Fix LMAreana provider

This commit is contained in:
hlohaus 2025-11-10 09:30:53 +01:00
parent 5bacb669b2
commit 213e04bae7
5 changed files with 103 additions and 1054 deletions

View file

@ -36,7 +36,7 @@ def clean_name(name: str) -> str:
class Cloudflare(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
label = "Cloudflare AI"
url = "https://playground.ai.cloudflare.com"
working = has_curl_cffi
working = False
use_nodriver = True
active_by_default = True
api_endpoint = "https://playground.ai.cloudflare.com/api/inference"

View file

@ -1,11 +1,12 @@
from __future__ import annotations
import uuid
import json
import asyncio
import os
import requests
import json
import time
import secrets
try:
import curl_cffi
@ -26,11 +27,26 @@ from ...requests import StreamSession, get_args_from_nodriver, raise_for_status,
from ...errors import ModelNotFoundError, CloudflareError, MissingAuthError, MissingRequirementsError
from ...providers.response import FinishReason, Usage, JsonConversation, ImageResponse, Reasoning, PlainTextResponse, JsonRequest
from ...tools.media import merge_media
from ...integration import uuid
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin
from ..helper import get_last_user_message
from ... import debug
def uuid7():
"""
Generate a UUIDv7 using Unix epoch (milliseconds since 1970-01-01)
matching the browser's implementation.
"""
timestamp_ms = int(time.time() * 1000)
rand_a = secrets.randbits(12)
rand_b = secrets.randbits(62)
uuid_int = timestamp_ms << 80
uuid_int |= (0x7000 | rand_a) << 64
uuid_int |= (0x8000000000000000 | rand_b)
hex_str = f"{uuid_int:032x}"
return f"{hex_str[0:8]}-{hex_str[8:12]}-{hex_str[12:16]}-{hex_str[16:20]}-{hex_str[20:32]}"
models = [
{'id': '812c93cc-5f88-4cff-b9ca-c11a26599b0e', 'publicName': 'qwen3-max-preview',
'capabilities': {'inputCapabilities': {'text': True}, 'outputCapabilities': {'text': True}},
@ -485,7 +501,8 @@ class LMArena(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
label = "LMArena"
url = "https://lmarena.ai"
share_url = None
api_endpoint = "https://lmarena.ai/nextjs-api/stream/create-evaluation"
create_evaluation = "https://lmarena.ai/nextjs-api/stream/create-evaluation"
post_to_evaluation = "https://lmarena.ai/nextjs-api/stream/post-to-evaluation/{id}"
working = True
active_by_default = True
use_stream_timeout = False
@ -637,19 +654,21 @@ class LMArena(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
else:
raise ModelNotFoundError(f"Model '{model}' is not supported by LMArena provider.")
evaluationSessionId = str(uuid.uuid7())
userMessageId = str(uuid.uuid7())
modelAMessageId = str(uuid.uuid7())
if conversation and getattr(conversation, "evaluationSessionId", None):
url = cls.post_to_evaluation.format(id=conversation.evaluationSessionId)
evaluationSessionId = conversation.evaluationSessionId
else:
url = cls.create_evaluation
evaluationSessionId = str(uuid7())
userMessageId = str(uuid7())
modelAMessageId = str(uuid7())
data = {
"id": evaluationSessionId,
"mode": "direct",
"modelAId": model_id,
"userMessageId": userMessageId,
"modelAMessageId": modelAMessageId,
"messages": [
{
"id": userMessageId,
"role": "user",
"userMessage": {
"content": prompt,
"experimental_attachments": [
{
@ -660,33 +679,14 @@ class LMArena(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
for url, name in list(merge_media(media, messages))
if isinstance(url, str) and url.startswith("https://")
],
"parentMessageIds": [] if conversation is None else conversation.message_ids,
"participantPosition": "a",
"modelId": None,
"evaluationSessionId": evaluationSessionId,
"status": "pending",
"failureReason": None
},
{
"id": modelAMessageId,
"role": "assistant",
"content": "",
"experimental_attachments": [],
"parentMessageIds": [userMessageId],
"participantPosition": "a",
"modelId": model,
"evaluationSessionId": evaluationSessionId,
"status": "pending",
"failureReason": None
}
],
"modality": "image" if is_image_model else "chat"
"modality": "image" if is_image_model else "chat",
}
yield JsonRequest.from_dict(data)
try:
async with StreamSession(**args, timeout=timeout) as session:
async with session.post(
cls.api_endpoint,
url,
json=data,
proxy=proxy
) as response:
@ -695,9 +695,7 @@ class LMArena(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
async for chunk in response.iter_lines():
line = chunk.decode()
yield PlainTextResponse(line)
if line.startswith("af:"):
yield JsonConversation(message_ids=[modelAMessageId])
elif line.startswith("a0:"):
if line.startswith("a0:"):
chunk = json.loads(line[3:])
if chunk == "hasArenaError":
raise ModelNotFoundError("LMArena Beta encountered an error: hasArenaError")
@ -708,6 +706,7 @@ class LMArena(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
elif line.startswith("a2:"):
yield ImageResponse([image.get("image") for image in json.loads(line[3:])], prompt)
elif line.startswith("ad:"):
yield JsonConversation(evaluationSessionId=evaluationSessionId)
finish = json.loads(line[3:])
if "finishReason" in finish:
yield FinishReason(finish["finishReason"])

View file

@ -9,8 +9,10 @@ import uuid
import random
from urllib.parse import unquote
from copy import deepcopy
try:
from .crypt import decrypt, encrypt
except ImportError:
pass
from ...requests import StreamSession
from ...cookies import get_cookies_dir
from ...errors import NoValidHarFileError

View file

@ -4,16 +4,18 @@ from typing import Optional
from functools import partial
from dataclasses import dataclass, field
from pydantic_ai.models import Model, KnownModelName, infer_model
from pydantic_ai.models.openai import OpenAIModel, OpenAISystemPromptRole
from pydantic_ai import ModelResponsePart, ThinkingPart, ToolCallPart
from pydantic_ai.models import Model, ModelResponse, KnownModelName, infer_model
from pydantic_ai.models.openai import OpenAIChatModel, UnexpectedModelBehavior
from pydantic_ai.models.openai import OpenAISystemPromptRole, _CHAT_FINISH_REASON_MAP, _map_usage, _now_utc, number_to_datetime, split_content_into_text_and_thinking, replace
import pydantic_ai.models.openai
pydantic_ai.models.openai.NOT_GIVEN = None
from ..client import AsyncClient
from ..client import AsyncClient, ChatCompletion
@dataclass(init=False)
class AIModel(OpenAIModel):
class AIModel(OpenAIChatModel):
"""A model that uses the G4F API."""
client: AsyncClient = field(repr=False)
@ -54,6 +56,61 @@ class AIModel(OpenAIModel):
return f'g4f:{self._provider}:{self._model_name}'
return f'g4f:{self._model_name}'
def _process_response(self, response: ChatCompletion | str) -> ModelResponse:
"""Process a non-streamed response, and prepare a message to return."""
# Although the OpenAI SDK claims to return a Pydantic model (`ChatCompletion`) from the chat completions function:
# * it hasn't actually performed validation (presumably they're creating the model with `model_construct` or something?!)
# * if the endpoint returns plain text, the return type is a string
# Thus we validate it fully here.
if not isinstance(response, ChatCompletion):
raise UnexpectedModelBehavior('Invalid response from OpenAI chat completions endpoint, expected JSON data')
if response.created:
timestamp = number_to_datetime(response.created)
else:
timestamp = _now_utc()
response.created = int(timestamp.timestamp())
# Workaround for local Ollama which sometimes returns a `None` finish reason.
if response.choices and (choice := response.choices[0]) and choice.finish_reason is None: # pyright: ignore[reportUnnecessaryComparison]
choice.finish_reason = 'stop'
choice = response.choices[0]
items: list[ModelResponsePart] = []
# The `reasoning` field is only present in gpt-oss via Ollama and OpenRouter.
# - https://cookbook.openai.com/articles/gpt-oss/handle-raw-cot#chat-completions-api
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#basic-usage-with-reasoning-tokens
if reasoning := getattr(choice.message, 'reasoning', None):
items.append(ThinkingPart(id='reasoning', content=reasoning, provider_name=self.system))
# NOTE: We don't currently handle OpenRouter `reasoning_details`:
# - https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks
# If you need this, please file an issue.
if choice.message.content:
items.extend(
(replace(part, id='content', provider_name=self.system) if isinstance(part, ThinkingPart) else part)
for part in split_content_into_text_and_thinking(choice.message.content, self.profile.thinking_tags)
)
if choice.message.tool_calls is not None:
for c in choice.message.tool_calls:
items.append(ToolCallPart(c.get("function").get("name"), c.get("function").get("arguments"), tool_call_id=c.get("id")))
raw_finish_reason = choice.finish_reason
finish_reason = _CHAT_FINISH_REASON_MAP.get(raw_finish_reason)
return ModelResponse(
parts=items,
usage=_map_usage(response, self._provider, "", self._model_name),
model_name=response.model,
timestamp=timestamp,
provider_details=None,
provider_response_id=response.id,
provider_name=self._provider,
finish_reason=finish_reason,
)
def new_infer_model(model: Model | KnownModelName, api_key: str = None) -> Model:
if isinstance(model, Model):
return model
@ -69,4 +126,4 @@ def patch_infer_model(api_key: str | None = None):
import pydantic_ai.models
pydantic_ai.models.infer_model = partial(new_infer_model, api_key=api_key)
pydantic_ai.models.AIModel = AIModel
pydantic_ai.models.OpenAIChatModel = AIModel

File diff suppressed because it is too large Load diff