mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-24 22:40:51 -08:00
* configure.ac (HAVE__SETJMP, HAVE_SIGSETJMP): New symbols. (_setjmp, _longjmp): Remove. * src/lisp.h: Include <setjmp.h> here, since we use its symbols here. All instances of '#include <setjmp.h>' removed, if the only reason for the instance was because "lisp.h" was included. (sys_jmp_buf, sys_setjmp, sys_longjmp): New symbols. Unless otherwise specified, replace all uses of jmp_buf, _setjmp, and _longjmp with the new symbols. Emacs already uses _setjmp if available, so this change affects only POSIXish hosts that have sigsetjmp but not _setjmp, such as some versions of Solaris and Unixware. (Also, POSIX-2008 marks _setjmp as obsolescent.) * src/image.c (_setjmp, _longjmp) [HAVE_PNG && !HAVE__SETJMP]: New macros. (png_load_body) [HAVE_PNG]: (PNG_LONGJMP) [HAVE_PNG && PNG_LIBPNG_VER < 10500]: (PNG_JMPBUF) [HAVE_PNG && PNG_LIBPNG_VER >= 10500]: Use _setjmp and _longjmp rather than sys_setjmp and sys_longjmp, since PNG requires jmp_buf. This is the only exception to the general rule that we now use sys_setjmp and sys_longjmp. This exception is OK since this code does not change the signal mask or longjmp out of a signal handler. Fixes: debbugs:12446
567 lines
14 KiB
C
567 lines
14 KiB
C
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
|
||
|
||
Copyright (C) 1988, 1993-1994, 1999, 2001-2012
|
||
Free Software Foundation, Inc.
|
||
|
||
Author: Wolfgang Rupprecht
|
||
(according to ack.texi)
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* C89 requires only the following math.h functions, and Emacs omits
|
||
the starred functions since we haven't found a use for them:
|
||
acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
|
||
frexp, ldexp, log, log10, *modf, pow, sin, *sinh, sqrt, tan, *tanh.
|
||
*/
|
||
|
||
#include <config.h>
|
||
|
||
#include "lisp.h"
|
||
#include "syssignal.h"
|
||
|
||
#include <float.h>
|
||
#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
|
||
&& FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
|
||
#define IEEE_FLOATING_POINT 1
|
||
#else
|
||
#define IEEE_FLOATING_POINT 0
|
||
#endif
|
||
|
||
#include <math.h>
|
||
|
||
#ifndef isfinite
|
||
# define isfinite(x) ((x) - (x) == 0)
|
||
#endif
|
||
#ifndef isnan
|
||
# define isnan(x) ((x) != (x))
|
||
#endif
|
||
|
||
/* Extract a Lisp number as a `double', or signal an error. */
|
||
|
||
double
|
||
extract_float (Lisp_Object num)
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (num);
|
||
|
||
if (FLOATP (num))
|
||
return XFLOAT_DATA (num);
|
||
return (double) XINT (num);
|
||
}
|
||
|
||
/* Trig functions. */
|
||
|
||
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
|
||
doc: /* Return the inverse cosine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = acos (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
|
||
doc: /* Return the inverse sine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = asin (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
|
||
doc: /* Return the inverse tangent of the arguments.
|
||
If only one argument Y is given, return the inverse tangent of Y.
|
||
If two arguments Y and X are given, return the inverse tangent of Y
|
||
divided by X, i.e. the angle in radians between the vector (X, Y)
|
||
and the x-axis. */)
|
||
(Lisp_Object y, Lisp_Object x)
|
||
{
|
||
double d = extract_float (y);
|
||
|
||
if (NILP (x))
|
||
d = atan (d);
|
||
else
|
||
{
|
||
double d2 = extract_float (x);
|
||
d = atan2 (d, d2);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
|
||
doc: /* Return the cosine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = cos (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
|
||
doc: /* Return the sine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = sin (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
|
||
doc: /* Return the tangent of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = tan (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
|
||
doc: /* Return non nil iff argument X is a NaN. */)
|
||
(Lisp_Object x)
|
||
{
|
||
CHECK_FLOAT (x);
|
||
return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
|
||
}
|
||
|
||
#ifdef HAVE_COPYSIGN
|
||
DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
|
||
doc: /* Copy sign of X2 to value of X1, and return the result.
|
||
Cause an error if X1 or X2 is not a float. */)
|
||
(Lisp_Object x1, Lisp_Object x2)
|
||
{
|
||
double f1, f2;
|
||
|
||
CHECK_FLOAT (x1);
|
||
CHECK_FLOAT (x2);
|
||
|
||
f1 = XFLOAT_DATA (x1);
|
||
f2 = XFLOAT_DATA (x2);
|
||
|
||
return make_float (copysign (f1, f2));
|
||
}
|
||
#endif
|
||
|
||
DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
|
||
doc: /* Get significand and exponent of a floating point number.
|
||
Breaks the floating point number X into its binary significand SGNFCAND
|
||
\(a floating point value between 0.5 (included) and 1.0 (excluded))
|
||
and an integral exponent EXP for 2, such that:
|
||
|
||
X = SGNFCAND * 2^EXP
|
||
|
||
The function returns the cons cell (SGNFCAND . EXP).
|
||
If X is zero, both parts (SGNFCAND and EXP) are zero. */)
|
||
(Lisp_Object x)
|
||
{
|
||
double f = XFLOATINT (x);
|
||
int exponent;
|
||
double sgnfcand = frexp (f, &exponent);
|
||
return Fcons (make_float (sgnfcand), make_number (exponent));
|
||
}
|
||
|
||
DEFUN ("ldexp", Fldexp, Sldexp, 1, 2, 0,
|
||
doc: /* Construct number X from significand SGNFCAND and exponent EXP.
|
||
Returns the floating point value resulting from multiplying SGNFCAND
|
||
(the significand) by 2 raised to the power of EXP (the exponent). */)
|
||
(Lisp_Object sgnfcand, Lisp_Object exponent)
|
||
{
|
||
CHECK_NUMBER (exponent);
|
||
return make_float (ldexp (XFLOATINT (sgnfcand), XINT (exponent)));
|
||
}
|
||
|
||
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
|
||
doc: /* Return the exponential base e of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = exp (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
|
||
doc: /* Return the exponential ARG1 ** ARG2. */)
|
||
(Lisp_Object arg1, Lisp_Object arg2)
|
||
{
|
||
double f1, f2, f3;
|
||
|
||
CHECK_NUMBER_OR_FLOAT (arg1);
|
||
CHECK_NUMBER_OR_FLOAT (arg2);
|
||
if (INTEGERP (arg1) /* common lisp spec */
|
||
&& INTEGERP (arg2) /* don't promote, if both are ints, and */
|
||
&& 0 <= XINT (arg2)) /* we are sure the result is not fractional */
|
||
{ /* this can be improved by pre-calculating */
|
||
EMACS_INT y; /* some binary powers of x then accumulating */
|
||
EMACS_UINT acc, x; /* Unsigned so that overflow is well defined. */
|
||
Lisp_Object val;
|
||
|
||
x = XINT (arg1);
|
||
y = XINT (arg2);
|
||
acc = (y & 1 ? x : 1);
|
||
|
||
while ((y >>= 1) != 0)
|
||
{
|
||
x *= x;
|
||
if (y & 1)
|
||
acc *= x;
|
||
}
|
||
XSETINT (val, acc);
|
||
return val;
|
||
}
|
||
f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
|
||
f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
|
||
f3 = pow (f1, f2);
|
||
return make_float (f3);
|
||
}
|
||
|
||
DEFUN ("log", Flog, Slog, 1, 2, 0,
|
||
doc: /* Return the natural logarithm of ARG.
|
||
If the optional argument BASE is given, return log ARG using that base. */)
|
||
(Lisp_Object arg, Lisp_Object base)
|
||
{
|
||
double d = extract_float (arg);
|
||
|
||
if (NILP (base))
|
||
d = log (d);
|
||
else
|
||
{
|
||
double b = extract_float (base);
|
||
|
||
if (b == 10.0)
|
||
d = log10 (d);
|
||
else
|
||
d = log (d) / log (b);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
|
||
doc: /* Return the logarithm base 10 of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = log10 (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
|
||
doc: /* Return the square root of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = sqrt (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
|
||
doc: /* Return the absolute value of ARG. */)
|
||
(register Lisp_Object arg)
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (FLOATP (arg))
|
||
arg = make_float (fabs (XFLOAT_DATA (arg)));
|
||
else if (XINT (arg) < 0)
|
||
XSETINT (arg, - XINT (arg));
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
|
||
doc: /* Return the floating point number equal to ARG. */)
|
||
(register Lisp_Object arg)
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (INTEGERP (arg))
|
||
return make_float ((double) XINT (arg));
|
||
else /* give 'em the same float back */
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
|
||
doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
|
||
This is the same as the exponent of a float. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
Lisp_Object val;
|
||
EMACS_INT value;
|
||
double f = extract_float (arg);
|
||
|
||
if (f == 0.0)
|
||
value = MOST_NEGATIVE_FIXNUM;
|
||
else if (isfinite (f))
|
||
{
|
||
int ivalue;
|
||
frexp (f, &ivalue);
|
||
value = ivalue - 1;
|
||
}
|
||
else
|
||
value = MOST_POSITIVE_FIXNUM;
|
||
|
||
XSETINT (val, value);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* the rounding functions */
|
||
|
||
static Lisp_Object
|
||
rounding_driver (Lisp_Object arg, Lisp_Object divisor,
|
||
double (*double_round) (double),
|
||
EMACS_INT (*int_round2) (EMACS_INT, EMACS_INT),
|
||
const char *name)
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (! NILP (divisor))
|
||
{
|
||
EMACS_INT i1, i2;
|
||
|
||
CHECK_NUMBER_OR_FLOAT (divisor);
|
||
|
||
if (FLOATP (arg) || FLOATP (divisor))
|
||
{
|
||
double f1, f2;
|
||
|
||
f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
|
||
f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
|
||
if (! IEEE_FLOATING_POINT && f2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
|
||
f1 = (*double_round) (f1 / f2);
|
||
if (FIXNUM_OVERFLOW_P (f1))
|
||
xsignal3 (Qrange_error, build_string (name), arg, divisor);
|
||
arg = make_number (f1);
|
||
return arg;
|
||
}
|
||
|
||
i1 = XINT (arg);
|
||
i2 = XINT (divisor);
|
||
|
||
if (i2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
|
||
XSETINT (arg, (*int_round2) (i1, i2));
|
||
return arg;
|
||
}
|
||
|
||
if (FLOATP (arg))
|
||
{
|
||
double d = (*double_round) (XFLOAT_DATA (arg));
|
||
if (FIXNUM_OVERFLOW_P (d))
|
||
xsignal2 (Qrange_error, build_string (name), arg);
|
||
arg = make_number (d);
|
||
}
|
||
|
||
return arg;
|
||
}
|
||
|
||
/* With C's /, the result is implementation-defined if either operand
|
||
is negative, so take care with negative operands in the following
|
||
integer functions. */
|
||
|
||
static EMACS_INT
|
||
ceiling2 (EMACS_INT i1, EMACS_INT i2)
|
||
{
|
||
return (i2 < 0
|
||
? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
|
||
: (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
|
||
}
|
||
|
||
static EMACS_INT
|
||
floor2 (EMACS_INT i1, EMACS_INT i2)
|
||
{
|
||
return (i2 < 0
|
||
? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
|
||
: (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
|
||
}
|
||
|
||
static EMACS_INT
|
||
truncate2 (EMACS_INT i1, EMACS_INT i2)
|
||
{
|
||
return (i2 < 0
|
||
? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
|
||
: (i1 < 0 ? - (-i1 / i2) : i1 / i2));
|
||
}
|
||
|
||
static EMACS_INT
|
||
round2 (EMACS_INT i1, EMACS_INT i2)
|
||
{
|
||
/* The C language's division operator gives us one remainder R, but
|
||
we want the remainder R1 on the other side of 0 if R1 is closer
|
||
to 0 than R is; because we want to round to even, we also want R1
|
||
if R and R1 are the same distance from 0 and if C's quotient is
|
||
odd. */
|
||
EMACS_INT q = i1 / i2;
|
||
EMACS_INT r = i1 % i2;
|
||
EMACS_INT abs_r = r < 0 ? -r : r;
|
||
EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
|
||
return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
|
||
}
|
||
|
||
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
|
||
if `rint' exists but does not work right. */
|
||
#ifdef HAVE_RINT
|
||
#define emacs_rint rint
|
||
#else
|
||
static double
|
||
emacs_rint (double d)
|
||
{
|
||
return floor (d + 0.5);
|
||
}
|
||
#endif
|
||
|
||
static double
|
||
double_identity (double d)
|
||
{
|
||
return d;
|
||
}
|
||
|
||
DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
|
||
doc: /* Return the smallest integer no less than ARG.
|
||
This rounds the value towards +inf.
|
||
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
|
||
}
|
||
|
||
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
|
||
doc: /* Return the largest integer no greater than ARG.
|
||
This rounds the value towards -inf.
|
||
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, floor, floor2, "floor");
|
||
}
|
||
|
||
DEFUN ("round", Fround, Sround, 1, 2, 0,
|
||
doc: /* Return the nearest integer to ARG.
|
||
With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
|
||
|
||
Rounding a value equidistant between two integers may choose the
|
||
integer closer to zero, or it may prefer an even integer, depending on
|
||
your machine. For example, \(round 2.5\) can return 3 on some
|
||
systems, but 2 on others. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, emacs_rint, round2, "round");
|
||
}
|
||
|
||
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
|
||
doc: /* Truncate a floating point number to an int.
|
||
Rounds ARG toward zero.
|
||
With optional DIVISOR, truncate ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, double_identity, truncate2,
|
||
"truncate");
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
fmod_float (Lisp_Object x, Lisp_Object y)
|
||
{
|
||
double f1, f2;
|
||
|
||
f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
|
||
f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
|
||
|
||
f1 = fmod (f1, f2);
|
||
|
||
/* If the "remainder" comes out with the wrong sign, fix it. */
|
||
if (f2 < 0 ? 0 < f1 : f1 < 0)
|
||
f1 += f2;
|
||
|
||
return make_float (f1);
|
||
}
|
||
|
||
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
|
||
doc: /* Return the smallest integer no less than ARG, as a float.
|
||
\(Round toward +inf.\) */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = ceil (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
|
||
doc: /* Return the largest integer no greater than ARG, as a float.
|
||
\(Round towards -inf.\) */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = floor (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
|
||
doc: /* Return the nearest integer to ARG, as a float. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = emacs_rint (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
|
||
doc: /* Truncate a floating point number to an integral float value.
|
||
Rounds the value toward zero. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
if (d >= 0.0)
|
||
d = floor (d);
|
||
else
|
||
d = ceil (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
void
|
||
syms_of_floatfns (void)
|
||
{
|
||
defsubr (&Sacos);
|
||
defsubr (&Sasin);
|
||
defsubr (&Satan);
|
||
defsubr (&Scos);
|
||
defsubr (&Ssin);
|
||
defsubr (&Stan);
|
||
defsubr (&Sisnan);
|
||
#ifdef HAVE_COPYSIGN
|
||
defsubr (&Scopysign);
|
||
#endif
|
||
defsubr (&Sfrexp);
|
||
defsubr (&Sldexp);
|
||
defsubr (&Sfceiling);
|
||
defsubr (&Sffloor);
|
||
defsubr (&Sfround);
|
||
defsubr (&Sftruncate);
|
||
defsubr (&Sexp);
|
||
defsubr (&Sexpt);
|
||
defsubr (&Slog);
|
||
defsubr (&Slog10);
|
||
defsubr (&Ssqrt);
|
||
|
||
defsubr (&Sabs);
|
||
defsubr (&Sfloat);
|
||
defsubr (&Slogb);
|
||
defsubr (&Sceiling);
|
||
defsubr (&Sfloor);
|
||
defsubr (&Sround);
|
||
defsubr (&Struncate);
|
||
}
|