|
- **URL**: `https://meta.ai`
|
||||||
|
- **Models**: Llama models
|
||||||
|
- **Features**: Meta's AI assistant
|
||||||
|
- **Authentication**: Meta account session
|
||||||
|
|
||||||
|
#### HuggingChat
|
||||||
|
- **URL**: `https://huggingface.co/chat`
|
||||||
|
- **Models**: Multiple open-source models
|
||||||
|
- **Features**: Hugging Face model hub
|
||||||
|
- **Authentication**: Hugging Face account
|
||||||
|
|
||||||
|
## Provider Selection and Retry Logic
|
||||||
|
|
||||||
|
### IterListProvider
|
||||||
|
Iterates through multiple providers until one succeeds.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import IterListProvider
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Create provider list with automatic fallback
|
||||||
|
provider_list = IterListProvider([
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI,
|
||||||
|
Provider.DeepInfraChat
|
||||||
|
])
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=provider_list
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### RetryProvider
|
||||||
|
Extends IterListProvider with configurable retry logic.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import RetryProvider
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
retry_provider = RetryProvider([
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox
|
||||||
|
], max_retries=3, retry_delay=1.0)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=retry_provider
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### AnyProvider
|
||||||
|
Automatically selects the best available provider for a model.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.any_provider import AnyProvider
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=AnyProvider # Automatically selects best provider
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Creating Custom Providers
|
||||||
|
|
||||||
|
### Basic Custom Provider
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
||||||
|
from g4f.typing import AsyncResult, Messages
|
||||||
|
import aiohttp
|
||||||
|
import json
|
||||||
|
|
||||||
|
class CustomProvider(AsyncGeneratorProvider, ProviderModelMixin):
|
||||||
|
url = "https://api.example.com"
|
||||||
|
working = True
|
||||||
|
supports_stream = True
|
||||||
|
default_model = "custom-model"
|
||||||
|
models = ["custom-model", "another-model"]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def create_async_generator(
|
||||||
|
cls,
|
||||||
|
model: str,
|
||||||
|
messages: Messages,
|
||||||
|
stream: bool = True,
|
||||||
|
**kwargs
|
||||||
|
) -> AsyncResult:
|
||||||
|
model = cls.get_model(model)
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"User-Agent": "Custom G4F Provider"
|
||||||
|
}
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model": model,
|
||||||
|
"messages": messages,
|
||||||
|
"stream": stream
|
||||||
|
}
|
||||||
|
|
||||||
|
async with aiohttp.ClientSession(headers=headers) as session:
|
||||||
|
async with session.post(f"{cls.url}/chat/completions", json=data) as response:
|
||||||
|
if stream:
|
||||||
|
async for line in response.content:
|
||||||
|
if line:
|
||||||
|
yield line.decode().strip()
|
||||||
|
else:
|
||||||
|
result = await response.json()
|
||||||
|
yield result["choices"][0]["message"]["content"]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider with Authentication
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncGeneratorProvider, AuthFileMixin
|
||||||
|
from g4f.errors import MissingAuthError
|
||||||
|
|
||||||
|
class AuthenticatedProvider(AsyncGeneratorProvider, AuthFileMixin):
|
||||||
|
url = "https://api.secure-example.com"
|
||||||
|
working = True
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def create_async_generator(
|
||||||
|
cls,
|
||||||
|
model: str,
|
||||||
|
messages: Messages,
|
||||||
|
api_key: str = None,
|
||||||
|
**kwargs
|
||||||
|
) -> AsyncResult:
|
||||||
|
if not api_key:
|
||||||
|
raise MissingAuthError(f"API key required for {cls.__name__}")
|
||||||
|
|
||||||
|
headers = {
|
||||||
|
"Authorization": f"Bearer {api_key}",
|
||||||
|
"Content-Type": "application/json"
|
||||||
|
}
|
||||||
|
|
||||||
|
# Implementation here
|
||||||
|
yield "Authenticated response"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider with Image Support
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import AsyncGeneratorProvider
|
||||||
|
from g4f.providers.create_images import CreateImagesProvider
|
||||||
|
|
||||||
|
class ImageProvider(AsyncGeneratorProvider, CreateImagesProvider):
|
||||||
|
url = "https://api.image-example.com"
|
||||||
|
working = True
|
||||||
|
image_models = ["image-model-1", "image-model-2"]
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
async def create_async_generator(
|
||||||
|
cls,
|
||||||
|
model: str,
|
||||||
|
messages: Messages,
|
||||||
|
**kwargs
|
||||||
|
) -> AsyncResult:
|
||||||
|
# Handle both text and image generation
|
||||||
|
if model in cls.image_models:
|
||||||
|
# Image generation logic
|
||||||
|
yield cls.create_image_response(messages[-1]["content"])
|
||||||
|
else:
|
||||||
|
# Text generation logic
|
||||||
|
yield "Text response"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provider Parameters
|
||||||
|
|
||||||
|
### Common Parameters
|
||||||
|
|
||||||
|
All providers support these standard parameters:
|
||||||
|
|
||||||
|
```python
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=messages,
|
||||||
|
provider=SomeProvider,
|
||||||
|
|
||||||
|
# Common parameters
|
||||||
|
stream=True, # Enable streaming
|
||||||
|
proxy="http://proxy:8080", # Proxy server
|
||||||
|
timeout=30, # Request timeout
|
||||||
|
max_tokens=1000, # Maximum tokens
|
||||||
|
temperature=0.7, # Response randomness
|
||||||
|
top_p=0.9, # Nucleus sampling
|
||||||
|
stop=["stop", "end"], # Stop sequences
|
||||||
|
|
||||||
|
# Provider-specific parameters
|
||||||
|
api_key="your-api-key", # For authenticated providers
|
||||||
|
custom_param="value" # Provider-specific options
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Getting Provider Parameters
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import Copilot
|
||||||
|
|
||||||
|
# Get supported parameters
|
||||||
|
params = Copilot.get_parameters()
|
||||||
|
print(params)
|
||||||
|
|
||||||
|
# Get parameters as JSON with examples
|
||||||
|
json_params = Copilot.get_parameters(as_json=True)
|
||||||
|
print(json_params)
|
||||||
|
|
||||||
|
# Get parameter information string
|
||||||
|
print(Copilot.params)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provider Status and Health
|
||||||
|
|
||||||
|
### Checking Provider Status
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Check if provider is working
|
||||||
|
if Provider.Copilot.working:
|
||||||
|
print("Copilot is available")
|
||||||
|
|
||||||
|
# Check streaming support
|
||||||
|
if Provider.Copilot.supports_stream:
|
||||||
|
print("Copilot supports streaming")
|
||||||
|
|
||||||
|
# Check system message support
|
||||||
|
if Provider.Copilot.supports_system_message:
|
||||||
|
print("Copilot supports system messages")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider Information
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.Provider import ProviderUtils
|
||||||
|
|
||||||
|
# Get all providers
|
||||||
|
all_providers = ProviderUtils.convert
|
||||||
|
|
||||||
|
# Get working providers
|
||||||
|
working_providers = {
|
||||||
|
name: provider for name, provider in all_providers.items()
|
||||||
|
if provider.working
|
||||||
|
}
|
||||||
|
|
||||||
|
# Get providers supporting specific features
|
||||||
|
streaming_providers = {
|
||||||
|
name: provider for name, provider in all_providers.items()
|
||||||
|
if provider.supports_stream
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provider Error Handling
|
||||||
|
|
||||||
|
### Common Provider Errors
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.errors import (
|
||||||
|
ProviderNotFoundError,
|
||||||
|
ProviderNotWorkingError,
|
||||||
|
MissingAuthError,
|
||||||
|
RateLimitError,
|
||||||
|
PaymentRequiredError
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}],
|
||||||
|
provider=SomeProvider
|
||||||
|
)
|
||||||
|
except ProviderNotWorkingError:
|
||||||
|
print("Provider is currently not working")
|
||||||
|
except MissingAuthError:
|
||||||
|
print("Authentication required for this provider")
|
||||||
|
except RateLimitError:
|
||||||
|
print("Rate limit exceeded")
|
||||||
|
except PaymentRequiredError:
|
||||||
|
print("Payment or subscription required")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider-Specific Error Handling
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.base_provider import RaiseErrorMixin
|
||||||
|
|
||||||
|
class SafeProvider(AsyncGeneratorProvider, RaiseErrorMixin):
|
||||||
|
@classmethod
|
||||||
|
async def create_async_generator(cls, model, messages, **kwargs):
|
||||||
|
try:
|
||||||
|
# Provider implementation
|
||||||
|
yield "response"
|
||||||
|
except Exception as e:
|
||||||
|
# Use built-in error handling
|
||||||
|
cls.raise_error({"error": str(e)})
|
||||||
|
```
|
||||||
|
|
||||||
|
## Provider Testing
|
||||||
|
|
||||||
|
### Testing Custom Providers
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
from g4f.client import AsyncClient
|
||||||
|
|
||||||
|
async def test_provider():
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model="test-model",
|
||||||
|
messages=[{"role": "user", "content": "Test message"}],
|
||||||
|
provider=CustomProvider
|
||||||
|
)
|
||||||
|
print(f"Success: {response.choices[0].message.content}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error: {e}")
|
||||||
|
|
||||||
|
asyncio.run(test_provider())
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider Performance Testing
|
||||||
|
|
||||||
|
```python
|
||||||
|
import time
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
async def benchmark_provider(provider, model, message, iterations=10):
|
||||||
|
client = AsyncClient()
|
||||||
|
times = []
|
||||||
|
|
||||||
|
for i in range(iterations):
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=[{"role": "user", "content": message}],
|
||||||
|
provider=provider
|
||||||
|
)
|
||||||
|
end_time = time.time()
|
||||||
|
times.append(end_time - start_time)
|
||||||
|
print(f"Iteration {i+1}: {end_time - start_time:.2f}s")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Iteration {i+1}: Error - {e}")
|
||||||
|
|
||||||
|
if times:
|
||||||
|
avg_time = sum(times) / len(times)
|
||||||
|
print(f"Average response time: {avg_time:.2f}s")
|
||||||
|
print(f"Success rate: {len(times)}/{iterations}")
|
||||||
|
|
||||||
|
# Example usage
|
||||||
|
asyncio.run(benchmark_provider(
|
||||||
|
Provider.Copilot,
|
||||||
|
"gpt-4",
|
||||||
|
"Hello, how are you?",
|
||||||
|
5
|
||||||
|
))
|
||||||
|
```
|
||||||
|
|
||||||
|
## Best Practices
|
||||||
|
|
||||||
|
### 1. Provider Selection Strategy
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.providers.retry_provider import IterListProvider
|
||||||
|
from g4f import Provider
|
||||||
|
|
||||||
|
# Prioritize reliable providers
|
||||||
|
reliable_providers = IterListProvider([
|
||||||
|
Provider.Copilot, # High reliability, good features
|
||||||
|
Provider.Blackbox, # Good fallback
|
||||||
|
Provider.PollinationsAI, # Good for diverse models
|
||||||
|
Provider.DeepInfraChat # Open source models
|
||||||
|
])
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Error Recovery
|
||||||
|
|
||||||
|
```python
|
||||||
|
async def robust_chat_completion(client, model, messages, max_retries=3):
|
||||||
|
providers = [Provider.Copilot, Provider.Blackbox, Provider.PollinationsAI]
|
||||||
|
|
||||||
|
for attempt in range(max_retries):
|
||||||
|
for provider in providers:
|
||||||
|
try:
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=messages,
|
||||||
|
provider=provider,
|
||||||
|
timeout=30
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Attempt {attempt+1} with {provider.__name__} failed: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
raise Exception("All providers failed")
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3. Provider Health Monitoring
|
||||||
|
|
||||||
|
```python
|
||||||
|
async def check_provider_health():
|
||||||
|
test_message = [{"role": "user", "content": "Hello"}]
|
||||||
|
client = AsyncClient()
|
||||||
|
|
||||||
|
providers_to_test = [
|
||||||
|
Provider.Copilot,
|
||||||
|
Provider.Blackbox,
|
||||||
|
Provider.PollinationsAI
|
||||||
|
]
|
||||||
|
|
||||||
|
health_status = {}
|
||||||
|
|
||||||
|
for provider in providers_to_test:
|
||||||
|
try:
|
||||||
|
start_time = time.time()
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model="gpt-4",
|
||||||
|
messages=test_message,
|
||||||
|
provider=provider,
|
||||||
|
timeout=10
|
||||||
|
)
|
||||||
|
response_time = time.time() - start_time
|
||||||
|
|
||||||
|
health_status[provider.__name__] = {
|
||||||
|
"status": "healthy",
|
||||||
|
"response_time": response_time,
|
||||||
|
"response_length": len(response.choices[0].message.content)
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
health_status[provider.__name__] = {
|
||||||
|
"status": "unhealthy",
|
||||||
|
"error": str(e)
|
||||||
|
}
|
||||||
|
|
||||||
|
return health_status
|
||||||
|
```
|
||||||
|
|
||||||
|
This documentation provides a comprehensive guide to understanding and working with the G4F provider system. For the latest provider status and capabilities, always check the official repository.
|
||||||
886
REST_API_DOCUMENTATION.md
Normal file
886
REST_API_DOCUMENTATION.md
Normal file
|
|
@ -0,0 +1,886 @@
|
||||||
|
# G4F REST API Documentation
|
||||||
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
G4F provides a FastAPI-based REST API that is fully compatible with OpenAI's API specifications. This allows you to use existing OpenAI-compatible tools and libraries with G4F's free AI providers.
|
||||||
|
|
||||||
|
## Getting Started
|
||||||
|
|
||||||
|
### Starting the API Server
|
||||||
|
|
||||||
|
#### Command Line
|
||||||
|
```bash
|
||||||
|
# Basic startup
|
||||||
|
g4f api
|
||||||
|
|
||||||
|
# Custom port and debug mode
|
||||||
|
g4f api --port 8080 --debug
|
||||||
|
|
||||||
|
# With GUI interface
|
||||||
|
g4f api --gui --port 8080
|
||||||
|
|
||||||
|
# With authentication
|
||||||
|
g4f api --g4f-api-key "your-secret-key"
|
||||||
|
|
||||||
|
# With custom provider and model defaults
|
||||||
|
g4f api --provider Copilot --model gpt-4o
|
||||||
|
|
||||||
|
# Full configuration example
|
||||||
|
g4f api \
|
||||||
|
--port 8080 \
|
||||||
|
--debug \
|
||||||
|
--gui \
|
||||||
|
--g4f-api-key "secret-key" \
|
||||||
|
--provider Copilot \
|
||||||
|
--model gpt-4o-mini \
|
||||||
|
--proxy "http://proxy.example.com:8080" \
|
||||||
|
--timeout 300
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Programmatic Startup
|
||||||
|
```python
|
||||||
|
from g4f.api import run_api, AppConfig
|
||||||
|
|
||||||
|
# Configure the application
|
||||||
|
AppConfig.set_config(
|
||||||
|
g4f_api_key="your-secret-key",
|
||||||
|
provider="Copilot",
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
gui=True,
|
||||||
|
timeout=300
|
||||||
|
)
|
||||||
|
|
||||||
|
# Start the server
|
||||||
|
run_api(host="0.0.0.0", port=8080, debug=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Base URL
|
||||||
|
|
||||||
|
Once started, the API is available at:
|
||||||
|
- **Default**: `http://localhost:1337`
|
||||||
|
- **Custom port**: `http://localhost:<PORT>`
|
||||||
|
|
||||||
|
## Authentication
|
||||||
|
|
||||||
|
G4F API supports optional authentication via API keys.
|
||||||
|
|
||||||
|
### Setting Up Authentication
|
||||||
|
```bash
|
||||||
|
# Start server with authentication
|
||||||
|
g4f api --g4f-api-key "your-secret-key"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using Authentication
|
||||||
|
```python
|
||||||
|
import openai
|
||||||
|
|
||||||
|
client = openai.OpenAI(
|
||||||
|
api_key="your-secret-key",
|
||||||
|
base_url="http://localhost:1337/v1"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### HTTP Headers
|
||||||
|
```http
|
||||||
|
Authorization: Bearer your-secret-key
|
||||||
|
# OR
|
||||||
|
g4f-api-key: your-secret-key
|
||||||
|
```
|
||||||
|
|
||||||
|
## API Endpoints
|
||||||
|
|
||||||
|
### Chat Completions
|
||||||
|
|
||||||
|
#### `POST /v1/chat/completions`
|
||||||
|
|
||||||
|
Creates a chat completion response.
|
||||||
|
|
||||||
|
**Request Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"messages": [
|
||||||
|
{"role": "system", "content": "You are a helpful assistant."},
|
||||||
|
{"role": "user", "content": "Hello!"}
|
||||||
|
],
|
||||||
|
"stream": false,
|
||||||
|
"max_tokens": 1000,
|
||||||
|
"temperature": 0.7,
|
||||||
|
"top_p": 0.9,
|
||||||
|
"frequency_penalty": 0,
|
||||||
|
"presence_penalty": 0,
|
||||||
|
"stop": ["Human:", "AI:"],
|
||||||
|
"provider": "Copilot",
|
||||||
|
"proxy": "http://proxy.example.com:8080",
|
||||||
|
"response_format": {"type": "json_object"},
|
||||||
|
"tools": [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_weather",
|
||||||
|
"description": "Get weather information",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {"type": "string"}
|
||||||
|
},
|
||||||
|
"required": ["location"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `model` (string, required): Model to use for completion
|
||||||
|
- `messages` (array, required): List of message objects
|
||||||
|
- `stream` (boolean): Enable streaming responses
|
||||||
|
- `max_tokens` (integer): Maximum tokens to generate
|
||||||
|
- `temperature` (number): Sampling temperature (0-2)
|
||||||
|
- `top_p` (number): Nucleus sampling parameter
|
||||||
|
- `frequency_penalty` (number): Frequency penalty (-2 to 2)
|
||||||
|
- `presence_penalty` (number): Presence penalty (-2 to 2)
|
||||||
|
- `stop` (string|array): Stop sequences
|
||||||
|
- `provider` (string): Specific provider to use
|
||||||
|
- `proxy` (string): Proxy server URL
|
||||||
|
- `response_format` (object): Response format specification
|
||||||
|
- `tools` (array): Available tools/functions
|
||||||
|
|
||||||
|
**Response (Non-streaming):**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"id": "chatcmpl-abc123",
|
||||||
|
"object": "chat.completion",
|
||||||
|
"created": 1677652288,
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"provider": "Copilot",
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": "Hello! How can I help you today?"
|
||||||
|
},
|
||||||
|
"finish_reason": "stop"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": 10,
|
||||||
|
"completion_tokens": 8,
|
||||||
|
"total_tokens": 18
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Response (Streaming):**
|
||||||
|
```http
|
||||||
|
Content-Type: text/event-stream
|
||||||
|
|
||||||
|
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"Hello"},"finish_reason":null}]}
|
||||||
|
|
||||||
|
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{"content":"!"},"finish_reason":null}]}
|
||||||
|
|
||||||
|
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1677652288,"model":"gpt-4o-mini","choices":[{"index":0,"delta":{},"finish_reason":"stop"}],"usage":{"prompt_tokens":10,"completion_tokens":8,"total_tokens":18}}
|
||||||
|
|
||||||
|
data: [DONE]
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Example Usage
|
||||||
|
|
||||||
|
**cURL:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/v1/chat/completions" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-H "g4f-api-key: your-secret-key" \
|
||||||
|
-d '{
|
||||||
|
"model": "gpt-4o-mini",
|
||||||
|
"messages": [{"role": "user", "content": "Hello!"}],
|
||||||
|
"stream": false
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
**Python:**
|
||||||
|
```python
|
||||||
|
import openai
|
||||||
|
|
||||||
|
client = openai.OpenAI(
|
||||||
|
api_key="your-secret-key",
|
||||||
|
base_url="http://localhost:1337/v1"
|
||||||
|
)
|
||||||
|
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.choices[0].message.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
**JavaScript:**
|
||||||
|
```javascript
|
||||||
|
const OpenAI = require('openai');
|
||||||
|
|
||||||
|
const client = new OpenAI({
|
||||||
|
apiKey: 'your-secret-key',
|
||||||
|
baseURL: 'http://localhost:1337/v1'
|
||||||
|
});
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
const response = await client.chat.completions.create({
|
||||||
|
model: 'gpt-4o-mini',
|
||||||
|
messages: [{ role: 'user', content: 'Hello!' }]
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(response.choices[0].message.content);
|
||||||
|
}
|
||||||
|
|
||||||
|
main();
|
||||||
|
```
|
||||||
|
|
||||||
|
### Image Generation
|
||||||
|
|
||||||
|
#### `POST /v1/images/generations`
|
||||||
|
|
||||||
|
Generates images from text prompts.
|
||||||
|
|
||||||
|
**Request Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"prompt": "A beautiful sunset over mountains",
|
||||||
|
"model": "dall-e-3",
|
||||||
|
"n": 1,
|
||||||
|
"size": "1024x1024",
|
||||||
|
"response_format": "url",
|
||||||
|
"provider": "PollinationsAI"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Parameters:**
|
||||||
|
- `prompt` (string, required): Text description of desired image
|
||||||
|
- `model` (string): Image model to use
|
||||||
|
- `n` (integer): Number of images to generate (1-4)
|
||||||
|
- `size` (string): Image dimensions
|
||||||
|
- `response_format` (string): "url" or "b64_json"
|
||||||
|
- `provider` (string): Specific provider to use
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"created": 1677652288,
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"url": "https://example.com/generated-image.jpg"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Example Usage
|
||||||
|
|
||||||
|
**cURL:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/v1/images/generations" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-H "g4f-api-key: your-secret-key" \
|
||||||
|
-d '{
|
||||||
|
"prompt": "A beautiful sunset",
|
||||||
|
"model": "dall-e-3",
|
||||||
|
"response_format": "url"
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
**Python:**
|
||||||
|
```python
|
||||||
|
response = client.images.generate(
|
||||||
|
prompt="A beautiful sunset over mountains",
|
||||||
|
model="dall-e-3",
|
||||||
|
size="1024x1024",
|
||||||
|
response_format="url"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(response.data[0].url)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Models
|
||||||
|
|
||||||
|
#### `GET /v1/models`
|
||||||
|
|
||||||
|
Lists available models.
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": "gpt-4o",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "OpenAI",
|
||||||
|
"image": false,
|
||||||
|
"provider": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "gpt-4o-mini",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "OpenAI",
|
||||||
|
"image": false,
|
||||||
|
"provider": false
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": "Copilot",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "Microsoft",
|
||||||
|
"image": false,
|
||||||
|
"provider": true
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `GET /v1/models/{model_name}`
|
||||||
|
|
||||||
|
Get information about a specific model.
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"id": "gpt-4o",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "OpenAI"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Provider-Specific Endpoints
|
||||||
|
|
||||||
|
#### `POST /api/{provider}/chat/completions`
|
||||||
|
|
||||||
|
Use a specific provider for chat completions.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/api/Copilot/chat/completions" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"model": "gpt-4",
|
||||||
|
"messages": [{"role": "user", "content": "Hello!"}]
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `GET /api/{provider}/models`
|
||||||
|
|
||||||
|
Get models available for a specific provider.
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": "gpt-4",
|
||||||
|
"object": "model",
|
||||||
|
"created": 0,
|
||||||
|
"owned_by": "Microsoft",
|
||||||
|
"image": false,
|
||||||
|
"vision": true
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Providers
|
||||||
|
|
||||||
|
#### `GET /v1/providers`
|
||||||
|
|
||||||
|
Lists all available providers.
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"provider": "Copilot",
|
||||||
|
"models": ["gpt-4", "gpt-4-vision"],
|
||||||
|
"image_models": [],
|
||||||
|
"vision_models": ["gpt-4-vision"],
|
||||||
|
"url": "https://copilot.microsoft.com",
|
||||||
|
"working": true,
|
||||||
|
"auth": false
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `GET /v1/providers/{provider}`
|
||||||
|
|
||||||
|
Get detailed information about a specific provider.
|
||||||
|
|
||||||
|
**Response:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"provider": "Copilot",
|
||||||
|
"models": ["gpt-4", "gpt-4-vision"],
|
||||||
|
"image_models": [],
|
||||||
|
"vision_models": ["gpt-4-vision"],
|
||||||
|
"url": "https://copilot.microsoft.com",
|
||||||
|
"working": true,
|
||||||
|
"auth": false,
|
||||||
|
"stream": true,
|
||||||
|
"description": "Microsoft Copilot AI assistant"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Audio
|
||||||
|
|
||||||
|
#### `POST /v1/audio/transcriptions`
|
||||||
|
|
||||||
|
Transcribe audio to text.
|
||||||
|
|
||||||
|
**Request:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/v1/audio/transcriptions" \
|
||||||
|
-H "g4f-api-key: your-secret-key" \
|
||||||
|
-F "file=@audio.mp3" \
|
||||||
|
-F "model=whisper-1"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `POST /v1/audio/speech`
|
||||||
|
|
||||||
|
Generate speech from text.
|
||||||
|
|
||||||
|
**Request Body:**
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "tts-1",
|
||||||
|
"input": "Hello, this is a test.",
|
||||||
|
"voice": "alloy"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### File Upload and Media
|
||||||
|
|
||||||
|
#### `POST /v1/upload_cookies`
|
||||||
|
|
||||||
|
Upload cookie files for authentication.
|
||||||
|
|
||||||
|
**Request:**
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/v1/upload_cookies" \
|
||||||
|
-H "g4f-api-key: your-secret-key" \
|
||||||
|
-F "files=@cookies.json"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### `GET /media/{filename}`
|
||||||
|
|
||||||
|
Access generated media files.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
```
|
||||||
|
GET /media/generated-image-abc123.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
## Advanced Features
|
||||||
|
|
||||||
|
### Conversation Management
|
||||||
|
|
||||||
|
#### Conversation ID
|
||||||
|
Use conversation IDs to maintain context across requests:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o",
|
||||||
|
"messages": [{"role": "user", "content": "Hello!"}],
|
||||||
|
"conversation_id": "conv-abc123"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Provider-Specific Conversations
|
||||||
|
```bash
|
||||||
|
curl -X POST "http://localhost:1337/api/Copilot/conv-123/chat/completions" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"model": "gpt-4",
|
||||||
|
"messages": [{"role": "user", "content": "Continue our conversation"}]
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
### Vision Models
|
||||||
|
|
||||||
|
Send images with text for vision-capable models:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o",
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "What's in this image?"},
|
||||||
|
{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url": "..."
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Tool/Function Calling
|
||||||
|
|
||||||
|
Define and use tools in your requests:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o",
|
||||||
|
"messages": [{"role": "user", "content": "What's the weather in Paris?"}],
|
||||||
|
"tools": [
|
||||||
|
{
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": "get_weather",
|
||||||
|
"description": "Get current weather",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"location": {"type": "string", "description": "City name"}
|
||||||
|
},
|
||||||
|
"required": ["location"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Custom Response Formats
|
||||||
|
|
||||||
|
#### JSON Mode
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"model": "gpt-4o",
|
||||||
|
"messages": [{"role": "user", "content": "Generate a JSON object with user info"}],
|
||||||
|
"response_format": {"type": "json_object"}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Error Handling
|
||||||
|
|
||||||
|
### Error Response Format
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"error": {
|
||||||
|
"message": "Model not found",
|
||||||
|
"type": "model_not_found",
|
||||||
|
"code": "model_not_found"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Common HTTP Status Codes
|
||||||
|
|
||||||
|
- **200**: Success
|
||||||
|
- **400**: Bad Request (invalid parameters)
|
||||||
|
- **401**: Unauthorized (missing or invalid API key)
|
||||||
|
- **403**: Forbidden (insufficient permissions)
|
||||||
|
- **404**: Not Found (model or provider not found)
|
||||||
|
- **422**: Unprocessable Entity (validation error)
|
||||||
|
- **500**: Internal Server Error
|
||||||
|
|
||||||
|
### Error Types
|
||||||
|
|
||||||
|
#### Authentication Errors
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"error": {
|
||||||
|
"message": "Invalid API key",
|
||||||
|
"type": "authentication_error",
|
||||||
|
"code": "invalid_api_key"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Model Errors
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"error": {
|
||||||
|
"message": "Model 'invalid-model' not found",
|
||||||
|
"type": "model_not_found",
|
||||||
|
"code": "model_not_found"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Provider Errors
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"error": {
|
||||||
|
"message": "Provider not working",
|
||||||
|
"type": "provider_error",
|
||||||
|
"code": "provider_not_working"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Configuration
|
||||||
|
|
||||||
|
### Environment Variables
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Set API configuration via environment
|
||||||
|
export G4F_PROXY="http://proxy.example.com:8080"
|
||||||
|
export G4F_API_KEY="your-secret-key"
|
||||||
|
export G4F_DEBUG="true"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Runtime Configuration
|
||||||
|
|
||||||
|
```python
|
||||||
|
from g4f.api import AppConfig
|
||||||
|
|
||||||
|
# Configure at runtime
|
||||||
|
AppConfig.set_config(
|
||||||
|
g4f_api_key="secret-key",
|
||||||
|
provider="Copilot",
|
||||||
|
model="gpt-4o",
|
||||||
|
proxy="http://proxy.example.com:8080",
|
||||||
|
timeout=300,
|
||||||
|
ignored_providers=["SomeProvider"],
|
||||||
|
gui=True,
|
||||||
|
demo=False
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Integration Examples
|
||||||
|
|
||||||
|
### OpenAI Python Client
|
||||||
|
|
||||||
|
```python
|
||||||
|
import openai
|
||||||
|
|
||||||
|
client = openai.OpenAI(
|
||||||
|
api_key="g4f-api-key",
|
||||||
|
base_url="http://localhost:1337/v1"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Standard usage
|
||||||
|
response = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Hello!"}]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Streaming
|
||||||
|
stream = client.chat.completions.create(
|
||||||
|
model="gpt-4o-mini",
|
||||||
|
messages=[{"role": "user", "content": "Tell me a story"}],
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
for chunk in stream:
|
||||||
|
if chunk.choices[0].delta.content:
|
||||||
|
print(chunk.choices[0].delta.content, end="")
|
||||||
|
```
|
||||||
|
|
||||||
|
### LangChain Integration
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.schema import HumanMessage
|
||||||
|
|
||||||
|
llm = ChatOpenAI(
|
||||||
|
openai_api_base="http://localhost:1337/v1",
|
||||||
|
openai_api_key="g4f-api-key",
|
||||||
|
model_name="gpt-4o-mini"
|
||||||
|
)
|
||||||
|
|
||||||
|
response = llm([HumanMessage(content="Hello!")])
|
||||||
|
print(response.content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Node.js Integration
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const { Configuration, OpenAIApi } = require("openai");
|
||||||
|
|
||||||
|
const configuration = new Configuration({
|
||||||
|
apiKey: "g4f-api-key",
|
||||||
|
basePath: "http://localhost:1337/v1"
|
||||||
|
});
|
||||||
|
|
||||||
|
const openai = new OpenAIApi(configuration);
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
const response = await openai.createChatCompletion({
|
||||||
|
model: "gpt-4o-mini",
|
||||||
|
messages: [{ role: "user", content: "Hello!" }]
|
||||||
|
});
|
||||||
|
|
||||||
|
console.log(response.data.choices[0].message.content);
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance and Scaling
|
||||||
|
|
||||||
|
### Rate Limiting
|
||||||
|
|
||||||
|
G4F API doesn't implement built-in rate limiting, but you can add it using:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from slowapi import Limiter, _rate_limit_exceeded_handler
|
||||||
|
from slowapi.util import get_remote_address
|
||||||
|
from slowapi.errors import RateLimitExceeded
|
||||||
|
from fastapi import Request
|
||||||
|
|
||||||
|
limiter = Limiter(key_func=get_remote_address)
|
||||||
|
|
||||||
|
@app.middleware("http")
|
||||||
|
async def rate_limit_middleware(request: Request, call_next):
|
||||||
|
# Custom rate limiting logic
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
### Caching
|
||||||
|
|
||||||
|
Implement response caching for improved performance:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from functools import lru_cache
|
||||||
|
import hashlib
|
||||||
|
|
||||||
|
@lru_cache(maxsize=1000)
|
||||||
|
def get_cached_response(request_hash):
|
||||||
|
# Cache implementation
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load Balancing
|
||||||
|
|
||||||
|
Use multiple G4F instances behind a load balancer:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
# docker-compose.yml
|
||||||
|
version: '3.8'
|
||||||
|
services:
|
||||||
|
g4f-1:
|
||||||
|
image: hlohaus789/g4f
|
||||||
|
ports:
|
||||||
|
- "1337:1337"
|
||||||
|
g4f-2:
|
||||||
|
image: hlohaus789/g4f
|
||||||
|
ports:
|
||||||
|
- "1338:1337"
|
||||||
|
nginx:
|
||||||
|
image: nginx
|
||||||
|
ports:
|
||||||
|
- "80:80"
|
||||||
|
volumes:
|
||||||
|
- ./nginx.conf:/etc/nginx/nginx.conf
|
||||||
|
```
|
||||||
|
|
||||||
|
## Security Considerations
|
||||||
|
|
||||||
|
### API Key Management
|
||||||
|
|
||||||
|
```python
|
||||||
|
import secrets
|
||||||
|
|
||||||
|
# Generate secure API key
|
||||||
|
api_key = secrets.token_urlsafe(32)
|
||||||
|
|
||||||
|
# Validate API key format
|
||||||
|
def is_valid_api_key(key):
|
||||||
|
return len(key) >= 32 and key.isalnum()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Input Validation
|
||||||
|
|
||||||
|
The API automatically validates:
|
||||||
|
- Message format and structure
|
||||||
|
- Model name validity
|
||||||
|
- Parameter ranges and types
|
||||||
|
- File upload security
|
||||||
|
|
||||||
|
### CORS Configuration
|
||||||
|
|
||||||
|
```python
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["https://yourdomain.com"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["GET", "POST"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Monitoring and Logging
|
||||||
|
|
||||||
|
### Enable Debug Logging
|
||||||
|
|
||||||
|
```bash
|
||||||
|
g4f api --debug
|
||||||
|
```
|
||||||
|
|
||||||
|
### Custom Logging
|
||||||
|
|
||||||
|
```python
|
||||||
|
import logging
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logging.basicConfig(
|
||||||
|
level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.getLogger("g4f.api")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Health Checks
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Check API health
|
||||||
|
curl http://localhost:1337/v1/models
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deployment
|
||||||
|
|
||||||
|
### Docker Deployment
|
||||||
|
|
||||||
|
```dockerfile
|
||||||
|
FROM hlohaus789/g4f:latest
|
||||||
|
|
||||||
|
# Set environment variables
|
||||||
|
ENV G4F_API_KEY=your-secret-key
|
||||||
|
ENV G4F_DEBUG=false
|
||||||
|
|
||||||
|
# Expose port
|
||||||
|
EXPOSE 1337
|
||||||
|
|
||||||
|
# Start API
|
||||||
|
CMD ["python", "-m", "g4f.cli", "api", "--host", "0.0.0.0", "--port", "1337"]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Production Deployment
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install production dependencies
|
||||||
|
pip install gunicorn uvloop
|
||||||
|
|
||||||
|
# Run with Gunicorn
|
||||||
|
gunicorn g4f.api:create_app \
|
||||||
|
--workers 4 \
|
||||||
|
--worker-class uvicorn.workers.UvicornWorker \
|
||||||
|
--bind 0.0.0.0:1337 \
|
||||||
|
--access-logfile - \
|
||||||
|
--error-logfile -
|
||||||
|
```
|
||||||
|
|
||||||
|
This comprehensive REST API documentation covers all aspects of using G4F's API endpoints. The API is designed to be fully compatible with OpenAI's API, making it easy to integrate with existing tools and workflows.
|
||||||
Loading…
Add table
Add a link
Reference in a new issue