refactor: reorganize providers and update model configurations

- Rename DeepInfraChat to DeepInfra across all files
- Move DeepInfra from needs_auth to main Provider directory
- Rename LMArenaBeta to LMArena throughout codebase
- Move search-related providers to new search subdirectory (GoogleSearch, SearXNG, YouTube)
- Move deprecated providers to not_working directory (Free2GPT, LegacyLMArena, PenguinAI, ImageLabs, har)
- Add new Mintlify provider with custom AI assistant implementation
- Update Anthropic provider with Claude 4 models and Opus 4.1 parameter handling
- Update Grok provider with Grok 4 models and improved streaming support
- Update GithubCopilot with expanded model list including o3-mini, o4-mini, gpt-5 previews
- Update LambdaChat default model from deepseek-r1 to deepseek-llama3.3-70b
- Update TeachAnything default model from gemini-1.5-pro to gemma
- Remove DeepInfra from needs_auth directory
- Update all model_map references from DeepInfraChat to DeepInfra
- Update all model_map references from LMArenaBeta to LMArena
- Add beta_headers support to Anthropic for special features
- Improve Mintlify provider with system prompt handling and streaming
- Update model configurations in models.py to reflect provider changes
This commit is contained in:
kqlio67 2025-08-25 23:50:53 +03:00
parent 2cf62a8e63
commit 9bac34fc88
26 changed files with 641 additions and 517 deletions

View file

@ -36,9 +36,39 @@ class Grok(AsyncAuthedProvider, ProviderModelMixin):
needs_auth = True
working = True
default_model = "grok-3"
models = [default_model, "grok-3-thinking", "grok-2"]
model_aliases = {"grok-3-r1": "grok-3-thinking"}
# Updated to Grok 4 as default
default_model = "grok-4"
# Updated model list with latest Grok 4 and 3 models
models = [
# Grok 4 models
"grok-4",
"grok-4-heavy",
"grok-4-reasoning",
# Grok 3 models
"grok-3",
"grok-3-reasoning",
"grok-3-mini",
"grok-3-mini-reasoning",
# Legacy Grok 2 (still supported)
"grok-2",
"grok-2-image",
# Latest aliases
"grok-latest",
]
model_aliases = {
# Grok 3 aliases
"grok-3-thinking": "grok-3-reasoning",
"grok-3-r1": "grok-3-reasoning",
"grok-3-mini-thinking": "grok-3-mini-reasoning",
# Latest alias
"grok": "grok-latest",
}
@classmethod
async def on_auth_async(cls, proxy: str = None, **kwargs) -> AsyncIterator:
@ -79,14 +109,35 @@ class Grok(AsyncAuthedProvider, ProviderModelMixin):
@classmethod
async def _prepare_payload(cls, model: str, message: str) -> Dict[str, Any]:
# Map model names to API model names
api_model = "grok-latest"
if model in ["grok-4", "grok-4-heavy", "grok-4-reasoning"]:
api_model = model
elif model == "grok-3":
api_model = "grok-3"
elif model in ["grok-3-mini", "grok-3-mini-reasoning"]:
api_model = "grok-3-mini"
elif model == "grok-2":
api_model = "grok-2"
# Check if it's a reasoning model
is_reasoning = model.endswith("-reasoning") or model.endswith("-thinking") or model.endswith("-r1")
# Enable Big Brain mode for heavy models
enable_big_brain = "heavy" in model or "big-brain" in model
# Enable DeepSearch for Grok 3+ models
enable_deep_search = not model.startswith("grok-2")
return {
"temporary": True,
"modelName": "grok-latest" if model == "grok-2" else "grok-3",
"modelName": api_model,
"message": message,
"fileAttachments": [],
"imageAttachments": [],
"disableSearch": False,
"enableImageGeneration": True,
"enableImageGeneration": model == "grok-2-image" or model == "grok-4",
"returnImageBytes": False,
"returnRawGrokInXaiRequest": False,
"enableImageStreaming": True,
@ -97,8 +148,11 @@ class Grok(AsyncAuthedProvider, ProviderModelMixin):
"isPreset": False,
"sendFinalMetadata": True,
"customInstructions": "",
"deepsearchPreset": "",
"isReasoning": model.endswith("-thinking") or model.endswith("-r1"),
"deepsearchPreset": "enabled" if enable_deep_search else "",
"isReasoning": is_reasoning,
"enableBigBrain": enable_big_brain,
"enableLiveSearch": False, # Real-time search for Grok 4
"contextWindow": 256000 if model.startswith("grok-4") else 131072, # 256k for Grok 4, 128k for others
}
@classmethod
@ -112,38 +166,78 @@ class Grok(AsyncAuthedProvider, ProviderModelMixin):
) -> AsyncResult:
conversation_id = None if conversation is None else conversation.conversation_id
prompt = format_prompt(messages) if conversation_id is None else get_last_user_message(messages)
async with StreamSession(
**auth_result.get_dict()
) as session:
payload = await cls._prepare_payload(model, prompt)
# Add voice mode support flag (for future use)
if kwargs.get("enable_voice", False):
payload["enableVoiceMode"] = True
if conversation_id is None:
url = f"{cls.conversation_url}/new"
else:
url = f"{cls.conversation_url}/{conversation_id}/responses"
async with session.post(url, json=payload, headers={"x-xai-request-id": str(uuid.uuid4())}) as response:
if response.status == 403:
raise MissingAuthError("Invalid secrets")
auth_result.cookies = merge_cookies(auth_result.cookies, response)
await raise_for_status(response)
thinking_duration = None
deep_search_active = False
async for line in response.iter_lines():
if line:
try:
json_data = json.loads(line)
result = json_data.get("result", {})
if conversation_id is None:
conversation_id = result.get("conversation", {}).get("conversationId")
response_data = result.get("response", {})
# Handle DeepSearch status
deep_search = response_data.get("deepSearchStatus")
if deep_search:
if not deep_search_active:
deep_search_active = True
yield Reasoning(status="🔍 Deep searching...")
if deep_search.get("completed"):
deep_search_active = False
yield Reasoning(status="Deep search completed")
# Handle image generation (Aurora for Grok 3+)
image = response_data.get("streamingImageGenerationResponse", None)
if image is not None:
yield ImagePreview(f'{cls.assets_url}/{image["imageUrl"]}', "", {"cookies": auth_result.cookies, "headers": auth_result.headers})
image_url = image.get("imageUrl")
if image_url:
yield ImagePreview(
f'{cls.assets_url}/{image_url}',
"",
{"cookies": auth_result.cookies, "headers": auth_result.headers}
)
# Handle text tokens
token = response_data.get("token", result.get("token"))
is_thinking = response_data.get("isThinking", result.get("isThinking"))
if token:
if is_thinking:
if thinking_duration is None:
thinking_duration = time.time()
yield Reasoning(status="🤔 Is thinking...")
# Different status for different models
if "grok-4" in model:
status = "🧠 Grok 4 is processing..."
elif "big-brain" in payload and payload["enableBigBrain"]:
status = "🧠 Big Brain mode active..."
else:
status = "🤔 Is thinking..."
yield Reasoning(status=status)
yield Reasoning(token)
else:
if thinking_duration is not None:
@ -152,13 +246,31 @@ class Grok(AsyncAuthedProvider, ProviderModelMixin):
thinking_duration = None
yield Reasoning(status=status)
yield token
# Handle generated images
generated_images = response_data.get("modelResponse", {}).get("generatedImageUrls", None)
if generated_images:
yield ImageResponse([f'{cls.assets_url}/{image}' for image in generated_images], "", {"cookies": auth_result.cookies, "headers": auth_result.headers})
yield ImageResponse(
[f'{cls.assets_url}/{image}' for image in generated_images],
"",
{"cookies": auth_result.cookies, "headers": auth_result.headers}
)
# Handle title generation
title = result.get("title", {}).get("newTitle", "")
if title:
yield TitleGeneration(title)
# Handle tool usage information (Grok 4)
tool_usage = response_data.get("toolUsage")
if tool_usage:
tools_used = tool_usage.get("toolsUsed", [])
if tools_used:
yield Reasoning(status=f"Used tools: {', '.join(tools_used)}")
except json.JSONDecodeError:
continue
# if conversation_id is not None:
# yield Conversation(conversation_id)
# Return conversation ID for continuation
if conversation_id is not None and kwargs.get("return_conversation", False):
yield Conversation(conversation_id)