mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-25 06:50:46 -08:00
* alloc.c (zero_vector): Define as Lisp_Object. Adjust users accordingly. * lisp.h (zero_vector): New declaration. * font.c (null_vector): Remove. (syms_of_font): Remove initialization and staticpro. (font_list_entities, font_find_for_lface): Change to use zero_vector. * keymap.c (Faccessible_keymaps): Likewise.
3829 lines
113 KiB
C
3829 lines
113 KiB
C
/* Manipulation of keymaps
|
||
Copyright (C) 1985-1988, 1993-1995, 1998-2012 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Old BUGS:
|
||
- [M-C-a] != [?\M-\C-a]
|
||
- [M-f2] != [?\e f2].
|
||
- (define-key map [menu-bar foo] <bla>) does not always place <bla>
|
||
at the head of the menu (if `foo' was already bound earlier and
|
||
then unbound, for example).
|
||
TODO:
|
||
- allow many more Meta -> ESC mappings (like Hyper -> C-e for Emacspeak)
|
||
- Think about the various defaulting that's currently hard-coded in
|
||
keyboard.c (uppercase->lowercase, char->charset, button-events, ...)
|
||
and make it more generic. Maybe we should allow mappings of the
|
||
form (PREDICATE . BINDING) as generalization of the default binding,
|
||
tho probably a cleaner way to attack this is to allow functional
|
||
keymaps (i.e. keymaps that are implemented as functions that implement
|
||
a few different methods like `lookup', `map', ...).
|
||
- Make [a] equivalent to [?a].
|
||
BEWARE:
|
||
- map-keymap should work meaningfully even if entries are added/removed
|
||
to the keymap while iterating through it:
|
||
start - removed <= visited <= start + added
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <setjmp.h>
|
||
#include "lisp.h"
|
||
#include "commands.h"
|
||
#include "character.h"
|
||
#include "buffer.h"
|
||
#include "charset.h"
|
||
#include "keyboard.h"
|
||
#include "frame.h"
|
||
#include "termhooks.h"
|
||
#include "blockinput.h"
|
||
#include "puresize.h"
|
||
#include "intervals.h"
|
||
#include "keymap.h"
|
||
#include "window.h"
|
||
|
||
/* Actually allocate storage for these variables */
|
||
|
||
Lisp_Object current_global_map; /* Current global keymap */
|
||
|
||
Lisp_Object global_map; /* default global key bindings */
|
||
|
||
Lisp_Object meta_map; /* The keymap used for globally bound
|
||
ESC-prefixed default commands */
|
||
|
||
Lisp_Object control_x_map; /* The keymap used for globally bound
|
||
C-x-prefixed default commands */
|
||
|
||
/* The keymap used by the minibuf for local
|
||
bindings when spaces are allowed in the
|
||
minibuf */
|
||
|
||
/* The keymap used by the minibuf for local
|
||
bindings when spaces are not encouraged
|
||
in the minibuf */
|
||
|
||
/* keymap used for minibuffers when doing completion */
|
||
/* keymap used for minibuffers when doing completion and require a match */
|
||
static Lisp_Object Qkeymapp, Qnon_ascii;
|
||
Lisp_Object Qkeymap, Qmenu_item, Qremap;
|
||
static Lisp_Object QCadvertised_binding;
|
||
|
||
/* Alist of elements like (DEL . "\d"). */
|
||
static Lisp_Object exclude_keys;
|
||
|
||
/* Pre-allocated 2-element vector for Fcommand_remapping to use. */
|
||
static Lisp_Object command_remapping_vector;
|
||
|
||
/* Hash table used to cache a reverse-map to speed up calls to where-is. */
|
||
static Lisp_Object where_is_cache;
|
||
/* Which keymaps are reverse-stored in the cache. */
|
||
static Lisp_Object where_is_cache_keymaps;
|
||
|
||
static Lisp_Object store_in_keymap (Lisp_Object, Lisp_Object, Lisp_Object);
|
||
|
||
static Lisp_Object define_as_prefix (Lisp_Object, Lisp_Object);
|
||
static void describe_command (Lisp_Object, Lisp_Object);
|
||
static void describe_translation (Lisp_Object, Lisp_Object);
|
||
static void describe_map (Lisp_Object, Lisp_Object,
|
||
void (*) (Lisp_Object, Lisp_Object),
|
||
int, Lisp_Object, Lisp_Object*, int, int);
|
||
static void describe_vector (Lisp_Object, Lisp_Object, Lisp_Object,
|
||
void (*) (Lisp_Object, Lisp_Object), int,
|
||
Lisp_Object, Lisp_Object, int, int);
|
||
static void silly_event_symbol_error (Lisp_Object);
|
||
static Lisp_Object get_keyelt (Lisp_Object, int);
|
||
|
||
/* Keymap object support - constructors and predicates. */
|
||
|
||
DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
|
||
doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
|
||
CHARTABLE is a char-table that holds the bindings for all characters
|
||
without modifiers. All entries in it are initially nil, meaning
|
||
"command undefined". ALIST is an assoc-list which holds bindings for
|
||
function keys, mouse events, and any other things that appear in the
|
||
input stream. Initially, ALIST is nil.
|
||
|
||
The optional arg STRING supplies a menu name for the keymap
|
||
in case you use it as a menu with `x-popup-menu'. */)
|
||
(Lisp_Object string)
|
||
{
|
||
Lisp_Object tail;
|
||
if (!NILP (string))
|
||
tail = Fcons (string, Qnil);
|
||
else
|
||
tail = Qnil;
|
||
return Fcons (Qkeymap,
|
||
Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
|
||
}
|
||
|
||
DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
|
||
doc: /* Construct and return a new sparse keymap.
|
||
Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
|
||
which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
|
||
which binds the function key or mouse event SYMBOL to DEFINITION.
|
||
Initially the alist is nil.
|
||
|
||
The optional arg STRING supplies a menu name for the keymap
|
||
in case you use it as a menu with `x-popup-menu'. */)
|
||
(Lisp_Object string)
|
||
{
|
||
if (!NILP (string))
|
||
{
|
||
if (!NILP (Vpurify_flag))
|
||
string = Fpurecopy (string);
|
||
return Fcons (Qkeymap, Fcons (string, Qnil));
|
||
}
|
||
return Fcons (Qkeymap, Qnil);
|
||
}
|
||
|
||
/* This function is used for installing the standard key bindings
|
||
at initialization time.
|
||
|
||
For example:
|
||
|
||
initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
|
||
|
||
void
|
||
initial_define_key (Lisp_Object keymap, int key, const char *defname)
|
||
{
|
||
store_in_keymap (keymap, make_number (key), intern_c_string (defname));
|
||
}
|
||
|
||
void
|
||
initial_define_lispy_key (Lisp_Object keymap, const char *keyname, const char *defname)
|
||
{
|
||
store_in_keymap (keymap, intern_c_string (keyname), intern_c_string (defname));
|
||
}
|
||
|
||
DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
|
||
doc: /* Return t if OBJECT is a keymap.
|
||
|
||
A keymap is a list (keymap . ALIST),
|
||
or a symbol whose function definition is itself a keymap.
|
||
ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
|
||
a vector of densely packed bindings for small character codes
|
||
is also allowed as an element. */)
|
||
(Lisp_Object object)
|
||
{
|
||
return (KEYMAPP (object) ? Qt : Qnil);
|
||
}
|
||
|
||
DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
|
||
doc: /* Return the prompt-string of a keymap MAP.
|
||
If non-nil, the prompt is shown in the echo-area
|
||
when reading a key-sequence to be looked-up in this keymap. */)
|
||
(Lisp_Object map)
|
||
{
|
||
map = get_keymap (map, 0, 0);
|
||
while (CONSP (map))
|
||
{
|
||
Lisp_Object tem = XCAR (map);
|
||
if (STRINGP (tem))
|
||
return tem;
|
||
else if (KEYMAPP (tem))
|
||
{
|
||
tem = Fkeymap_prompt (tem);
|
||
if (!NILP (tem))
|
||
return tem;
|
||
}
|
||
map = XCDR (map);
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
/* Check that OBJECT is a keymap (after dereferencing through any
|
||
symbols). If it is, return it.
|
||
|
||
If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
|
||
is an autoload form, do the autoload and try again.
|
||
If AUTOLOAD is nonzero, callers must assume GC is possible.
|
||
|
||
If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
|
||
is zero as well), return Qt.
|
||
|
||
ERROR_IF_NOT_KEYMAP controls how we respond if OBJECT isn't a keymap.
|
||
If ERROR_IF_NOT_KEYMAP is non-zero, signal an error; otherwise,
|
||
just return Qnil.
|
||
|
||
Note that most of the time, we don't want to pursue autoloads.
|
||
Functions like Faccessible_keymaps which scan entire keymap trees
|
||
shouldn't load every autoloaded keymap. I'm not sure about this,
|
||
but it seems to me that only read_key_sequence, Flookup_key, and
|
||
Fdefine_key should cause keymaps to be autoloaded.
|
||
|
||
This function can GC when AUTOLOAD is non-zero, because it calls
|
||
do_autoload which can GC. */
|
||
|
||
Lisp_Object
|
||
get_keymap (Lisp_Object object, int error_if_not_keymap, int autoload)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
autoload_retry:
|
||
if (NILP (object))
|
||
goto end;
|
||
if (CONSP (object) && EQ (XCAR (object), Qkeymap))
|
||
return object;
|
||
|
||
tem = indirect_function (object);
|
||
if (CONSP (tem))
|
||
{
|
||
if (EQ (XCAR (tem), Qkeymap))
|
||
return tem;
|
||
|
||
/* Should we do an autoload? Autoload forms for keymaps have
|
||
Qkeymap as their fifth element. */
|
||
if ((autoload || !error_if_not_keymap) && EQ (XCAR (tem), Qautoload)
|
||
&& SYMBOLP (object))
|
||
{
|
||
Lisp_Object tail;
|
||
|
||
tail = Fnth (make_number (4), tem);
|
||
if (EQ (tail, Qkeymap))
|
||
{
|
||
if (autoload)
|
||
{
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
GCPRO2 (tem, object);
|
||
do_autoload (tem, object);
|
||
UNGCPRO;
|
||
|
||
goto autoload_retry;
|
||
}
|
||
else
|
||
return object;
|
||
}
|
||
}
|
||
}
|
||
|
||
end:
|
||
if (error_if_not_keymap)
|
||
wrong_type_argument (Qkeymapp, object);
|
||
return Qnil;
|
||
}
|
||
|
||
/* Return the parent map of KEYMAP, or nil if it has none.
|
||
We assume that KEYMAP is a valid keymap. */
|
||
|
||
static Lisp_Object
|
||
keymap_parent (Lisp_Object keymap, int autoload)
|
||
{
|
||
Lisp_Object list;
|
||
|
||
keymap = get_keymap (keymap, 1, autoload);
|
||
|
||
/* Skip past the initial element `keymap'. */
|
||
list = XCDR (keymap);
|
||
for (; CONSP (list); list = XCDR (list))
|
||
{
|
||
/* See if there is another `keymap'. */
|
||
if (KEYMAPP (list))
|
||
return list;
|
||
}
|
||
|
||
return get_keymap (list, 0, autoload);
|
||
}
|
||
|
||
DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
|
||
doc: /* Return the parent keymap of KEYMAP.
|
||
If KEYMAP has no parent, return nil. */)
|
||
(Lisp_Object keymap)
|
||
{
|
||
return keymap_parent (keymap, 1);
|
||
}
|
||
|
||
/* Check whether MAP is one of MAPS parents. */
|
||
static int
|
||
keymap_memberp (Lisp_Object map, Lisp_Object maps)
|
||
{
|
||
if (NILP (map)) return 0;
|
||
while (KEYMAPP (maps) && !EQ (map, maps))
|
||
maps = keymap_parent (maps, 0);
|
||
return (EQ (map, maps));
|
||
}
|
||
|
||
/* Set the parent keymap of MAP to PARENT. */
|
||
|
||
DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
|
||
doc: /* Modify KEYMAP to set its parent map to PARENT.
|
||
Return PARENT. PARENT should be nil or another keymap. */)
|
||
(Lisp_Object keymap, Lisp_Object parent)
|
||
{
|
||
Lisp_Object list, prev;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
/* Flush any reverse-map cache. */
|
||
where_is_cache = Qnil; where_is_cache_keymaps = Qt;
|
||
|
||
GCPRO2 (keymap, parent);
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
|
||
if (!NILP (parent))
|
||
{
|
||
parent = get_keymap (parent, 1, 0);
|
||
|
||
/* Check for cycles. */
|
||
if (keymap_memberp (keymap, parent))
|
||
error ("Cyclic keymap inheritance");
|
||
}
|
||
|
||
/* Skip past the initial element `keymap'. */
|
||
prev = keymap;
|
||
while (1)
|
||
{
|
||
list = XCDR (prev);
|
||
/* If there is a parent keymap here, replace it.
|
||
If we came to the end, add the parent in PREV. */
|
||
if (!CONSP (list) || KEYMAPP (list))
|
||
{
|
||
CHECK_IMPURE (prev);
|
||
XSETCDR (prev, parent);
|
||
RETURN_UNGCPRO (parent);
|
||
}
|
||
prev = list;
|
||
}
|
||
}
|
||
|
||
|
||
/* Look up IDX in MAP. IDX may be any sort of event.
|
||
Note that this does only one level of lookup; IDX must be a single
|
||
event, not a sequence.
|
||
|
||
MAP must be a keymap or a list of keymaps.
|
||
|
||
If T_OK is non-zero, bindings for Qt are treated as default
|
||
bindings; any key left unmentioned by other tables and bindings is
|
||
given the binding of Qt.
|
||
|
||
If T_OK is zero, bindings for Qt are not treated specially.
|
||
|
||
If NOINHERIT, don't accept a subkeymap found in an inherited keymap.
|
||
|
||
Returns Qunbound if no binding was found (and returns Qnil if a nil
|
||
binding was found). */
|
||
|
||
static Lisp_Object
|
||
access_keymap_1 (Lisp_Object map, Lisp_Object idx, int t_ok, int noinherit, int autoload)
|
||
{
|
||
/* If idx is a list (some sort of mouse click, perhaps?),
|
||
the index we want to use is the car of the list, which
|
||
ought to be a symbol. */
|
||
idx = EVENT_HEAD (idx);
|
||
|
||
/* If idx is a symbol, it might have modifiers, which need to
|
||
be put in the canonical order. */
|
||
if (SYMBOLP (idx))
|
||
idx = reorder_modifiers (idx);
|
||
else if (INTEGERP (idx))
|
||
/* Clobber the high bits that can be present on a machine
|
||
with more than 24 bits of integer. */
|
||
XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
|
||
|
||
/* Handle the special meta -> esc mapping. */
|
||
if (INTEGERP (idx) && XFASTINT (idx) & meta_modifier)
|
||
{
|
||
/* See if there is a meta-map. If there's none, there is
|
||
no binding for IDX, unless a default binding exists in MAP. */
|
||
struct gcpro gcpro1;
|
||
Lisp_Object event_meta_binding, event_meta_map;
|
||
GCPRO1 (map);
|
||
/* A strange value in which Meta is set would cause
|
||
infinite recursion. Protect against that. */
|
||
if (XINT (meta_prefix_char) & CHAR_META)
|
||
meta_prefix_char = make_number (27);
|
||
event_meta_binding = access_keymap_1 (map, meta_prefix_char, t_ok,
|
||
noinherit, autoload);
|
||
event_meta_map = get_keymap (event_meta_binding, 0, autoload);
|
||
UNGCPRO;
|
||
if (CONSP (event_meta_map))
|
||
{
|
||
map = event_meta_map;
|
||
idx = make_number (XFASTINT (idx) & ~meta_modifier);
|
||
}
|
||
else if (t_ok)
|
||
/* Set IDX to t, so that we only find a default binding. */
|
||
idx = Qt;
|
||
else
|
||
/* An explicit nil binding, or no binding at all. */
|
||
return NILP (event_meta_binding) ? Qnil : Qunbound;
|
||
}
|
||
|
||
/* t_binding is where we put a default binding that applies,
|
||
to use in case we do not find a binding specifically
|
||
for this key sequence. */
|
||
{
|
||
Lisp_Object tail;
|
||
Lisp_Object t_binding = Qunbound;
|
||
Lisp_Object retval = Qunbound;
|
||
Lisp_Object retval_tail = Qnil;
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
||
|
||
GCPRO4 (tail, idx, t_binding, retval);
|
||
|
||
for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
|
||
(CONSP (tail)
|
||
|| (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
|
||
tail = XCDR (tail))
|
||
{
|
||
/* Qunbound in VAL means we have found no binding. */
|
||
Lisp_Object val = Qunbound;
|
||
Lisp_Object binding = XCAR (tail);
|
||
Lisp_Object submap = get_keymap (binding, 0, autoload);
|
||
|
||
if (EQ (binding, Qkeymap))
|
||
{
|
||
if (noinherit || NILP (retval))
|
||
/* If NOINHERIT, stop here, the rest is inherited. */
|
||
break;
|
||
else if (!EQ (retval, Qunbound))
|
||
{
|
||
Lisp_Object parent_entry;
|
||
eassert (KEYMAPP (retval));
|
||
parent_entry
|
||
= get_keymap (access_keymap_1 (tail, idx,
|
||
t_ok, 0, autoload),
|
||
0, autoload);
|
||
if (KEYMAPP (parent_entry))
|
||
{
|
||
if (CONSP (retval_tail))
|
||
XSETCDR (retval_tail, parent_entry);
|
||
else
|
||
{
|
||
retval_tail = Fcons (retval, parent_entry);
|
||
retval = Fcons (Qkeymap, retval_tail);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
else if (CONSP (submap))
|
||
{
|
||
val = access_keymap_1 (submap, idx, t_ok, noinherit, autoload);
|
||
}
|
||
else if (CONSP (binding))
|
||
{
|
||
Lisp_Object key = XCAR (binding);
|
||
|
||
if (EQ (key, idx))
|
||
val = XCDR (binding);
|
||
else if (t_ok && EQ (key, Qt))
|
||
{
|
||
t_binding = XCDR (binding);
|
||
t_ok = 0;
|
||
}
|
||
}
|
||
else if (VECTORP (binding))
|
||
{
|
||
if (INTEGERP (idx) && XFASTINT (idx) < ASIZE (binding))
|
||
val = AREF (binding, XFASTINT (idx));
|
||
}
|
||
else if (CHAR_TABLE_P (binding))
|
||
{
|
||
/* Character codes with modifiers
|
||
are not included in a char-table.
|
||
All character codes without modifiers are included. */
|
||
if (INTEGERP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
|
||
{
|
||
val = Faref (binding, idx);
|
||
/* `nil' has a special meaning for char-tables, so
|
||
we use something else to record an explicitly
|
||
unbound entry. */
|
||
if (NILP (val))
|
||
val = Qunbound;
|
||
}
|
||
}
|
||
|
||
/* If we found a binding, clean it up and return it. */
|
||
if (!EQ (val, Qunbound))
|
||
{
|
||
if (EQ (val, Qt))
|
||
/* A Qt binding is just like an explicit nil binding
|
||
(i.e. it shadows any parent binding but not bindings in
|
||
keymaps of lower precedence). */
|
||
val = Qnil;
|
||
|
||
val = get_keyelt (val, autoload);
|
||
|
||
if (!KEYMAPP (val))
|
||
{
|
||
if (NILP (retval) || EQ (retval, Qunbound))
|
||
retval = val;
|
||
if (!NILP (val))
|
||
break; /* Shadows everything that follows. */
|
||
}
|
||
else if (NILP (retval) || EQ (retval, Qunbound))
|
||
retval = val;
|
||
else if (CONSP (retval_tail))
|
||
{
|
||
XSETCDR (retval_tail, Fcons (val, Qnil));
|
||
retval_tail = XCDR (retval_tail);
|
||
}
|
||
else
|
||
{
|
||
retval_tail = Fcons (val, Qnil);
|
||
retval = Fcons (Qkeymap, Fcons (retval, retval_tail));
|
||
}
|
||
}
|
||
QUIT;
|
||
}
|
||
UNGCPRO;
|
||
return EQ (Qunbound, retval) ? get_keyelt (t_binding, autoload) : retval;
|
||
}
|
||
}
|
||
|
||
Lisp_Object
|
||
access_keymap (Lisp_Object map, Lisp_Object idx,
|
||
int t_ok, int noinherit, int autoload)
|
||
{
|
||
Lisp_Object val = access_keymap_1 (map, idx, t_ok, noinherit, autoload);
|
||
return EQ (val, Qunbound) ? Qnil : val;
|
||
}
|
||
|
||
static void
|
||
map_keymap_item (map_keymap_function_t fun, Lisp_Object args, Lisp_Object key, Lisp_Object val, void *data)
|
||
{
|
||
if (EQ (val, Qt))
|
||
val = Qnil;
|
||
(*fun) (key, val, args, data);
|
||
}
|
||
|
||
static void
|
||
map_keymap_char_table_item (Lisp_Object args, Lisp_Object key, Lisp_Object val)
|
||
{
|
||
if (!NILP (val))
|
||
{
|
||
map_keymap_function_t fun
|
||
= (map_keymap_function_t) XSAVE_VALUE (XCAR (args))->pointer;
|
||
args = XCDR (args);
|
||
/* If the key is a range, make a copy since map_char_table modifies
|
||
it in place. */
|
||
if (CONSP (key))
|
||
key = Fcons (XCAR (key), XCDR (key));
|
||
map_keymap_item (fun, XCDR (args), key, val,
|
||
XSAVE_VALUE (XCAR (args))->pointer);
|
||
}
|
||
}
|
||
|
||
/* Call FUN for every binding in MAP and stop at (and return) the parent.
|
||
FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA). */
|
||
static Lisp_Object
|
||
map_keymap_internal (Lisp_Object map,
|
||
map_keymap_function_t fun,
|
||
Lisp_Object args,
|
||
void *data)
|
||
{
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
Lisp_Object tail
|
||
= (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
|
||
|
||
GCPRO3 (map, args, tail);
|
||
for (; CONSP (tail) && !EQ (Qkeymap, XCAR (tail)); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object binding = XCAR (tail);
|
||
|
||
if (KEYMAPP (binding)) /* An embedded parent. */
|
||
break;
|
||
else if (CONSP (binding))
|
||
map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
|
||
else if (VECTORP (binding))
|
||
{
|
||
/* Loop over the char values represented in the vector. */
|
||
int len = ASIZE (binding);
|
||
int c;
|
||
for (c = 0; c < len; c++)
|
||
{
|
||
Lisp_Object character;
|
||
XSETFASTINT (character, c);
|
||
map_keymap_item (fun, args, character, AREF (binding, c), data);
|
||
}
|
||
}
|
||
else if (CHAR_TABLE_P (binding))
|
||
{
|
||
map_char_table (map_keymap_char_table_item, Qnil, binding,
|
||
Fcons (make_save_value ((void *) fun, 0),
|
||
Fcons (make_save_value (data, 0),
|
||
args)));
|
||
}
|
||
}
|
||
UNGCPRO;
|
||
return tail;
|
||
}
|
||
|
||
static void
|
||
map_keymap_call (Lisp_Object key, Lisp_Object val, Lisp_Object fun, void *dummy)
|
||
{
|
||
call2 (fun, key, val);
|
||
}
|
||
|
||
/* Same as map_keymap_internal, but traverses parent keymaps as well.
|
||
A non-zero AUTOLOAD indicates that autoloaded keymaps should be loaded. */
|
||
void
|
||
map_keymap (Lisp_Object map, map_keymap_function_t fun, Lisp_Object args, void *data, int autoload)
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (args);
|
||
map = get_keymap (map, 1, autoload);
|
||
while (CONSP (map))
|
||
{
|
||
if (KEYMAPP (XCAR (map)))
|
||
{
|
||
map_keymap (XCAR (map), fun, args, data, autoload);
|
||
map = XCDR (map);
|
||
}
|
||
else
|
||
map = map_keymap_internal (map, fun, args, data);
|
||
if (!CONSP (map))
|
||
map = get_keymap (map, 0, autoload);
|
||
}
|
||
UNGCPRO;
|
||
}
|
||
|
||
static Lisp_Object Qkeymap_canonicalize;
|
||
|
||
/* Same as map_keymap, but does it right, properly eliminating duplicate
|
||
bindings due to inheritance. */
|
||
void
|
||
map_keymap_canonical (Lisp_Object map, map_keymap_function_t fun, Lisp_Object args, void *data)
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (args);
|
||
/* map_keymap_canonical may be used from redisplay (e.g. when building menus)
|
||
so be careful to ignore errors and to inhibit redisplay. */
|
||
map = safe_call1 (Qkeymap_canonicalize, map);
|
||
/* No need to use `map_keymap' here because canonical map has no parent. */
|
||
map_keymap_internal (map, fun, args, data);
|
||
UNGCPRO;
|
||
}
|
||
|
||
DEFUN ("map-keymap-internal", Fmap_keymap_internal, Smap_keymap_internal, 2, 2, 0,
|
||
doc: /* Call FUNCTION once for each event binding in KEYMAP.
|
||
FUNCTION is called with two arguments: the event that is bound, and
|
||
the definition it is bound to. The event may be a character range.
|
||
If KEYMAP has a parent, this function returns it without processing it. */)
|
||
(Lisp_Object function, Lisp_Object keymap)
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (function);
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
keymap = map_keymap_internal (keymap, map_keymap_call, function, NULL);
|
||
UNGCPRO;
|
||
return keymap;
|
||
}
|
||
|
||
DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
|
||
doc: /* Call FUNCTION once for each event binding in KEYMAP.
|
||
FUNCTION is called with two arguments: the event that is bound, and
|
||
the definition it is bound to. The event may be a character range.
|
||
|
||
If KEYMAP has a parent, the parent's bindings are included as well.
|
||
This works recursively: if the parent has itself a parent, then the
|
||
grandparent's bindings are also included and so on.
|
||
usage: (map-keymap FUNCTION KEYMAP) */)
|
||
(Lisp_Object function, Lisp_Object keymap, Lisp_Object sort_first)
|
||
{
|
||
if (! NILP (sort_first))
|
||
return call2 (intern ("map-keymap-sorted"), function, keymap);
|
||
|
||
map_keymap (keymap, map_keymap_call, function, NULL, 1);
|
||
return Qnil;
|
||
}
|
||
|
||
/* Given OBJECT which was found in a slot in a keymap,
|
||
trace indirect definitions to get the actual definition of that slot.
|
||
An indirect definition is a list of the form
|
||
(KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
|
||
and INDEX is the object to look up in KEYMAP to yield the definition.
|
||
|
||
Also if OBJECT has a menu string as the first element,
|
||
remove that. Also remove a menu help string as second element.
|
||
|
||
If AUTOLOAD is nonzero, load autoloadable keymaps
|
||
that are referred to with indirection.
|
||
|
||
This can GC because menu_item_eval_property calls Feval. */
|
||
|
||
static Lisp_Object
|
||
get_keyelt (Lisp_Object object, int autoload)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!(CONSP (object)))
|
||
/* This is really the value. */
|
||
return object;
|
||
|
||
/* If the keymap contents looks like (keymap ...) or (lambda ...)
|
||
then use itself. */
|
||
else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
|
||
return object;
|
||
|
||
/* If the keymap contents looks like (menu-item name . DEFN)
|
||
or (menu-item name DEFN ...) then use DEFN.
|
||
This is a new format menu item. */
|
||
else if (EQ (XCAR (object), Qmenu_item))
|
||
{
|
||
if (CONSP (XCDR (object)))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
object = XCDR (XCDR (object));
|
||
tem = object;
|
||
if (CONSP (object))
|
||
object = XCAR (object);
|
||
|
||
/* If there's a `:filter FILTER', apply FILTER to the
|
||
menu-item's definition to get the real definition to
|
||
use. */
|
||
for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
|
||
if (EQ (XCAR (tem), QCfilter) && autoload)
|
||
{
|
||
Lisp_Object filter;
|
||
filter = XCAR (XCDR (tem));
|
||
filter = list2 (filter, list2 (Qquote, object));
|
||
object = menu_item_eval_property (filter);
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
/* Invalid keymap. */
|
||
return object;
|
||
}
|
||
|
||
/* If the keymap contents looks like (STRING . DEFN), use DEFN.
|
||
Keymap alist elements like (CHAR MENUSTRING . DEFN)
|
||
will be used by HierarKey menus. */
|
||
else if (STRINGP (XCAR (object)))
|
||
{
|
||
object = XCDR (object);
|
||
/* Also remove a menu help string, if any,
|
||
following the menu item name. */
|
||
if (CONSP (object) && STRINGP (XCAR (object)))
|
||
object = XCDR (object);
|
||
/* Also remove the sublist that caches key equivalences, if any. */
|
||
if (CONSP (object) && CONSP (XCAR (object)))
|
||
{
|
||
Lisp_Object carcar;
|
||
carcar = XCAR (XCAR (object));
|
||
if (NILP (carcar) || VECTORP (carcar))
|
||
object = XCDR (object);
|
||
}
|
||
}
|
||
|
||
/* If the contents are (KEYMAP . ELEMENT), go indirect. */
|
||
else if (KEYMAPP (XCAR (object)))
|
||
error ("Wow, indirect keymap entry!!");
|
||
else
|
||
return object;
|
||
}
|
||
}
|
||
|
||
static Lisp_Object
|
||
store_in_keymap (Lisp_Object keymap, register Lisp_Object idx, Lisp_Object def)
|
||
{
|
||
/* Flush any reverse-map cache. */
|
||
where_is_cache = Qnil;
|
||
where_is_cache_keymaps = Qt;
|
||
|
||
if (EQ (idx, Qkeymap))
|
||
error ("`keymap' is reserved for embedded parent maps");
|
||
|
||
/* If we are preparing to dump, and DEF is a menu element
|
||
with a menu item indicator, copy it to ensure it is not pure. */
|
||
if (CONSP (def) && PURE_P (def)
|
||
&& (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
|
||
def = Fcons (XCAR (def), XCDR (def));
|
||
|
||
if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
|
||
error ("attempt to define a key in a non-keymap");
|
||
|
||
/* If idx is a cons, and the car part is a character, idx must be of
|
||
the form (FROM-CHAR . TO-CHAR). */
|
||
if (CONSP (idx) && CHARACTERP (XCAR (idx)))
|
||
CHECK_CHARACTER_CDR (idx);
|
||
else
|
||
/* If idx is a list (some sort of mouse click, perhaps?),
|
||
the index we want to use is the car of the list, which
|
||
ought to be a symbol. */
|
||
idx = EVENT_HEAD (idx);
|
||
|
||
/* If idx is a symbol, it might have modifiers, which need to
|
||
be put in the canonical order. */
|
||
if (SYMBOLP (idx))
|
||
idx = reorder_modifiers (idx);
|
||
else if (INTEGERP (idx))
|
||
/* Clobber the high bits that can be present on a machine
|
||
with more than 24 bits of integer. */
|
||
XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
|
||
|
||
/* Scan the keymap for a binding of idx. */
|
||
{
|
||
Lisp_Object tail;
|
||
|
||
/* The cons after which we should insert new bindings. If the
|
||
keymap has a table element, we record its position here, so new
|
||
bindings will go after it; this way, the table will stay
|
||
towards the front of the alist and character lookups in dense
|
||
keymaps will remain fast. Otherwise, this just points at the
|
||
front of the keymap. */
|
||
Lisp_Object insertion_point;
|
||
|
||
insertion_point = keymap;
|
||
for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object elt;
|
||
|
||
elt = XCAR (tail);
|
||
if (VECTORP (elt))
|
||
{
|
||
if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
|
||
{
|
||
CHECK_IMPURE (elt);
|
||
ASET (elt, XFASTINT (idx), def);
|
||
return def;
|
||
}
|
||
else if (CONSP (idx) && CHARACTERP (XCAR (idx)))
|
||
{
|
||
int from = XFASTINT (XCAR (idx));
|
||
int to = XFASTINT (XCDR (idx));
|
||
|
||
if (to >= ASIZE (elt))
|
||
to = ASIZE (elt) - 1;
|
||
for (; from <= to; from++)
|
||
ASET (elt, from, def);
|
||
if (to == XFASTINT (XCDR (idx)))
|
||
/* We have defined all keys in IDX. */
|
||
return def;
|
||
}
|
||
insertion_point = tail;
|
||
}
|
||
else if (CHAR_TABLE_P (elt))
|
||
{
|
||
/* Character codes with modifiers
|
||
are not included in a char-table.
|
||
All character codes without modifiers are included. */
|
||
if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
|
||
{
|
||
Faset (elt, idx,
|
||
/* `nil' has a special meaning for char-tables, so
|
||
we use something else to record an explicitly
|
||
unbound entry. */
|
||
NILP (def) ? Qt : def);
|
||
return def;
|
||
}
|
||
else if (CONSP (idx) && CHARACTERP (XCAR (idx)))
|
||
{
|
||
Fset_char_table_range (elt, idx, NILP (def) ? Qt : def);
|
||
return def;
|
||
}
|
||
insertion_point = tail;
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
if (EQ (Qkeymap, XCAR (elt)))
|
||
{ /* A sub keymap. This might be due to a lookup that found
|
||
two matching bindings (maybe because of a sub keymap).
|
||
It almost never happens (since the second binding normally
|
||
only happens in the inherited part of the keymap), but
|
||
if it does, we want to update the sub-keymap since the
|
||
main one might be temporary (built by access_keymap). */
|
||
tail = insertion_point = elt;
|
||
}
|
||
else if (EQ (idx, XCAR (elt)))
|
||
{
|
||
CHECK_IMPURE (elt);
|
||
XSETCDR (elt, def);
|
||
return def;
|
||
}
|
||
else if (CONSP (idx) && CHARACTERP (XCAR (idx)))
|
||
{
|
||
int from = XFASTINT (XCAR (idx));
|
||
int to = XFASTINT (XCDR (idx));
|
||
|
||
if (from <= XFASTINT (XCAR (elt))
|
||
&& to >= XFASTINT (XCAR (elt)))
|
||
{
|
||
XSETCDR (elt, def);
|
||
if (from == to)
|
||
return def;
|
||
}
|
||
}
|
||
}
|
||
else if (EQ (elt, Qkeymap))
|
||
/* If we find a 'keymap' symbol in the spine of KEYMAP,
|
||
then we must have found the start of a second keymap
|
||
being used as the tail of KEYMAP, and a binding for IDX
|
||
should be inserted before it. */
|
||
goto keymap_end;
|
||
|
||
QUIT;
|
||
}
|
||
|
||
keymap_end:
|
||
/* We have scanned the entire keymap, and not found a binding for
|
||
IDX. Let's add one. */
|
||
{
|
||
Lisp_Object elt;
|
||
|
||
if (CONSP (idx) && CHARACTERP (XCAR (idx)))
|
||
{
|
||
/* IDX specifies a range of characters, and not all of them
|
||
were handled yet, which means this keymap doesn't have a
|
||
char-table. So, we insert a char-table now. */
|
||
elt = Fmake_char_table (Qkeymap, Qnil);
|
||
Fset_char_table_range (elt, idx, NILP (def) ? Qt : def);
|
||
}
|
||
else
|
||
elt = Fcons (idx, def);
|
||
CHECK_IMPURE (insertion_point);
|
||
XSETCDR (insertion_point, Fcons (elt, XCDR (insertion_point)));
|
||
}
|
||
}
|
||
|
||
return def;
|
||
}
|
||
|
||
static Lisp_Object
|
||
copy_keymap_item (Lisp_Object elt)
|
||
{
|
||
Lisp_Object res, tem;
|
||
|
||
if (!CONSP (elt))
|
||
return elt;
|
||
|
||
res = tem = elt;
|
||
|
||
/* Is this a new format menu item. */
|
||
if (EQ (XCAR (tem), Qmenu_item))
|
||
{
|
||
/* Copy cell with menu-item marker. */
|
||
res = elt = Fcons (XCAR (tem), XCDR (tem));
|
||
tem = XCDR (elt);
|
||
if (CONSP (tem))
|
||
{
|
||
/* Copy cell with menu-item name. */
|
||
XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
|
||
elt = XCDR (elt);
|
||
tem = XCDR (elt);
|
||
}
|
||
if (CONSP (tem))
|
||
{
|
||
/* Copy cell with binding and if the binding is a keymap,
|
||
copy that. */
|
||
XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
|
||
elt = XCDR (elt);
|
||
tem = XCAR (elt);
|
||
if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
|
||
XSETCAR (elt, Fcopy_keymap (tem));
|
||
tem = XCDR (elt);
|
||
if (CONSP (tem) && CONSP (XCAR (tem)))
|
||
/* Delete cache for key equivalences. */
|
||
XSETCDR (elt, XCDR (tem));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It may be an old format menu item.
|
||
Skip the optional menu string. */
|
||
if (STRINGP (XCAR (tem)))
|
||
{
|
||
/* Copy the cell, since copy-alist didn't go this deep. */
|
||
res = elt = Fcons (XCAR (tem), XCDR (tem));
|
||
tem = XCDR (elt);
|
||
/* Also skip the optional menu help string. */
|
||
if (CONSP (tem) && STRINGP (XCAR (tem)))
|
||
{
|
||
XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
|
||
elt = XCDR (elt);
|
||
tem = XCDR (elt);
|
||
}
|
||
/* There may also be a list that caches key equivalences.
|
||
Just delete it for the new keymap. */
|
||
if (CONSP (tem)
|
||
&& CONSP (XCAR (tem))
|
||
&& (NILP (XCAR (XCAR (tem)))
|
||
|| VECTORP (XCAR (XCAR (tem)))))
|
||
{
|
||
XSETCDR (elt, XCDR (tem));
|
||
tem = XCDR (tem);
|
||
}
|
||
if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
|
||
XSETCDR (elt, Fcopy_keymap (tem));
|
||
}
|
||
else if (EQ (XCAR (tem), Qkeymap))
|
||
res = Fcopy_keymap (elt);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
static void
|
||
copy_keymap_1 (Lisp_Object chartable, Lisp_Object idx, Lisp_Object elt)
|
||
{
|
||
Fset_char_table_range (chartable, idx, copy_keymap_item (elt));
|
||
}
|
||
|
||
DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
|
||
doc: /* Return a copy of the keymap KEYMAP.
|
||
The copy starts out with the same definitions of KEYMAP,
|
||
but changing either the copy or KEYMAP does not affect the other.
|
||
Any key definitions that are subkeymaps are recursively copied.
|
||
However, a key definition which is a symbol whose definition is a keymap
|
||
is not copied. */)
|
||
(Lisp_Object keymap)
|
||
{
|
||
register Lisp_Object copy, tail;
|
||
keymap = get_keymap (keymap, 1, 0);
|
||
copy = tail = Fcons (Qkeymap, Qnil);
|
||
keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
|
||
|
||
while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
|
||
{
|
||
Lisp_Object elt = XCAR (keymap);
|
||
if (CHAR_TABLE_P (elt))
|
||
{
|
||
elt = Fcopy_sequence (elt);
|
||
map_char_table (copy_keymap_1, Qnil, elt, elt);
|
||
}
|
||
else if (VECTORP (elt))
|
||
{
|
||
int i;
|
||
elt = Fcopy_sequence (elt);
|
||
for (i = 0; i < ASIZE (elt); i++)
|
||
ASET (elt, i, copy_keymap_item (AREF (elt, i)));
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
if (EQ (XCAR (elt), Qkeymap))
|
||
/* This is a sub keymap. */
|
||
elt = Fcopy_keymap (elt);
|
||
else
|
||
elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
|
||
}
|
||
XSETCDR (tail, Fcons (elt, Qnil));
|
||
tail = XCDR (tail);
|
||
keymap = XCDR (keymap);
|
||
}
|
||
XSETCDR (tail, keymap);
|
||
return copy;
|
||
}
|
||
|
||
/* Simple Keymap mutators and accessors. */
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
|
||
doc: /* In KEYMAP, define key sequence KEY as DEF.
|
||
KEYMAP is a keymap.
|
||
|
||
KEY is a string or a vector of symbols and characters, representing a
|
||
sequence of keystrokes and events. Non-ASCII characters with codes
|
||
above 127 (such as ISO Latin-1) can be represented by vectors.
|
||
Two types of vector have special meanings:
|
||
[remap COMMAND] remaps any key binding for COMMAND.
|
||
[t] creates a default definition, which applies to any event with no
|
||
other definition in KEYMAP.
|
||
|
||
DEF is anything that can be a key's definition:
|
||
nil (means key is undefined in this keymap),
|
||
a command (a Lisp function suitable for interactive calling),
|
||
a string (treated as a keyboard macro),
|
||
a keymap (to define a prefix key),
|
||
a symbol (when the key is looked up, the symbol will stand for its
|
||
function definition, which should at that time be one of the above,
|
||
or another symbol whose function definition is used, etc.),
|
||
a cons (STRING . DEFN), meaning that DEFN is the definition
|
||
(DEFN should be a valid definition in its own right),
|
||
or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP,
|
||
or an extended menu item definition.
|
||
(See info node `(elisp)Extended Menu Items'.)
|
||
|
||
If KEYMAP is a sparse keymap with a binding for KEY, the existing
|
||
binding is altered. If there is no binding for KEY, the new pair
|
||
binding KEY to DEF is added at the front of KEYMAP. */)
|
||
(Lisp_Object keymap, Lisp_Object key, Lisp_Object def)
|
||
{
|
||
register ptrdiff_t idx;
|
||
register Lisp_Object c;
|
||
register Lisp_Object cmd;
|
||
int metized = 0;
|
||
int meta_bit;
|
||
ptrdiff_t length;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
GCPRO3 (keymap, key, def);
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
|
||
CHECK_VECTOR_OR_STRING (key);
|
||
|
||
length = XFASTINT (Flength (key));
|
||
if (length == 0)
|
||
RETURN_UNGCPRO (Qnil);
|
||
|
||
if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
|
||
Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
|
||
|
||
meta_bit = (VECTORP (key) || (STRINGP (key) && STRING_MULTIBYTE (key))
|
||
? meta_modifier : 0x80);
|
||
|
||
if (VECTORP (def) && ASIZE (def) > 0 && CONSP (AREF (def, 0)))
|
||
{ /* DEF is apparently an XEmacs-style keyboard macro. */
|
||
Lisp_Object tmp = Fmake_vector (make_number (ASIZE (def)), Qnil);
|
||
ptrdiff_t i = ASIZE (def);
|
||
while (--i >= 0)
|
||
{
|
||
Lisp_Object defi = AREF (def, i);
|
||
if (CONSP (defi) && lucid_event_type_list_p (defi))
|
||
defi = Fevent_convert_list (defi);
|
||
ASET (tmp, i, defi);
|
||
}
|
||
def = tmp;
|
||
}
|
||
|
||
idx = 0;
|
||
while (1)
|
||
{
|
||
c = Faref (key, make_number (idx));
|
||
|
||
if (CONSP (c))
|
||
{
|
||
/* C may be a Lucid style event type list or a cons (FROM .
|
||
TO) specifying a range of characters. */
|
||
if (lucid_event_type_list_p (c))
|
||
c = Fevent_convert_list (c);
|
||
else if (CHARACTERP (XCAR (c)))
|
||
CHECK_CHARACTER_CDR (c);
|
||
}
|
||
|
||
if (SYMBOLP (c))
|
||
silly_event_symbol_error (c);
|
||
|
||
if (INTEGERP (c)
|
||
&& (XINT (c) & meta_bit)
|
||
&& !metized)
|
||
{
|
||
c = meta_prefix_char;
|
||
metized = 1;
|
||
}
|
||
else
|
||
{
|
||
if (INTEGERP (c))
|
||
XSETINT (c, XINT (c) & ~meta_bit);
|
||
|
||
metized = 0;
|
||
idx++;
|
||
}
|
||
|
||
if (!INTEGERP (c) && !SYMBOLP (c)
|
||
&& (!CONSP (c)
|
||
/* If C is a range, it must be a leaf. */
|
||
|| (INTEGERP (XCAR (c)) && idx != length)))
|
||
message_with_string ("Key sequence contains invalid event %s", c, 1);
|
||
|
||
if (idx == length)
|
||
RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
|
||
|
||
cmd = access_keymap (keymap, c, 0, 1, 1);
|
||
|
||
/* If this key is undefined, make it a prefix. */
|
||
if (NILP (cmd))
|
||
cmd = define_as_prefix (keymap, c);
|
||
|
||
keymap = get_keymap (cmd, 0, 1);
|
||
if (!CONSP (keymap))
|
||
{
|
||
const char *trailing_esc = ((EQ (c, meta_prefix_char) && metized)
|
||
? (idx == 0 ? "ESC" : " ESC")
|
||
: "");
|
||
|
||
/* We must use Fkey_description rather than just passing key to
|
||
error; key might be a vector, not a string. */
|
||
error ("Key sequence %s starts with non-prefix key %s%s",
|
||
SDATA (Fkey_description (key, Qnil)),
|
||
SDATA (Fkey_description (Fsubstring (key, make_number (0),
|
||
make_number (idx)),
|
||
Qnil)),
|
||
trailing_esc);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function may GC (it calls Fkey_binding). */
|
||
|
||
DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 3, 0,
|
||
doc: /* Return the remapping for command COMMAND.
|
||
Returns nil if COMMAND is not remapped (or not a symbol).
|
||
|
||
If the optional argument POSITION is non-nil, it specifies a mouse
|
||
position as returned by `event-start' and `event-end', and the
|
||
remapping occurs in the keymaps associated with it. It can also be a
|
||
number or marker, in which case the keymap properties at the specified
|
||
buffer position instead of point are used. The KEYMAPS argument is
|
||
ignored if POSITION is non-nil.
|
||
|
||
If the optional argument KEYMAPS is non-nil, it should be a list of
|
||
keymaps to search for command remapping. Otherwise, search for the
|
||
remapping in all currently active keymaps. */)
|
||
(Lisp_Object command, Lisp_Object position, Lisp_Object keymaps)
|
||
{
|
||
if (!SYMBOLP (command))
|
||
return Qnil;
|
||
|
||
ASET (command_remapping_vector, 1, command);
|
||
|
||
if (NILP (keymaps))
|
||
command = Fkey_binding (command_remapping_vector, Qnil, Qt, position);
|
||
else
|
||
command = Flookup_key (Fcons (Qkeymap, keymaps),
|
||
command_remapping_vector, Qnil);
|
||
return INTEGERP (command) ? Qnil : command;
|
||
}
|
||
|
||
/* Value is number if KEY is too long; nil if valid but has no definition. */
|
||
/* GC is possible in this function. */
|
||
|
||
DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
|
||
doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
|
||
A value of nil means undefined. See doc of `define-key'
|
||
for kinds of definitions.
|
||
|
||
A number as value means KEY is "too long";
|
||
that is, characters or symbols in it except for the last one
|
||
fail to be a valid sequence of prefix characters in KEYMAP.
|
||
The number is how many characters at the front of KEY
|
||
it takes to reach a non-prefix key.
|
||
|
||
Normally, `lookup-key' ignores bindings for t, which act as default
|
||
bindings, used when nothing else in the keymap applies; this makes it
|
||
usable as a general function for probing keymaps. However, if the
|
||
third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
|
||
recognize the default bindings, just as `read-key-sequence' does. */)
|
||
(Lisp_Object keymap, Lisp_Object key, Lisp_Object accept_default)
|
||
{
|
||
register ptrdiff_t idx;
|
||
register Lisp_Object cmd;
|
||
register Lisp_Object c;
|
||
ptrdiff_t length;
|
||
int t_ok = !NILP (accept_default);
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
GCPRO2 (keymap, key);
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
|
||
CHECK_VECTOR_OR_STRING (key);
|
||
|
||
length = XFASTINT (Flength (key));
|
||
if (length == 0)
|
||
RETURN_UNGCPRO (keymap);
|
||
|
||
idx = 0;
|
||
while (1)
|
||
{
|
||
c = Faref (key, make_number (idx++));
|
||
|
||
if (CONSP (c) && lucid_event_type_list_p (c))
|
||
c = Fevent_convert_list (c);
|
||
|
||
/* Turn the 8th bit of string chars into a meta modifier. */
|
||
if (STRINGP (key) && XINT (c) & 0x80 && !STRING_MULTIBYTE (key))
|
||
XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
|
||
|
||
/* Allow string since binding for `menu-bar-select-buffer'
|
||
includes the buffer name in the key sequence. */
|
||
if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
|
||
message_with_string ("Key sequence contains invalid event %s", c, 1);
|
||
|
||
cmd = access_keymap (keymap, c, t_ok, 0, 1);
|
||
if (idx == length)
|
||
RETURN_UNGCPRO (cmd);
|
||
|
||
keymap = get_keymap (cmd, 0, 1);
|
||
if (!CONSP (keymap))
|
||
RETURN_UNGCPRO (make_number (idx));
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Make KEYMAP define event C as a keymap (i.e., as a prefix).
|
||
Assume that currently it does not define C at all.
|
||
Return the keymap. */
|
||
|
||
static Lisp_Object
|
||
define_as_prefix (Lisp_Object keymap, Lisp_Object c)
|
||
{
|
||
Lisp_Object cmd;
|
||
|
||
cmd = Fmake_sparse_keymap (Qnil);
|
||
store_in_keymap (keymap, c, cmd);
|
||
|
||
return cmd;
|
||
}
|
||
|
||
/* Append a key to the end of a key sequence. We always make a vector. */
|
||
|
||
static Lisp_Object
|
||
append_key (Lisp_Object key_sequence, Lisp_Object key)
|
||
{
|
||
Lisp_Object args[2];
|
||
|
||
args[0] = key_sequence;
|
||
|
||
args[1] = Fcons (key, Qnil);
|
||
return Fvconcat (2, args);
|
||
}
|
||
|
||
/* Given a event type C which is a symbol,
|
||
signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
|
||
|
||
static void
|
||
silly_event_symbol_error (Lisp_Object c)
|
||
{
|
||
Lisp_Object parsed, base, name, assoc;
|
||
int modifiers;
|
||
|
||
parsed = parse_modifiers (c);
|
||
modifiers = XFASTINT (XCAR (XCDR (parsed)));
|
||
base = XCAR (parsed);
|
||
name = Fsymbol_name (base);
|
||
/* This alist includes elements such as ("RET" . "\\r"). */
|
||
assoc = Fassoc (name, exclude_keys);
|
||
|
||
if (! NILP (assoc))
|
||
{
|
||
char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
|
||
char *p = new_mods;
|
||
Lisp_Object keystring;
|
||
if (modifiers & alt_modifier)
|
||
{ *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
|
||
if (modifiers & ctrl_modifier)
|
||
{ *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
|
||
if (modifiers & hyper_modifier)
|
||
{ *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
|
||
if (modifiers & meta_modifier)
|
||
{ *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
|
||
if (modifiers & shift_modifier)
|
||
{ *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
|
||
if (modifiers & super_modifier)
|
||
{ *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
|
||
*p = 0;
|
||
|
||
c = reorder_modifiers (c);
|
||
keystring = concat2 (build_string (new_mods), XCDR (assoc));
|
||
|
||
error ((modifiers & ~meta_modifier
|
||
? "To bind the key %s, use [?%s], not [%s]"
|
||
: "To bind the key %s, use \"%s\", not [%s]"),
|
||
SDATA (SYMBOL_NAME (c)), SDATA (keystring),
|
||
SDATA (SYMBOL_NAME (c)));
|
||
}
|
||
}
|
||
|
||
/* Global, local, and minor mode keymap stuff. */
|
||
|
||
/* We can't put these variables inside current_minor_maps, since under
|
||
some systems, static gets macro-defined to be the empty string.
|
||
Ickypoo. */
|
||
static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
|
||
static ptrdiff_t cmm_size = 0;
|
||
|
||
/* Store a pointer to an array of the currently active minor modes in
|
||
*modeptr, a pointer to an array of the keymaps of the currently
|
||
active minor modes in *mapptr, and return the number of maps
|
||
*mapptr contains.
|
||
|
||
This function always returns a pointer to the same buffer, and may
|
||
free or reallocate it, so if you want to keep it for a long time or
|
||
hand it out to lisp code, copy it. This procedure will be called
|
||
for every key sequence read, so the nice lispy approach (return a
|
||
new assoclist, list, what have you) for each invocation would
|
||
result in a lot of consing over time.
|
||
|
||
If we used xrealloc/xmalloc and ran out of memory, they would throw
|
||
back to the command loop, which would try to read a key sequence,
|
||
which would call this function again, resulting in an infinite
|
||
loop. Instead, we'll use realloc/malloc and silently truncate the
|
||
list, let the key sequence be read, and hope some other piece of
|
||
code signals the error. */
|
||
ptrdiff_t
|
||
current_minor_maps (Lisp_Object **modeptr, Lisp_Object **mapptr)
|
||
{
|
||
ptrdiff_t i = 0;
|
||
int list_number = 0;
|
||
Lisp_Object alist, assoc, var, val;
|
||
Lisp_Object emulation_alists;
|
||
Lisp_Object lists[2];
|
||
|
||
emulation_alists = Vemulation_mode_map_alists;
|
||
lists[0] = Vminor_mode_overriding_map_alist;
|
||
lists[1] = Vminor_mode_map_alist;
|
||
|
||
for (list_number = 0; list_number < 2; list_number++)
|
||
{
|
||
if (CONSP (emulation_alists))
|
||
{
|
||
alist = XCAR (emulation_alists);
|
||
emulation_alists = XCDR (emulation_alists);
|
||
if (SYMBOLP (alist))
|
||
alist = find_symbol_value (alist);
|
||
list_number = -1;
|
||
}
|
||
else
|
||
alist = lists[list_number];
|
||
|
||
for ( ; CONSP (alist); alist = XCDR (alist))
|
||
if ((assoc = XCAR (alist), CONSP (assoc))
|
||
&& (var = XCAR (assoc), SYMBOLP (var))
|
||
&& (val = find_symbol_value (var), !EQ (val, Qunbound))
|
||
&& !NILP (val))
|
||
{
|
||
Lisp_Object temp;
|
||
|
||
/* If a variable has an entry in Vminor_mode_overriding_map_alist,
|
||
and also an entry in Vminor_mode_map_alist,
|
||
ignore the latter. */
|
||
if (list_number == 1)
|
||
{
|
||
val = assq_no_quit (var, lists[0]);
|
||
if (!NILP (val))
|
||
continue;
|
||
}
|
||
|
||
if (i >= cmm_size)
|
||
{
|
||
ptrdiff_t newsize, allocsize;
|
||
Lisp_Object *newmodes, *newmaps;
|
||
|
||
/* Check for size calculation overflow. Other code
|
||
(e.g., read_key_sequence) adds 3 to the count
|
||
later, so subtract 3 from the limit here. */
|
||
if (min (PTRDIFF_MAX, SIZE_MAX) / (2 * sizeof *newmodes) - 3
|
||
< cmm_size)
|
||
break;
|
||
|
||
newsize = cmm_size == 0 ? 30 : cmm_size * 2;
|
||
allocsize = newsize * sizeof *newmodes;
|
||
|
||
/* Use malloc here. See the comment above this function.
|
||
Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
|
||
BLOCK_INPUT;
|
||
newmodes = malloc (allocsize);
|
||
if (newmodes)
|
||
{
|
||
if (cmm_modes)
|
||
{
|
||
memcpy (newmodes, cmm_modes,
|
||
cmm_size * sizeof cmm_modes[0]);
|
||
free (cmm_modes);
|
||
}
|
||
cmm_modes = newmodes;
|
||
}
|
||
|
||
newmaps = malloc (allocsize);
|
||
if (newmaps)
|
||
{
|
||
if (cmm_maps)
|
||
{
|
||
memcpy (newmaps, cmm_maps,
|
||
cmm_size * sizeof cmm_maps[0]);
|
||
free (cmm_maps);
|
||
}
|
||
cmm_maps = newmaps;
|
||
}
|
||
UNBLOCK_INPUT;
|
||
|
||
if (newmodes == NULL || newmaps == NULL)
|
||
break;
|
||
cmm_size = newsize;
|
||
}
|
||
|
||
/* Get the keymap definition--or nil if it is not defined. */
|
||
temp = Findirect_function (XCDR (assoc), Qt);
|
||
if (!NILP (temp))
|
||
{
|
||
cmm_modes[i] = var;
|
||
cmm_maps [i] = temp;
|
||
i++;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (modeptr) *modeptr = cmm_modes;
|
||
if (mapptr) *mapptr = cmm_maps;
|
||
return i;
|
||
}
|
||
|
||
/* Return the offset of POSITION, a click position, in the style of
|
||
the respective argument of Fkey_binding. */
|
||
static ptrdiff_t
|
||
click_position (Lisp_Object position)
|
||
{
|
||
EMACS_INT pos = (INTEGERP (position) ? XINT (position)
|
||
: MARKERP (position) ? marker_position (position)
|
||
: PT);
|
||
if (! (BEGV <= pos && pos <= ZV))
|
||
args_out_of_range (Fcurrent_buffer (), position);
|
||
return pos;
|
||
}
|
||
|
||
DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
|
||
0, 2, 0,
|
||
doc: /* Return a list of the currently active keymaps.
|
||
OLP if non-nil indicates that we should obey `overriding-local-map' and
|
||
`overriding-terminal-local-map'. POSITION can specify a click position
|
||
like in the respective argument of `key-binding'. */)
|
||
(Lisp_Object olp, Lisp_Object position)
|
||
{
|
||
ptrdiff_t count = SPECPDL_INDEX ();
|
||
|
||
Lisp_Object keymaps = Fcons (current_global_map, Qnil);
|
||
|
||
/* If a mouse click position is given, our variables are based on
|
||
the buffer clicked on, not the current buffer. So we may have to
|
||
switch the buffer here. */
|
||
|
||
if (CONSP (position))
|
||
{
|
||
Lisp_Object window;
|
||
|
||
window = POSN_WINDOW (position);
|
||
|
||
if (WINDOWP (window)
|
||
&& BUFFERP (XWINDOW (window)->buffer)
|
||
&& XBUFFER (XWINDOW (window)->buffer) != current_buffer)
|
||
{
|
||
/* Arrange to go back to the original buffer once we're done
|
||
processing the key sequence. We don't use
|
||
save_excursion_{save,restore} here, in analogy to
|
||
`read-key-sequence' to avoid saving point. Maybe this
|
||
would not be a problem here, but it is easier to keep
|
||
things the same.
|
||
*/
|
||
|
||
record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
|
||
|
||
set_buffer_internal (XBUFFER (XWINDOW (window)->buffer));
|
||
}
|
||
}
|
||
|
||
if (!NILP (olp))
|
||
{
|
||
if (!NILP (KVAR (current_kboard, Voverriding_terminal_local_map)))
|
||
keymaps = Fcons (KVAR (current_kboard, Voverriding_terminal_local_map),
|
||
keymaps);
|
||
/* The doc said that overriding-terminal-local-map should
|
||
override overriding-local-map. The code used them both,
|
||
but it seems clearer to use just one. rms, jan 2005. */
|
||
else if (!NILP (Voverriding_local_map))
|
||
keymaps = Fcons (Voverriding_local_map, keymaps);
|
||
}
|
||
if (NILP (XCDR (keymaps)))
|
||
{
|
||
Lisp_Object *maps;
|
||
int nmaps, i;
|
||
ptrdiff_t pt = click_position (position);
|
||
/* This usually returns the buffer's local map,
|
||
but that can be overridden by a `local-map' property. */
|
||
Lisp_Object local_map = get_local_map (pt, current_buffer, Qlocal_map);
|
||
/* This returns nil unless there is a `keymap' property. */
|
||
Lisp_Object keymap = get_local_map (pt, current_buffer, Qkeymap);
|
||
|
||
if (CONSP (position))
|
||
{
|
||
Lisp_Object string = POSN_STRING (position);
|
||
|
||
/* For a mouse click, get the local text-property keymap
|
||
of the place clicked on, rather than point. */
|
||
|
||
if (POSN_INBUFFER_P (position))
|
||
{
|
||
Lisp_Object pos;
|
||
|
||
pos = POSN_BUFFER_POSN (position);
|
||
if (INTEGERP (pos)
|
||
&& XINT (pos) >= BEG && XINT (pos) <= Z)
|
||
{
|
||
local_map = get_local_map (XINT (pos),
|
||
current_buffer, Qlocal_map);
|
||
|
||
keymap = get_local_map (XINT (pos),
|
||
current_buffer, Qkeymap);
|
||
}
|
||
}
|
||
|
||
/* If on a mode line string with a local keymap,
|
||
or for a click on a string, i.e. overlay string or a
|
||
string displayed via the `display' property,
|
||
consider `local-map' and `keymap' properties of
|
||
that string. */
|
||
|
||
if (CONSP (string) && STRINGP (XCAR (string)))
|
||
{
|
||
Lisp_Object pos, map;
|
||
|
||
pos = XCDR (string);
|
||
string = XCAR (string);
|
||
if (INTEGERP (pos)
|
||
&& XINT (pos) >= 0
|
||
&& XINT (pos) < SCHARS (string))
|
||
{
|
||
map = Fget_text_property (pos, Qlocal_map, string);
|
||
if (!NILP (map))
|
||
local_map = map;
|
||
|
||
map = Fget_text_property (pos, Qkeymap, string);
|
||
if (!NILP (map))
|
||
keymap = map;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
if (!NILP (local_map))
|
||
keymaps = Fcons (local_map, keymaps);
|
||
|
||
/* Now put all the minor mode keymaps on the list. */
|
||
nmaps = current_minor_maps (0, &maps);
|
||
|
||
for (i = --nmaps; i >= 0; i--)
|
||
if (!NILP (maps[i]))
|
||
keymaps = Fcons (maps[i], keymaps);
|
||
|
||
if (!NILP (keymap))
|
||
keymaps = Fcons (keymap, keymaps);
|
||
}
|
||
|
||
unbind_to (count, Qnil);
|
||
|
||
return keymaps;
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 4, 0,
|
||
doc: /* Return the binding for command KEY in current keymaps.
|
||
KEY is a string or vector, a sequence of keystrokes.
|
||
The binding is probably a symbol with a function definition.
|
||
|
||
Normally, `key-binding' ignores bindings for t, which act as default
|
||
bindings, used when nothing else in the keymap applies; this makes it
|
||
usable as a general function for probing keymaps. However, if the
|
||
optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
|
||
recognize the default bindings, just as `read-key-sequence' does.
|
||
|
||
Like the normal command loop, `key-binding' will remap the command
|
||
resulting from looking up KEY by looking up the command in the
|
||
current keymaps. However, if the optional third argument NO-REMAP
|
||
is non-nil, `key-binding' returns the unmapped command.
|
||
|
||
If KEY is a key sequence initiated with the mouse, the used keymaps
|
||
will depend on the clicked mouse position with regard to the buffer
|
||
and possible local keymaps on strings.
|
||
|
||
If the optional argument POSITION is non-nil, it specifies a mouse
|
||
position as returned by `event-start' and `event-end', and the lookup
|
||
occurs in the keymaps associated with it instead of KEY. It can also
|
||
be a number or marker, in which case the keymap properties at the
|
||
specified buffer position instead of point are used.
|
||
*/)
|
||
(Lisp_Object key, Lisp_Object accept_default, Lisp_Object no_remap, Lisp_Object position)
|
||
{
|
||
Lisp_Object value;
|
||
|
||
if (NILP (position) && VECTORP (key))
|
||
{
|
||
Lisp_Object event
|
||
/* mouse events may have a symbolic prefix indicating the
|
||
scrollbar or mode line */
|
||
= AREF (key, SYMBOLP (AREF (key, 0)) && ASIZE (key) > 1 ? 1 : 0);
|
||
|
||
/* We are not interested in locations without event data */
|
||
|
||
if (EVENT_HAS_PARAMETERS (event) && CONSP (XCDR (event)))
|
||
{
|
||
Lisp_Object kind = EVENT_HEAD_KIND (EVENT_HEAD (event));
|
||
if (EQ (kind, Qmouse_click))
|
||
position = EVENT_START (event);
|
||
}
|
||
}
|
||
|
||
value = Flookup_key (Fcons (Qkeymap, Fcurrent_active_maps (Qt, position)),
|
||
key, accept_default);
|
||
|
||
if (NILP (value) || INTEGERP (value))
|
||
return Qnil;
|
||
|
||
/* If the result of the ordinary keymap lookup is an interactive
|
||
command, look for a key binding (ie. remapping) for that command. */
|
||
|
||
if (NILP (no_remap) && SYMBOLP (value))
|
||
{
|
||
Lisp_Object value1;
|
||
if (value1 = Fcommand_remapping (value, position, Qnil), !NILP (value1))
|
||
value = value1;
|
||
}
|
||
|
||
return value;
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
|
||
doc: /* Return the binding for command KEYS in current local keymap only.
|
||
KEYS is a string or vector, a sequence of keystrokes.
|
||
The binding is probably a symbol with a function definition.
|
||
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default
|
||
bindings; see the description of `lookup-key' for more details about this. */)
|
||
(Lisp_Object keys, Lisp_Object accept_default)
|
||
{
|
||
register Lisp_Object map;
|
||
map = BVAR (current_buffer, keymap);
|
||
if (NILP (map))
|
||
return Qnil;
|
||
return Flookup_key (map, keys, accept_default);
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
|
||
doc: /* Return the binding for command KEYS in current global keymap only.
|
||
KEYS is a string or vector, a sequence of keystrokes.
|
||
The binding is probably a symbol with a function definition.
|
||
This function's return values are the same as those of `lookup-key'
|
||
\(which see).
|
||
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default
|
||
bindings; see the description of `lookup-key' for more details about this. */)
|
||
(Lisp_Object keys, Lisp_Object accept_default)
|
||
{
|
||
return Flookup_key (current_global_map, keys, accept_default);
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
|
||
doc: /* Find the visible minor mode bindings of KEY.
|
||
Return an alist of pairs (MODENAME . BINDING), where MODENAME is
|
||
the symbol which names the minor mode binding KEY, and BINDING is
|
||
KEY's definition in that mode. In particular, if KEY has no
|
||
minor-mode bindings, return nil. If the first binding is a
|
||
non-prefix, all subsequent bindings will be omitted, since they would
|
||
be ignored. Similarly, the list doesn't include non-prefix bindings
|
||
that come after prefix bindings.
|
||
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default
|
||
bindings; see the description of `lookup-key' for more details about this. */)
|
||
(Lisp_Object key, Lisp_Object accept_default)
|
||
{
|
||
Lisp_Object *modes, *maps;
|
||
int nmaps;
|
||
Lisp_Object binding;
|
||
int i, j;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
nmaps = current_minor_maps (&modes, &maps);
|
||
/* Note that all these maps are GCPRO'd
|
||
in the places where we found them. */
|
||
|
||
binding = Qnil;
|
||
GCPRO2 (key, binding);
|
||
|
||
for (i = j = 0; i < nmaps; i++)
|
||
if (!NILP (maps[i])
|
||
&& !NILP (binding = Flookup_key (maps[i], key, accept_default))
|
||
&& !INTEGERP (binding))
|
||
{
|
||
if (KEYMAPP (binding))
|
||
maps[j++] = Fcons (modes[i], binding);
|
||
else if (j == 0)
|
||
RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
|
||
}
|
||
|
||
UNGCPRO;
|
||
return Flist (j, maps);
|
||
}
|
||
|
||
DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
|
||
doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
|
||
A new sparse keymap is stored as COMMAND's function definition and its value.
|
||
If a second optional argument MAPVAR is given, the map is stored as
|
||
its value instead of as COMMAND's value; but COMMAND is still defined
|
||
as a function.
|
||
The third optional argument NAME, if given, supplies a menu name
|
||
string for the map. This is required to use the keymap as a menu.
|
||
This function returns COMMAND. */)
|
||
(Lisp_Object command, Lisp_Object mapvar, Lisp_Object name)
|
||
{
|
||
Lisp_Object map;
|
||
map = Fmake_sparse_keymap (name);
|
||
Ffset (command, map);
|
||
if (!NILP (mapvar))
|
||
Fset (mapvar, map);
|
||
else
|
||
Fset (command, map);
|
||
return command;
|
||
}
|
||
|
||
DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
|
||
doc: /* Select KEYMAP as the global keymap. */)
|
||
(Lisp_Object keymap)
|
||
{
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
current_global_map = keymap;
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
|
||
doc: /* Select KEYMAP as the local keymap.
|
||
If KEYMAP is nil, that means no local keymap. */)
|
||
(Lisp_Object keymap)
|
||
{
|
||
if (!NILP (keymap))
|
||
keymap = get_keymap (keymap, 1, 1);
|
||
|
||
BVAR (current_buffer, keymap) = keymap;
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
|
||
doc: /* Return current buffer's local keymap, or nil if it has none.
|
||
Normally the local keymap is set by the major mode with `use-local-map'. */)
|
||
(void)
|
||
{
|
||
return BVAR (current_buffer, keymap);
|
||
}
|
||
|
||
DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
|
||
doc: /* Return the current global keymap. */)
|
||
(void)
|
||
{
|
||
return current_global_map;
|
||
}
|
||
|
||
DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
|
||
doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
|
||
(void)
|
||
{
|
||
Lisp_Object *maps;
|
||
int nmaps = current_minor_maps (0, &maps);
|
||
|
||
return Flist (nmaps, maps);
|
||
}
|
||
|
||
/* Help functions for describing and documenting keymaps. */
|
||
|
||
struct accessible_keymaps_data {
|
||
Lisp_Object maps, tail, thisseq;
|
||
/* Does the current sequence end in the meta-prefix-char? */
|
||
int is_metized;
|
||
};
|
||
|
||
static void
|
||
accessible_keymaps_1 (Lisp_Object key, Lisp_Object cmd, Lisp_Object args, void *data)
|
||
/* Use void* data to be compatible with map_keymap_function_t. */
|
||
{
|
||
struct accessible_keymaps_data *d = data; /* Cast! */
|
||
Lisp_Object maps = d->maps;
|
||
Lisp_Object tail = d->tail;
|
||
Lisp_Object thisseq = d->thisseq;
|
||
int is_metized = d->is_metized && INTEGERP (key);
|
||
Lisp_Object tem;
|
||
|
||
cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
|
||
if (NILP (cmd))
|
||
return;
|
||
|
||
/* Look for and break cycles. */
|
||
while (!NILP (tem = Frassq (cmd, maps)))
|
||
{
|
||
Lisp_Object prefix = XCAR (tem);
|
||
ptrdiff_t lim = XINT (Flength (XCAR (tem)));
|
||
if (lim <= XINT (Flength (thisseq)))
|
||
{ /* This keymap was already seen with a smaller prefix. */
|
||
ptrdiff_t i = 0;
|
||
while (i < lim && EQ (Faref (prefix, make_number (i)),
|
||
Faref (thisseq, make_number (i))))
|
||
i++;
|
||
if (i >= lim)
|
||
/* `prefix' is a prefix of `thisseq' => there's a cycle. */
|
||
return;
|
||
}
|
||
/* This occurrence of `cmd' in `maps' does not correspond to a cycle,
|
||
but maybe `cmd' occurs again further down in `maps', so keep
|
||
looking. */
|
||
maps = XCDR (Fmemq (tem, maps));
|
||
}
|
||
|
||
/* If the last key in thisseq is meta-prefix-char,
|
||
turn it into a meta-ized keystroke. We know
|
||
that the event we're about to append is an
|
||
ascii keystroke since we're processing a
|
||
keymap table. */
|
||
if (is_metized)
|
||
{
|
||
int meta_bit = meta_modifier;
|
||
Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
|
||
tem = Fcopy_sequence (thisseq);
|
||
|
||
Faset (tem, last, make_number (XINT (key) | meta_bit));
|
||
|
||
/* This new sequence is the same length as
|
||
thisseq, so stick it in the list right
|
||
after this one. */
|
||
XSETCDR (tail,
|
||
Fcons (Fcons (tem, cmd), XCDR (tail)));
|
||
}
|
||
else
|
||
{
|
||
tem = append_key (thisseq, key);
|
||
nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
|
||
}
|
||
}
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
|
||
1, 2, 0,
|
||
doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
|
||
Returns a list of elements of the form (KEYS . MAP), where the sequence
|
||
KEYS starting from KEYMAP gets you to MAP. These elements are ordered
|
||
so that the KEYS increase in length. The first element is ([] . KEYMAP).
|
||
An optional argument PREFIX, if non-nil, should be a key sequence;
|
||
then the value includes only maps for prefixes that start with PREFIX. */)
|
||
(Lisp_Object keymap, Lisp_Object prefix)
|
||
{
|
||
Lisp_Object maps, tail;
|
||
EMACS_INT prefixlen = XFASTINT (Flength (prefix));
|
||
|
||
/* no need for gcpro because we don't autoload any keymaps. */
|
||
|
||
if (!NILP (prefix))
|
||
{
|
||
/* If a prefix was specified, start with the keymap (if any) for
|
||
that prefix, so we don't waste time considering other prefixes. */
|
||
Lisp_Object tem;
|
||
tem = Flookup_key (keymap, prefix, Qt);
|
||
/* Flookup_key may give us nil, or a number,
|
||
if the prefix is not defined in this particular map.
|
||
It might even give us a list that isn't a keymap. */
|
||
tem = get_keymap (tem, 0, 0);
|
||
/* If the keymap is autoloaded `tem' is not a cons-cell, but we still
|
||
want to return it. */
|
||
if (!NILP (tem))
|
||
{
|
||
/* Convert PREFIX to a vector now, so that later on
|
||
we don't have to deal with the possibility of a string. */
|
||
if (STRINGP (prefix))
|
||
{
|
||
int i, i_byte, c;
|
||
Lisp_Object copy;
|
||
|
||
copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
|
||
for (i = 0, i_byte = 0; i < SCHARS (prefix);)
|
||
{
|
||
int i_before = i;
|
||
|
||
FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
|
||
if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
|
||
c ^= 0200 | meta_modifier;
|
||
ASET (copy, i_before, make_number (c));
|
||
}
|
||
prefix = copy;
|
||
}
|
||
maps = Fcons (Fcons (prefix, tem), Qnil);
|
||
}
|
||
else
|
||
return Qnil;
|
||
}
|
||
else
|
||
maps = Fcons (Fcons (zero_vector, get_keymap (keymap, 1, 0)), Qnil);
|
||
|
||
/* For each map in the list maps,
|
||
look at any other maps it points to,
|
||
and stick them at the end if they are not already in the list.
|
||
|
||
This is a breadth-first traversal, where tail is the queue of
|
||
nodes, and maps accumulates a list of all nodes visited. */
|
||
|
||
for (tail = maps; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
struct accessible_keymaps_data data;
|
||
register Lisp_Object thismap = Fcdr (XCAR (tail));
|
||
Lisp_Object last;
|
||
|
||
data.thisseq = Fcar (XCAR (tail));
|
||
data.maps = maps;
|
||
data.tail = tail;
|
||
last = make_number (XINT (Flength (data.thisseq)) - 1);
|
||
/* Does the current sequence end in the meta-prefix-char? */
|
||
data.is_metized = (XINT (last) >= 0
|
||
/* Don't metize the last char of PREFIX. */
|
||
&& XINT (last) >= prefixlen
|
||
&& EQ (Faref (data.thisseq, last), meta_prefix_char));
|
||
|
||
/* Since we can't run lisp code, we can't scan autoloaded maps. */
|
||
if (CONSP (thismap))
|
||
map_keymap (thismap, accessible_keymaps_1, Qnil, &data, 0);
|
||
}
|
||
return maps;
|
||
}
|
||
static Lisp_Object Qsingle_key_description, Qkey_description;
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
|
||
doc: /* Return a pretty description of key-sequence KEYS.
|
||
Optional arg PREFIX is the sequence of keys leading up to KEYS.
|
||
For example, [?\C-x ?l] is converted into the string \"C-x l\".
|
||
|
||
The `kbd' macro is an approximate inverse of this. */)
|
||
(Lisp_Object keys, Lisp_Object prefix)
|
||
{
|
||
ptrdiff_t len = 0;
|
||
EMACS_INT i;
|
||
ptrdiff_t i_byte;
|
||
Lisp_Object *args;
|
||
EMACS_INT size = XINT (Flength (keys));
|
||
Lisp_Object list;
|
||
Lisp_Object sep = build_string (" ");
|
||
Lisp_Object key;
|
||
Lisp_Object result;
|
||
int add_meta = 0;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
if (!NILP (prefix))
|
||
size += XINT (Flength (prefix));
|
||
|
||
/* This has one extra element at the end that we don't pass to Fconcat. */
|
||
if (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (Lisp_Object) / 4 < size)
|
||
memory_full (SIZE_MAX);
|
||
SAFE_ALLOCA_LISP (args, size * 4);
|
||
|
||
/* In effect, this computes
|
||
(mapconcat 'single-key-description keys " ")
|
||
but we shouldn't use mapconcat because it can do GC. */
|
||
|
||
next_list:
|
||
if (!NILP (prefix))
|
||
list = prefix, prefix = Qnil;
|
||
else if (!NILP (keys))
|
||
list = keys, keys = Qnil;
|
||
else
|
||
{
|
||
if (add_meta)
|
||
{
|
||
args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
|
||
result = Fconcat (len + 1, args);
|
||
}
|
||
else if (len == 0)
|
||
result = empty_unibyte_string;
|
||
else
|
||
result = Fconcat (len - 1, args);
|
||
SAFE_FREE ();
|
||
return result;
|
||
}
|
||
|
||
if (STRINGP (list))
|
||
size = SCHARS (list);
|
||
else if (VECTORP (list))
|
||
size = ASIZE (list);
|
||
else if (CONSP (list))
|
||
size = XINT (Flength (list));
|
||
else
|
||
wrong_type_argument (Qarrayp, list);
|
||
|
||
i = i_byte = 0;
|
||
|
||
while (i < size)
|
||
{
|
||
if (STRINGP (list))
|
||
{
|
||
int c;
|
||
FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
|
||
if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
|
||
c ^= 0200 | meta_modifier;
|
||
XSETFASTINT (key, c);
|
||
}
|
||
else if (VECTORP (list))
|
||
{
|
||
key = AREF (list, i); i++;
|
||
}
|
||
else
|
||
{
|
||
key = XCAR (list);
|
||
list = XCDR (list);
|
||
i++;
|
||
}
|
||
|
||
if (add_meta)
|
||
{
|
||
if (!INTEGERP (key)
|
||
|| EQ (key, meta_prefix_char)
|
||
|| (XINT (key) & meta_modifier))
|
||
{
|
||
args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
|
||
args[len++] = sep;
|
||
if (EQ (key, meta_prefix_char))
|
||
continue;
|
||
}
|
||
else
|
||
XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
|
||
add_meta = 0;
|
||
}
|
||
else if (EQ (key, meta_prefix_char))
|
||
{
|
||
add_meta = 1;
|
||
continue;
|
||
}
|
||
args[len++] = Fsingle_key_description (key, Qnil);
|
||
args[len++] = sep;
|
||
}
|
||
goto next_list;
|
||
}
|
||
|
||
|
||
char *
|
||
push_key_description (EMACS_INT ch, char *p, int force_multibyte)
|
||
{
|
||
int c, c2;
|
||
|
||
/* Clear all the meaningless bits above the meta bit. */
|
||
c = ch & (meta_modifier | ~ - meta_modifier);
|
||
c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
|
||
| meta_modifier | shift_modifier | super_modifier);
|
||
|
||
if (! CHARACTERP (make_number (c2)))
|
||
{
|
||
/* KEY_DESCRIPTION_SIZE is large enough for this. */
|
||
p += sprintf (p, "[%d]", c);
|
||
return p;
|
||
}
|
||
|
||
if (c & alt_modifier)
|
||
{
|
||
*p++ = 'A';
|
||
*p++ = '-';
|
||
c -= alt_modifier;
|
||
}
|
||
if ((c & ctrl_modifier) != 0
|
||
|| (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
|
||
{
|
||
*p++ = 'C';
|
||
*p++ = '-';
|
||
c &= ~ctrl_modifier;
|
||
}
|
||
if (c & hyper_modifier)
|
||
{
|
||
*p++ = 'H';
|
||
*p++ = '-';
|
||
c -= hyper_modifier;
|
||
}
|
||
if (c & meta_modifier)
|
||
{
|
||
*p++ = 'M';
|
||
*p++ = '-';
|
||
c -= meta_modifier;
|
||
}
|
||
if (c & shift_modifier)
|
||
{
|
||
*p++ = 'S';
|
||
*p++ = '-';
|
||
c -= shift_modifier;
|
||
}
|
||
if (c & super_modifier)
|
||
{
|
||
*p++ = 's';
|
||
*p++ = '-';
|
||
c -= super_modifier;
|
||
}
|
||
if (c < 040)
|
||
{
|
||
if (c == 033)
|
||
{
|
||
*p++ = 'E';
|
||
*p++ = 'S';
|
||
*p++ = 'C';
|
||
}
|
||
else if (c == '\t')
|
||
{
|
||
*p++ = 'T';
|
||
*p++ = 'A';
|
||
*p++ = 'B';
|
||
}
|
||
else if (c == Ctl ('M'))
|
||
{
|
||
*p++ = 'R';
|
||
*p++ = 'E';
|
||
*p++ = 'T';
|
||
}
|
||
else
|
||
{
|
||
/* `C-' already added above. */
|
||
if (c > 0 && c <= Ctl ('Z'))
|
||
*p++ = c + 0140;
|
||
else
|
||
*p++ = c + 0100;
|
||
}
|
||
}
|
||
else if (c == 0177)
|
||
{
|
||
*p++ = 'D';
|
||
*p++ = 'E';
|
||
*p++ = 'L';
|
||
}
|
||
else if (c == ' ')
|
||
{
|
||
*p++ = 'S';
|
||
*p++ = 'P';
|
||
*p++ = 'C';
|
||
}
|
||
else if (c < 128
|
||
|| (NILP (BVAR (current_buffer, enable_multibyte_characters))
|
||
&& SINGLE_BYTE_CHAR_P (c)
|
||
&& !force_multibyte))
|
||
{
|
||
*p++ = c;
|
||
}
|
||
else
|
||
{
|
||
/* Now we are sure that C is a valid character code. */
|
||
if (NILP (BVAR (current_buffer, enable_multibyte_characters))
|
||
&& ! force_multibyte)
|
||
*p++ = multibyte_char_to_unibyte (c);
|
||
else
|
||
p += CHAR_STRING (c, (unsigned char *) p);
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("single-key-description", Fsingle_key_description,
|
||
Ssingle_key_description, 1, 2, 0,
|
||
doc: /* Return a pretty description of command character KEY.
|
||
Control characters turn into C-whatever, etc.
|
||
Optional argument NO-ANGLES non-nil means don't put angle brackets
|
||
around function keys and event symbols. */)
|
||
(Lisp_Object key, Lisp_Object no_angles)
|
||
{
|
||
if (CONSP (key) && lucid_event_type_list_p (key))
|
||
key = Fevent_convert_list (key);
|
||
|
||
if (CONSP (key) && INTEGERP (XCAR (key)) && INTEGERP (XCDR (key)))
|
||
/* An interval from a map-char-table. */
|
||
return concat3 (Fsingle_key_description (XCAR (key), no_angles),
|
||
build_string (".."),
|
||
Fsingle_key_description (XCDR (key), no_angles));
|
||
|
||
key = EVENT_HEAD (key);
|
||
|
||
if (INTEGERP (key)) /* Normal character. */
|
||
{
|
||
char tem[KEY_DESCRIPTION_SIZE], *p;
|
||
|
||
p = push_key_description (XINT (key), tem, 1);
|
||
*p = 0;
|
||
return make_specified_string (tem, -1, p - tem, 1);
|
||
}
|
||
else if (SYMBOLP (key)) /* Function key or event-symbol. */
|
||
{
|
||
if (NILP (no_angles))
|
||
{
|
||
char *buffer;
|
||
Lisp_Object result;
|
||
USE_SAFE_ALLOCA;
|
||
SAFE_ALLOCA (buffer, char *,
|
||
sizeof "<>" + SBYTES (SYMBOL_NAME (key)));
|
||
esprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
|
||
result = build_string (buffer);
|
||
SAFE_FREE ();
|
||
return result;
|
||
}
|
||
else
|
||
return Fsymbol_name (key);
|
||
}
|
||
else if (STRINGP (key)) /* Buffer names in the menubar. */
|
||
return Fcopy_sequence (key);
|
||
else
|
||
error ("KEY must be an integer, cons, symbol, or string");
|
||
return Qnil;
|
||
}
|
||
|
||
static char *
|
||
push_text_char_description (register unsigned int c, register char *p)
|
||
{
|
||
if (c >= 0200)
|
||
{
|
||
*p++ = 'M';
|
||
*p++ = '-';
|
||
c -= 0200;
|
||
}
|
||
if (c < 040)
|
||
{
|
||
*p++ = '^';
|
||
*p++ = c + 64; /* 'A' - 1 */
|
||
}
|
||
else if (c == 0177)
|
||
{
|
||
*p++ = '^';
|
||
*p++ = '?';
|
||
}
|
||
else
|
||
*p++ = c;
|
||
return p;
|
||
}
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
|
||
doc: /* Return a pretty description of file-character CHARACTER.
|
||
Control characters turn into "^char", etc. This differs from
|
||
`single-key-description' which turns them into "C-char".
|
||
Also, this function recognizes the 2**7 bit as the Meta character,
|
||
whereas `single-key-description' uses the 2**27 bit for Meta.
|
||
See Info node `(elisp)Describing Characters' for examples. */)
|
||
(Lisp_Object character)
|
||
{
|
||
/* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
|
||
char str[6];
|
||
int c;
|
||
|
||
CHECK_CHARACTER (character);
|
||
|
||
c = XINT (character);
|
||
if (!ASCII_CHAR_P (c))
|
||
{
|
||
int len = CHAR_STRING (c, (unsigned char *) str);
|
||
|
||
return make_multibyte_string (str, 1, len);
|
||
}
|
||
|
||
*push_text_char_description (c & 0377, str) = 0;
|
||
|
||
return build_string (str);
|
||
}
|
||
|
||
static int where_is_preferred_modifier;
|
||
|
||
/* Return 0 if SEQ uses non-preferred modifiers or non-char events.
|
||
Else, return 2 if SEQ uses the where_is_preferred_modifier,
|
||
and 1 otherwise. */
|
||
static int
|
||
preferred_sequence_p (Lisp_Object seq)
|
||
{
|
||
EMACS_INT i;
|
||
EMACS_INT len = XFASTINT (Flength (seq));
|
||
int result = 1;
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
Lisp_Object ii, elt;
|
||
|
||
XSETFASTINT (ii, i);
|
||
elt = Faref (seq, ii);
|
||
|
||
if (!INTEGERP (elt))
|
||
return 0;
|
||
else
|
||
{
|
||
int modifiers = XINT (elt) & (CHAR_MODIFIER_MASK & ~CHAR_META);
|
||
if (modifiers == where_is_preferred_modifier)
|
||
result = 2;
|
||
else if (modifiers)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* where-is - finding a command in a set of keymaps. */
|
||
|
||
static void where_is_internal_1 (Lisp_Object key, Lisp_Object binding,
|
||
Lisp_Object args, void *data);
|
||
|
||
/* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
|
||
Returns the first non-nil binding found in any of those maps.
|
||
If REMAP is true, pass the result of the lookup through command
|
||
remapping before returning it. */
|
||
|
||
static Lisp_Object
|
||
shadow_lookup (Lisp_Object shadow, Lisp_Object key, Lisp_Object flag,
|
||
int remap)
|
||
{
|
||
Lisp_Object tail, value;
|
||
|
||
for (tail = shadow; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
value = Flookup_key (XCAR (tail), key, flag);
|
||
if (NATNUMP (value))
|
||
{
|
||
value = Flookup_key (XCAR (tail),
|
||
Fsubstring (key, make_number (0), value), flag);
|
||
if (!NILP (value))
|
||
return Qnil;
|
||
}
|
||
else if (!NILP (value))
|
||
{
|
||
Lisp_Object remapping;
|
||
if (remap && SYMBOLP (value)
|
||
&& (remapping = Fcommand_remapping (value, Qnil, shadow),
|
||
!NILP (remapping)))
|
||
return remapping;
|
||
else
|
||
return value;
|
||
}
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
static Lisp_Object Vmouse_events;
|
||
|
||
struct where_is_internal_data {
|
||
Lisp_Object definition, this, last;
|
||
int last_is_meta, noindirect;
|
||
Lisp_Object sequences;
|
||
};
|
||
|
||
/* This function can't GC, AFAIK. */
|
||
/* Return the list of bindings found. This list is ordered "longest
|
||
to shortest". It may include bindings that are actually shadowed
|
||
by others, as well as duplicate bindings and remapping bindings.
|
||
The list returned is potentially shared with where_is_cache, so
|
||
be careful not to modify it via side-effects. */
|
||
|
||
static Lisp_Object
|
||
where_is_internal (Lisp_Object definition, Lisp_Object keymaps,
|
||
int noindirect, int nomenus)
|
||
{
|
||
Lisp_Object maps = Qnil;
|
||
Lisp_Object found;
|
||
struct where_is_internal_data data;
|
||
|
||
/* Only important use of caching is for the menubar
|
||
(i.e. where-is-internal called with (def nil t nil nil)). */
|
||
if (nomenus && !noindirect)
|
||
{
|
||
/* Check heuristic-consistency of the cache. */
|
||
if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
|
||
where_is_cache = Qnil;
|
||
|
||
if (NILP (where_is_cache))
|
||
{
|
||
/* We need to create the cache. */
|
||
Lisp_Object args[2];
|
||
where_is_cache = Fmake_hash_table (0, args);
|
||
where_is_cache_keymaps = Qt;
|
||
}
|
||
else
|
||
/* We can reuse the cache. */
|
||
return Fgethash (definition, where_is_cache, Qnil);
|
||
}
|
||
else
|
||
/* Kill the cache so that where_is_internal_1 doesn't think
|
||
we're filling it up. */
|
||
where_is_cache = Qnil;
|
||
|
||
found = keymaps;
|
||
while (CONSP (found))
|
||
{
|
||
maps =
|
||
nconc2 (maps,
|
||
Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
|
||
found = XCDR (found);
|
||
}
|
||
|
||
data.sequences = Qnil;
|
||
for (; CONSP (maps); maps = XCDR (maps))
|
||
{
|
||
/* Key sequence to reach map, and the map that it reaches */
|
||
register Lisp_Object this, map, tem;
|
||
|
||
/* In order to fold [META-PREFIX-CHAR CHAR] sequences into
|
||
[M-CHAR] sequences, check if last character of the sequence
|
||
is the meta-prefix char. */
|
||
Lisp_Object last;
|
||
int last_is_meta;
|
||
|
||
this = Fcar (XCAR (maps));
|
||
map = Fcdr (XCAR (maps));
|
||
last = make_number (XINT (Flength (this)) - 1);
|
||
last_is_meta = (XINT (last) >= 0
|
||
&& EQ (Faref (this, last), meta_prefix_char));
|
||
|
||
/* if (nomenus && !preferred_sequence_p (this)) */
|
||
if (nomenus && XINT (last) >= 0
|
||
&& SYMBOLP (tem = Faref (this, make_number (0)))
|
||
&& !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
|
||
/* If no menu entries should be returned, skip over the
|
||
keymaps bound to `menu-bar' and `tool-bar' and other
|
||
non-ascii prefixes like `C-down-mouse-2'. */
|
||
continue;
|
||
|
||
QUIT;
|
||
|
||
data.definition = definition;
|
||
data.noindirect = noindirect;
|
||
data.this = this;
|
||
data.last = last;
|
||
data.last_is_meta = last_is_meta;
|
||
|
||
if (CONSP (map))
|
||
map_keymap (map, where_is_internal_1, Qnil, &data, 0);
|
||
}
|
||
|
||
if (nomenus && !noindirect)
|
||
{ /* Remember for which keymaps this cache was built.
|
||
We do it here (late) because we want to keep where_is_cache_keymaps
|
||
set to t while the cache isn't fully filled. */
|
||
where_is_cache_keymaps = keymaps;
|
||
/* During cache-filling, data.sequences is not filled by
|
||
where_is_internal_1. */
|
||
return Fgethash (definition, where_is_cache, Qnil);
|
||
}
|
||
else
|
||
return data.sequences;
|
||
}
|
||
|
||
/* This function can GC if Flookup_key autoloads any keymaps. */
|
||
|
||
DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
|
||
doc: /* Return list of keys that invoke DEFINITION.
|
||
If KEYMAP is a keymap, search only KEYMAP and the global keymap.
|
||
If KEYMAP is nil, search all the currently active keymaps, except
|
||
for `overriding-local-map' (which is ignored).
|
||
If KEYMAP is a list of keymaps, search only those keymaps.
|
||
|
||
If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
|
||
rather than a list of all possible key sequences.
|
||
If FIRSTONLY is the symbol `non-ascii', return the first binding found,
|
||
no matter what it is.
|
||
If FIRSTONLY has another non-nil value, prefer bindings
|
||
that use the modifier key specified in `where-is-preferred-modifier'
|
||
\(or their meta variants) and entirely reject menu bindings.
|
||
|
||
If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
|
||
to other keymaps or slots. This makes it possible to search for an
|
||
indirect definition itself.
|
||
|
||
The optional 5th arg NO-REMAP alters how command remapping is handled:
|
||
|
||
- If another command OTHER-COMMAND is remapped to DEFINITION, normally
|
||
search for the bindings of OTHER-COMMAND and include them in the
|
||
returned list. But if NO-REMAP is non-nil, include the vector
|
||
[remap OTHER-COMMAND] in the returned list instead, without
|
||
searching for those other bindings.
|
||
|
||
- If DEFINITION is remapped to OTHER-COMMAND, normally return the
|
||
bindings for OTHER-COMMAND. But if NO-REMAP is non-nil, return the
|
||
bindings for DEFINITION instead, ignoring its remapping. */)
|
||
(Lisp_Object definition, Lisp_Object keymap, Lisp_Object firstonly, Lisp_Object noindirect, Lisp_Object no_remap)
|
||
{
|
||
/* The keymaps in which to search. */
|
||
Lisp_Object keymaps;
|
||
/* Potentially relevant bindings in "shortest to longest" order. */
|
||
Lisp_Object sequences = Qnil;
|
||
/* Actually relevant bindings. */
|
||
Lisp_Object found = Qnil;
|
||
/* 1 means ignore all menu bindings entirely. */
|
||
int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5, gcpro6;
|
||
/* List of sequences found via remapping. Keep them in a separate
|
||
variable, so as to push them later, since we prefer
|
||
non-remapped binding. */
|
||
Lisp_Object remapped_sequences = Qnil;
|
||
/* Whether or not we're handling remapped sequences. This is needed
|
||
because remapping is not done recursively by Fcommand_remapping: you
|
||
can't remap a remapped command. */
|
||
int remapped = 0;
|
||
Lisp_Object tem = Qnil;
|
||
|
||
/* Refresh the C version of the modifier preference. */
|
||
where_is_preferred_modifier
|
||
= parse_solitary_modifier (Vwhere_is_preferred_modifier);
|
||
|
||
/* Find the relevant keymaps. */
|
||
if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
|
||
keymaps = keymap;
|
||
else if (!NILP (keymap))
|
||
keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
|
||
else
|
||
keymaps = Fcurrent_active_maps (Qnil, Qnil);
|
||
|
||
GCPRO6 (definition, keymaps, found, sequences, remapped_sequences, tem);
|
||
|
||
tem = Fcommand_remapping (definition, Qnil, keymaps);
|
||
/* If `definition' is remapped to tem', then OT1H no key will run
|
||
that command (since they will run `tem' instead), so we should
|
||
return nil; but OTOH all keys bound to `definition' (or to `tem')
|
||
will run the same command.
|
||
So for menu-shortcut purposes, we want to find all the keys bound (maybe
|
||
via remapping) to `tem'. But for the purpose of finding the keys that
|
||
run `definition', then we'd want to just return nil.
|
||
We choose to make it work right for menu-shortcuts, since it's the most
|
||
common use.
|
||
Known bugs: if you remap switch-to-buffer to toto, C-h f switch-to-buffer
|
||
will tell you that switch-to-buffer is bound to C-x b even though C-x b
|
||
will run toto instead. And if `toto' is itself remapped to forward-char,
|
||
then C-h f toto will tell you that it's bound to C-f even though C-f does
|
||
not run toto and it won't tell you that C-x b does run toto. */
|
||
if (NILP (no_remap) && !NILP (tem))
|
||
definition = tem;
|
||
|
||
if (SYMBOLP (definition)
|
||
&& !NILP (firstonly)
|
||
&& !NILP (tem = Fget (definition, QCadvertised_binding)))
|
||
{
|
||
/* We have a list of advertised bindings. */
|
||
while (CONSP (tem))
|
||
if (EQ (shadow_lookup (keymaps, XCAR (tem), Qnil, 0), definition))
|
||
RETURN_UNGCPRO (XCAR (tem));
|
||
else
|
||
tem = XCDR (tem);
|
||
if (EQ (shadow_lookup (keymaps, tem, Qnil, 0), definition))
|
||
RETURN_UNGCPRO (tem);
|
||
}
|
||
|
||
sequences = Freverse (where_is_internal (definition, keymaps,
|
||
!NILP (noindirect), nomenus));
|
||
|
||
while (CONSP (sequences)
|
||
/* If we're at the end of the `sequences' list and we haven't
|
||
considered remapped sequences yet, copy them over and
|
||
process them. */
|
||
|| (!remapped && (sequences = remapped_sequences,
|
||
remapped = 1,
|
||
CONSP (sequences))))
|
||
{
|
||
Lisp_Object sequence, function;
|
||
|
||
sequence = XCAR (sequences);
|
||
sequences = XCDR (sequences);
|
||
|
||
/* Verify that this key binding is not shadowed by another
|
||
binding for the same key, before we say it exists.
|
||
|
||
Mechanism: look for local definition of this key and if
|
||
it is defined and does not match what we found then
|
||
ignore this key.
|
||
|
||
Either nil or number as value from Flookup_key
|
||
means undefined. */
|
||
if (NILP (Fequal (shadow_lookup (keymaps, sequence, Qnil, remapped),
|
||
definition)))
|
||
continue;
|
||
|
||
/* If the current sequence is a command remapping with
|
||
format [remap COMMAND], find the key sequences
|
||
which run COMMAND, and use those sequences instead. */
|
||
if (NILP (no_remap) && !remapped
|
||
&& VECTORP (sequence) && ASIZE (sequence) == 2
|
||
&& EQ (AREF (sequence, 0), Qremap)
|
||
&& (function = AREF (sequence, 1), SYMBOLP (function)))
|
||
{
|
||
Lisp_Object seqs = where_is_internal (function, keymaps,
|
||
!NILP (noindirect), nomenus);
|
||
remapped_sequences = nconc2 (Freverse (seqs), remapped_sequences);
|
||
continue;
|
||
}
|
||
|
||
/* Don't annoy user with strings from a menu such as the
|
||
entries from the "Edit => Paste from Kill Menu".
|
||
Change them all to "(any string)", so that there
|
||
seems to be only one menu item to report. */
|
||
if (! NILP (sequence))
|
||
{
|
||
Lisp_Object tem1;
|
||
tem1 = Faref (sequence, make_number (ASIZE (sequence) - 1));
|
||
if (STRINGP (tem1))
|
||
Faset (sequence, make_number (ASIZE (sequence) - 1),
|
||
build_string ("(any string)"));
|
||
}
|
||
|
||
/* It is a true unshadowed match. Record it, unless it's already
|
||
been seen (as could happen when inheriting keymaps). */
|
||
if (NILP (Fmember (sequence, found)))
|
||
found = Fcons (sequence, found);
|
||
|
||
/* If firstonly is Qnon_ascii, then we can return the first
|
||
binding we find. If firstonly is not Qnon_ascii but not
|
||
nil, then we should return the first ascii-only binding
|
||
we find. */
|
||
if (EQ (firstonly, Qnon_ascii))
|
||
RETURN_UNGCPRO (sequence);
|
||
else if (!NILP (firstonly)
|
||
&& 2 == preferred_sequence_p (sequence))
|
||
RETURN_UNGCPRO (sequence);
|
||
}
|
||
|
||
UNGCPRO;
|
||
|
||
found = Fnreverse (found);
|
||
|
||
/* firstonly may have been t, but we may have gone all the way through
|
||
the keymaps without finding an all-ASCII key sequence. So just
|
||
return the best we could find. */
|
||
if (NILP (firstonly))
|
||
return found;
|
||
else if (where_is_preferred_modifier == 0)
|
||
return Fcar (found);
|
||
else
|
||
{ /* Maybe we did not find a preferred_modifier binding, but we did find
|
||
some ASCII binding. */
|
||
Lisp_Object bindings = found;
|
||
while (CONSP (bindings))
|
||
if (preferred_sequence_p (XCAR (bindings)))
|
||
return XCAR (bindings);
|
||
else
|
||
bindings = XCDR (bindings);
|
||
return Fcar (found);
|
||
}
|
||
}
|
||
|
||
/* This function can GC because get_keyelt can. */
|
||
|
||
static void
|
||
where_is_internal_1 (Lisp_Object key, Lisp_Object binding, Lisp_Object args, void *data)
|
||
{
|
||
struct where_is_internal_data *d = data; /* Cast! */
|
||
Lisp_Object definition = d->definition;
|
||
int noindirect = d->noindirect;
|
||
Lisp_Object this = d->this;
|
||
Lisp_Object last = d->last;
|
||
int last_is_meta = d->last_is_meta;
|
||
Lisp_Object sequence;
|
||
|
||
/* Search through indirections unless that's not wanted. */
|
||
if (!noindirect)
|
||
binding = get_keyelt (binding, 0);
|
||
|
||
/* End this iteration if this element does not match
|
||
the target. */
|
||
|
||
if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
|
||
|| EQ (binding, definition)
|
||
|| (CONSP (definition) && !NILP (Fequal (binding, definition)))))
|
||
/* Doesn't match. */
|
||
return;
|
||
|
||
/* We have found a match. Construct the key sequence where we found it. */
|
||
if (INTEGERP (key) && last_is_meta)
|
||
{
|
||
sequence = Fcopy_sequence (this);
|
||
Faset (sequence, last, make_number (XINT (key) | meta_modifier));
|
||
}
|
||
else
|
||
{
|
||
if (CONSP (key))
|
||
key = Fcons (XCAR (key), XCDR (key));
|
||
sequence = append_key (this, key);
|
||
}
|
||
|
||
if (!NILP (where_is_cache))
|
||
{
|
||
Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
|
||
Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
|
||
}
|
||
else
|
||
d->sequences = Fcons (sequence, d->sequences);
|
||
}
|
||
|
||
/* describe-bindings - summarizing all the bindings in a set of keymaps. */
|
||
|
||
DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
|
||
doc: /* Insert the list of all defined keys and their definitions.
|
||
The list is inserted in the current buffer, while the bindings are
|
||
looked up in BUFFER.
|
||
The optional argument PREFIX, if non-nil, should be a key sequence;
|
||
then we display only bindings that start with that prefix.
|
||
The optional argument MENUS, if non-nil, says to mention menu bindings.
|
||
\(Ordinarily these are omitted from the output.) */)
|
||
(Lisp_Object buffer, Lisp_Object prefix, Lisp_Object menus)
|
||
{
|
||
Lisp_Object outbuf, shadow;
|
||
int nomenu = NILP (menus);
|
||
register Lisp_Object start1;
|
||
struct gcpro gcpro1;
|
||
|
||
const char *alternate_heading
|
||
= "\
|
||
Keyboard translations:\n\n\
|
||
You type Translation\n\
|
||
-------- -----------\n";
|
||
|
||
CHECK_BUFFER (buffer);
|
||
|
||
shadow = Qnil;
|
||
GCPRO1 (shadow);
|
||
|
||
outbuf = Fcurrent_buffer ();
|
||
|
||
/* Report on alternates for keys. */
|
||
if (STRINGP (KVAR (current_kboard, Vkeyboard_translate_table)) && !NILP (prefix))
|
||
{
|
||
int c;
|
||
const unsigned char *translate = SDATA (KVAR (current_kboard, Vkeyboard_translate_table));
|
||
int translate_len = SCHARS (KVAR (current_kboard, Vkeyboard_translate_table));
|
||
|
||
for (c = 0; c < translate_len; c++)
|
||
if (translate[c] != c)
|
||
{
|
||
char buf[KEY_DESCRIPTION_SIZE];
|
||
char *bufend;
|
||
|
||
if (alternate_heading)
|
||
{
|
||
insert_string (alternate_heading);
|
||
alternate_heading = 0;
|
||
}
|
||
|
||
bufend = push_key_description (translate[c], buf, 1);
|
||
insert (buf, bufend - buf);
|
||
Findent_to (make_number (16), make_number (1));
|
||
bufend = push_key_description (c, buf, 1);
|
||
insert (buf, bufend - buf);
|
||
|
||
insert ("\n", 1);
|
||
|
||
/* Insert calls signal_after_change which may GC. */
|
||
translate = SDATA (KVAR (current_kboard, Vkeyboard_translate_table));
|
||
}
|
||
|
||
insert ("\n", 1);
|
||
}
|
||
|
||
if (!NILP (Vkey_translation_map))
|
||
describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
|
||
"Key translations", nomenu, 1, 0, 0);
|
||
|
||
|
||
/* Print the (major mode) local map. */
|
||
start1 = Qnil;
|
||
if (!NILP (KVAR (current_kboard, Voverriding_terminal_local_map)))
|
||
start1 = KVAR (current_kboard, Voverriding_terminal_local_map);
|
||
else if (!NILP (Voverriding_local_map))
|
||
start1 = Voverriding_local_map;
|
||
|
||
if (!NILP (start1))
|
||
{
|
||
describe_map_tree (start1, 1, shadow, prefix,
|
||
"\f\nOverriding Bindings", nomenu, 0, 0, 0);
|
||
shadow = Fcons (start1, shadow);
|
||
}
|
||
else
|
||
{
|
||
/* Print the minor mode and major mode keymaps. */
|
||
int i, nmaps;
|
||
Lisp_Object *modes, *maps;
|
||
|
||
/* Temporarily switch to `buffer', so that we can get that buffer's
|
||
minor modes correctly. */
|
||
Fset_buffer (buffer);
|
||
|
||
nmaps = current_minor_maps (&modes, &maps);
|
||
Fset_buffer (outbuf);
|
||
|
||
start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
|
||
XBUFFER (buffer), Qkeymap);
|
||
if (!NILP (start1))
|
||
{
|
||
describe_map_tree (start1, 1, shadow, prefix,
|
||
"\f\n`keymap' Property Bindings", nomenu,
|
||
0, 0, 0);
|
||
shadow = Fcons (start1, shadow);
|
||
}
|
||
|
||
/* Print the minor mode maps. */
|
||
for (i = 0; i < nmaps; i++)
|
||
{
|
||
/* The title for a minor mode keymap
|
||
is constructed at run time.
|
||
We let describe_map_tree do the actual insertion
|
||
because it takes care of other features when doing so. */
|
||
char *title, *p;
|
||
|
||
if (!SYMBOLP (modes[i]))
|
||
abort ();
|
||
|
||
p = title = alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
|
||
*p++ = '\f';
|
||
*p++ = '\n';
|
||
*p++ = '`';
|
||
memcpy (p, SDATA (SYMBOL_NAME (modes[i])),
|
||
SCHARS (SYMBOL_NAME (modes[i])));
|
||
p += SCHARS (SYMBOL_NAME (modes[i]));
|
||
*p++ = '\'';
|
||
memcpy (p, " Minor Mode Bindings", strlen (" Minor Mode Bindings"));
|
||
p += strlen (" Minor Mode Bindings");
|
||
*p = 0;
|
||
|
||
describe_map_tree (maps[i], 1, shadow, prefix,
|
||
title, nomenu, 0, 0, 0);
|
||
shadow = Fcons (maps[i], shadow);
|
||
}
|
||
|
||
start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
|
||
XBUFFER (buffer), Qlocal_map);
|
||
if (!NILP (start1))
|
||
{
|
||
if (EQ (start1, BVAR (XBUFFER (buffer), keymap)))
|
||
describe_map_tree (start1, 1, shadow, prefix,
|
||
"\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
|
||
else
|
||
describe_map_tree (start1, 1, shadow, prefix,
|
||
"\f\n`local-map' Property Bindings",
|
||
nomenu, 0, 0, 0);
|
||
|
||
shadow = Fcons (start1, shadow);
|
||
}
|
||
}
|
||
|
||
describe_map_tree (current_global_map, 1, shadow, prefix,
|
||
"\f\nGlobal Bindings", nomenu, 0, 1, 0);
|
||
|
||
/* Print the function-key-map translations under this prefix. */
|
||
if (!NILP (KVAR (current_kboard, Vlocal_function_key_map)))
|
||
describe_map_tree (KVAR (current_kboard, Vlocal_function_key_map), 0, Qnil, prefix,
|
||
"\f\nFunction key map translations", nomenu, 1, 0, 0);
|
||
|
||
/* Print the input-decode-map translations under this prefix. */
|
||
if (!NILP (KVAR (current_kboard, Vinput_decode_map)))
|
||
describe_map_tree (KVAR (current_kboard, Vinput_decode_map), 0, Qnil, prefix,
|
||
"\f\nInput decoding map translations", nomenu, 1, 0, 0);
|
||
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
/* Insert a description of the key bindings in STARTMAP,
|
||
followed by those of all maps reachable through STARTMAP.
|
||
If PARTIAL is nonzero, omit certain "uninteresting" commands
|
||
(such as `undefined').
|
||
If SHADOW is non-nil, it is a list of maps;
|
||
don't mention keys which would be shadowed by any of them.
|
||
PREFIX, if non-nil, says mention only keys that start with PREFIX.
|
||
TITLE, if not 0, is a string to insert at the beginning.
|
||
TITLE should not end with a colon or a newline; we supply that.
|
||
If NOMENU is not 0, then omit menu-bar commands.
|
||
|
||
If TRANSL is nonzero, the definitions are actually key translations
|
||
so print strings and vectors differently.
|
||
|
||
If ALWAYS_TITLE is nonzero, print the title even if there are no maps
|
||
to look through.
|
||
|
||
If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
|
||
don't omit it; instead, mention it but say it is shadowed.
|
||
|
||
Any inserted text ends in two newlines (used by `help-make-xrefs'). */
|
||
|
||
void
|
||
describe_map_tree (Lisp_Object startmap, int partial, Lisp_Object shadow,
|
||
Lisp_Object prefix, const char *title, int nomenu, int transl,
|
||
int always_title, int mention_shadow)
|
||
{
|
||
Lisp_Object maps, orig_maps, seen, sub_shadows;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
int something = 0;
|
||
const char *key_heading
|
||
= "\
|
||
key binding\n\
|
||
--- -------\n";
|
||
|
||
orig_maps = maps = Faccessible_keymaps (startmap, prefix);
|
||
seen = Qnil;
|
||
sub_shadows = Qnil;
|
||
GCPRO3 (maps, seen, sub_shadows);
|
||
|
||
if (nomenu)
|
||
{
|
||
Lisp_Object list;
|
||
|
||
/* Delete from MAPS each element that is for the menu bar. */
|
||
for (list = maps; CONSP (list); list = XCDR (list))
|
||
{
|
||
Lisp_Object elt, elt_prefix, tem;
|
||
|
||
elt = XCAR (list);
|
||
elt_prefix = Fcar (elt);
|
||
if (ASIZE (elt_prefix) >= 1)
|
||
{
|
||
tem = Faref (elt_prefix, make_number (0));
|
||
if (EQ (tem, Qmenu_bar))
|
||
maps = Fdelq (elt, maps);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!NILP (maps) || always_title)
|
||
{
|
||
if (title)
|
||
{
|
||
insert_string (title);
|
||
if (!NILP (prefix))
|
||
{
|
||
insert_string (" Starting With ");
|
||
insert1 (Fkey_description (prefix, Qnil));
|
||
}
|
||
insert_string (":\n");
|
||
}
|
||
insert_string (key_heading);
|
||
something = 1;
|
||
}
|
||
|
||
for (; CONSP (maps); maps = XCDR (maps))
|
||
{
|
||
register Lisp_Object elt, elt_prefix, tail;
|
||
|
||
elt = XCAR (maps);
|
||
elt_prefix = Fcar (elt);
|
||
|
||
sub_shadows = Qnil;
|
||
|
||
for (tail = shadow; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object shmap;
|
||
|
||
shmap = XCAR (tail);
|
||
|
||
/* If the sequence by which we reach this keymap is zero-length,
|
||
then the shadow map for this keymap is just SHADOW. */
|
||
if ((STRINGP (elt_prefix) && SCHARS (elt_prefix) == 0)
|
||
|| (VECTORP (elt_prefix) && ASIZE (elt_prefix) == 0))
|
||
;
|
||
/* If the sequence by which we reach this keymap actually has
|
||
some elements, then the sequence's definition in SHADOW is
|
||
what we should use. */
|
||
else
|
||
{
|
||
shmap = Flookup_key (shmap, Fcar (elt), Qt);
|
||
if (INTEGERP (shmap))
|
||
shmap = Qnil;
|
||
}
|
||
|
||
/* If shmap is not nil and not a keymap,
|
||
it completely shadows this map, so don't
|
||
describe this map at all. */
|
||
if (!NILP (shmap) && !KEYMAPP (shmap))
|
||
goto skip;
|
||
|
||
if (!NILP (shmap))
|
||
sub_shadows = Fcons (shmap, sub_shadows);
|
||
}
|
||
|
||
/* Maps we have already listed in this loop shadow this map. */
|
||
for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object tem;
|
||
tem = Fequal (Fcar (XCAR (tail)), elt_prefix);
|
||
if (!NILP (tem))
|
||
sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
|
||
}
|
||
|
||
describe_map (Fcdr (elt), elt_prefix,
|
||
transl ? describe_translation : describe_command,
|
||
partial, sub_shadows, &seen, nomenu, mention_shadow);
|
||
|
||
skip: ;
|
||
}
|
||
|
||
if (something)
|
||
insert_string ("\n");
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
static int previous_description_column;
|
||
|
||
static void
|
||
describe_command (Lisp_Object definition, Lisp_Object args)
|
||
{
|
||
register Lisp_Object tem1;
|
||
ptrdiff_t column = current_column ();
|
||
int description_column;
|
||
|
||
/* If column 16 is no good, go to col 32;
|
||
but don't push beyond that--go to next line instead. */
|
||
if (column > 30)
|
||
{
|
||
insert_char ('\n');
|
||
description_column = 32;
|
||
}
|
||
else if (column > 14 || (column > 10 && previous_description_column == 32))
|
||
description_column = 32;
|
||
else
|
||
description_column = 16;
|
||
|
||
Findent_to (make_number (description_column), make_number (1));
|
||
previous_description_column = description_column;
|
||
|
||
if (SYMBOLP (definition))
|
||
{
|
||
tem1 = SYMBOL_NAME (definition);
|
||
insert1 (tem1);
|
||
insert_string ("\n");
|
||
}
|
||
else if (STRINGP (definition) || VECTORP (definition))
|
||
insert_string ("Keyboard Macro\n");
|
||
else if (KEYMAPP (definition))
|
||
insert_string ("Prefix Command\n");
|
||
else
|
||
insert_string ("??\n");
|
||
}
|
||
|
||
static void
|
||
describe_translation (Lisp_Object definition, Lisp_Object args)
|
||
{
|
||
register Lisp_Object tem1;
|
||
|
||
Findent_to (make_number (16), make_number (1));
|
||
|
||
if (SYMBOLP (definition))
|
||
{
|
||
tem1 = SYMBOL_NAME (definition);
|
||
insert1 (tem1);
|
||
insert_string ("\n");
|
||
}
|
||
else if (STRINGP (definition) || VECTORP (definition))
|
||
{
|
||
insert1 (Fkey_description (definition, Qnil));
|
||
insert_string ("\n");
|
||
}
|
||
else if (KEYMAPP (definition))
|
||
insert_string ("Prefix Command\n");
|
||
else
|
||
insert_string ("??\n");
|
||
}
|
||
|
||
/* describe_map puts all the usable elements of a sparse keymap
|
||
into an array of `struct describe_map_elt',
|
||
then sorts them by the events. */
|
||
|
||
struct describe_map_elt { Lisp_Object event; Lisp_Object definition; int shadowed; };
|
||
|
||
/* qsort comparison function for sorting `struct describe_map_elt' by
|
||
the event field. */
|
||
|
||
static int
|
||
describe_map_compare (const void *aa, const void *bb)
|
||
{
|
||
const struct describe_map_elt *a = aa, *b = bb;
|
||
if (INTEGERP (a->event) && INTEGERP (b->event))
|
||
return ((XINT (a->event) > XINT (b->event))
|
||
- (XINT (a->event) < XINT (b->event)));
|
||
if (!INTEGERP (a->event) && INTEGERP (b->event))
|
||
return 1;
|
||
if (INTEGERP (a->event) && !INTEGERP (b->event))
|
||
return -1;
|
||
if (SYMBOLP (a->event) && SYMBOLP (b->event))
|
||
return (!NILP (Fstring_lessp (a->event, b->event)) ? -1
|
||
: !NILP (Fstring_lessp (b->event, a->event)) ? 1
|
||
: 0);
|
||
return 0;
|
||
}
|
||
|
||
/* Describe the contents of map MAP, assuming that this map itself is
|
||
reached by the sequence of prefix keys PREFIX (a string or vector).
|
||
PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
|
||
|
||
static void
|
||
describe_map (Lisp_Object map, Lisp_Object prefix,
|
||
void (*elt_describer) (Lisp_Object, Lisp_Object),
|
||
int partial, Lisp_Object shadow,
|
||
Lisp_Object *seen, int nomenu, int mention_shadow)
|
||
{
|
||
Lisp_Object tail, definition, event;
|
||
Lisp_Object tem;
|
||
Lisp_Object suppress;
|
||
Lisp_Object kludge;
|
||
int first = 1;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
/* These accumulate the values from sparse keymap bindings,
|
||
so we can sort them and handle them in order. */
|
||
int length_needed = 0;
|
||
struct describe_map_elt *vect;
|
||
int slots_used = 0;
|
||
int i;
|
||
|
||
suppress = Qnil;
|
||
|
||
if (partial)
|
||
suppress = intern ("suppress-keymap");
|
||
|
||
/* This vector gets used to present single keys to Flookup_key. Since
|
||
that is done once per keymap element, we don't want to cons up a
|
||
fresh vector every time. */
|
||
kludge = Fmake_vector (make_number (1), Qnil);
|
||
definition = Qnil;
|
||
|
||
GCPRO3 (prefix, definition, kludge);
|
||
|
||
map = call1 (Qkeymap_canonicalize, map);
|
||
|
||
for (tail = map; CONSP (tail); tail = XCDR (tail))
|
||
length_needed++;
|
||
|
||
vect = ((struct describe_map_elt *)
|
||
alloca (sizeof (struct describe_map_elt) * length_needed));
|
||
|
||
for (tail = map; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
QUIT;
|
||
|
||
if (VECTORP (XCAR (tail))
|
||
|| CHAR_TABLE_P (XCAR (tail)))
|
||
describe_vector (XCAR (tail),
|
||
prefix, Qnil, elt_describer, partial, shadow, map,
|
||
1, mention_shadow);
|
||
else if (CONSP (XCAR (tail)))
|
||
{
|
||
int this_shadowed = 0;
|
||
|
||
event = XCAR (XCAR (tail));
|
||
|
||
/* Ignore bindings whose "prefix" are not really valid events.
|
||
(We get these in the frames and buffers menu.) */
|
||
if (!(SYMBOLP (event) || INTEGERP (event)))
|
||
continue;
|
||
|
||
if (nomenu && EQ (event, Qmenu_bar))
|
||
continue;
|
||
|
||
definition = get_keyelt (XCDR (XCAR (tail)), 0);
|
||
|
||
/* Don't show undefined commands or suppressed commands. */
|
||
if (NILP (definition)) continue;
|
||
if (SYMBOLP (definition) && partial)
|
||
{
|
||
tem = Fget (definition, suppress);
|
||
if (!NILP (tem))
|
||
continue;
|
||
}
|
||
|
||
/* Don't show a command that isn't really visible
|
||
because a local definition of the same key shadows it. */
|
||
|
||
ASET (kludge, 0, event);
|
||
if (!NILP (shadow))
|
||
{
|
||
tem = shadow_lookup (shadow, kludge, Qt, 0);
|
||
if (!NILP (tem))
|
||
{
|
||
/* If both bindings are keymaps, this key is a prefix key,
|
||
so don't say it is shadowed. */
|
||
if (KEYMAPP (definition) && KEYMAPP (tem))
|
||
;
|
||
/* Avoid generating duplicate entries if the
|
||
shadowed binding has the same definition. */
|
||
else if (mention_shadow && !EQ (tem, definition))
|
||
this_shadowed = 1;
|
||
else
|
||
continue;
|
||
}
|
||
}
|
||
|
||
tem = Flookup_key (map, kludge, Qt);
|
||
if (!EQ (tem, definition)) continue;
|
||
|
||
vect[slots_used].event = event;
|
||
vect[slots_used].definition = definition;
|
||
vect[slots_used].shadowed = this_shadowed;
|
||
slots_used++;
|
||
}
|
||
else if (EQ (XCAR (tail), Qkeymap))
|
||
{
|
||
/* The same keymap might be in the structure twice, if we're
|
||
using an inherited keymap. So skip anything we've already
|
||
encountered. */
|
||
tem = Fassq (tail, *seen);
|
||
if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
|
||
break;
|
||
*seen = Fcons (Fcons (tail, prefix), *seen);
|
||
}
|
||
}
|
||
|
||
/* If we found some sparse map events, sort them. */
|
||
|
||
qsort (vect, slots_used, sizeof (struct describe_map_elt),
|
||
describe_map_compare);
|
||
|
||
/* Now output them in sorted order. */
|
||
|
||
for (i = 0; i < slots_used; i++)
|
||
{
|
||
Lisp_Object start, end;
|
||
|
||
if (first)
|
||
{
|
||
previous_description_column = 0;
|
||
insert ("\n", 1);
|
||
first = 0;
|
||
}
|
||
|
||
ASET (kludge, 0, vect[i].event);
|
||
start = vect[i].event;
|
||
end = start;
|
||
|
||
definition = vect[i].definition;
|
||
|
||
/* Find consecutive chars that are identically defined. */
|
||
if (INTEGERP (vect[i].event))
|
||
{
|
||
while (i + 1 < slots_used
|
||
&& EQ (vect[i+1].event, make_number (XINT (vect[i].event) + 1))
|
||
&& !NILP (Fequal (vect[i + 1].definition, definition))
|
||
&& vect[i].shadowed == vect[i + 1].shadowed)
|
||
i++;
|
||
end = vect[i].event;
|
||
}
|
||
|
||
/* Now START .. END is the range to describe next. */
|
||
|
||
/* Insert the string to describe the event START. */
|
||
insert1 (Fkey_description (kludge, prefix));
|
||
|
||
if (!EQ (start, end))
|
||
{
|
||
insert (" .. ", 4);
|
||
|
||
ASET (kludge, 0, end);
|
||
/* Insert the string to describe the character END. */
|
||
insert1 (Fkey_description (kludge, prefix));
|
||
}
|
||
|
||
/* Print a description of the definition of this character.
|
||
elt_describer will take care of spacing out far enough
|
||
for alignment purposes. */
|
||
(*elt_describer) (vect[i].definition, Qnil);
|
||
|
||
if (vect[i].shadowed)
|
||
{
|
||
SET_PT (PT - 1);
|
||
insert_string ("\n (that binding is currently shadowed by another mode)");
|
||
SET_PT (PT + 1);
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
static void
|
||
describe_vector_princ (Lisp_Object elt, Lisp_Object fun)
|
||
{
|
||
Findent_to (make_number (16), make_number (1));
|
||
call1 (fun, elt);
|
||
Fterpri (Qnil);
|
||
}
|
||
|
||
DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
|
||
doc: /* Insert a description of contents of VECTOR.
|
||
This is text showing the elements of vector matched against indices.
|
||
DESCRIBER is the output function used; nil means use `princ'. */)
|
||
(Lisp_Object vector, Lisp_Object describer)
|
||
{
|
||
ptrdiff_t count = SPECPDL_INDEX ();
|
||
if (NILP (describer))
|
||
describer = intern ("princ");
|
||
specbind (Qstandard_output, Fcurrent_buffer ());
|
||
CHECK_VECTOR_OR_CHAR_TABLE (vector);
|
||
describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
|
||
Qnil, Qnil, 0, 0);
|
||
|
||
return unbind_to (count, Qnil);
|
||
}
|
||
|
||
/* Insert in the current buffer a description of the contents of VECTOR.
|
||
We call ELT_DESCRIBER to insert the description of one value found
|
||
in VECTOR.
|
||
|
||
ELT_PREFIX describes what "comes before" the keys or indices defined
|
||
by this vector. This is a human-readable string whose size
|
||
is not necessarily related to the situation.
|
||
|
||
If the vector is in a keymap, ELT_PREFIX is a prefix key which
|
||
leads to this keymap.
|
||
|
||
If the vector is a chartable, ELT_PREFIX is the vector
|
||
of bytes that lead to the character set or portion of a character
|
||
set described by this chartable.
|
||
|
||
If PARTIAL is nonzero, it means do not mention suppressed commands
|
||
(that assumes the vector is in a keymap).
|
||
|
||
SHADOW is a list of keymaps that shadow this map.
|
||
If it is non-nil, then we look up the key in those maps
|
||
and we don't mention it now if it is defined by any of them.
|
||
|
||
ENTIRE_MAP is the keymap in which this vector appears.
|
||
If the definition in effect in the whole map does not match
|
||
the one in this vector, we ignore this one.
|
||
|
||
ARGS is simply passed as the second argument to ELT_DESCRIBER.
|
||
|
||
KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
|
||
|
||
ARGS is simply passed as the second argument to ELT_DESCRIBER. */
|
||
|
||
static void
|
||
describe_vector (Lisp_Object vector, Lisp_Object prefix, Lisp_Object args,
|
||
void (*elt_describer) (Lisp_Object, Lisp_Object),
|
||
int partial, Lisp_Object shadow, Lisp_Object entire_map,
|
||
int keymap_p, int mention_shadow)
|
||
{
|
||
Lisp_Object definition;
|
||
Lisp_Object tem2;
|
||
Lisp_Object elt_prefix = Qnil;
|
||
int i;
|
||
Lisp_Object suppress;
|
||
Lisp_Object kludge;
|
||
int first = 1;
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
||
/* Range of elements to be handled. */
|
||
int from, to, stop;
|
||
Lisp_Object character;
|
||
int starting_i;
|
||
|
||
suppress = Qnil;
|
||
|
||
definition = Qnil;
|
||
|
||
if (!keymap_p)
|
||
{
|
||
/* Call Fkey_description first, to avoid GC bug for the other string. */
|
||
if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
|
||
{
|
||
Lisp_Object tem;
|
||
tem = Fkey_description (prefix, Qnil);
|
||
elt_prefix = concat2 (tem, build_string (" "));
|
||
}
|
||
prefix = Qnil;
|
||
}
|
||
|
||
/* This vector gets used to present single keys to Flookup_key. Since
|
||
that is done once per vector element, we don't want to cons up a
|
||
fresh vector every time. */
|
||
kludge = Fmake_vector (make_number (1), Qnil);
|
||
GCPRO4 (elt_prefix, prefix, definition, kludge);
|
||
|
||
if (partial)
|
||
suppress = intern ("suppress-keymap");
|
||
|
||
from = 0;
|
||
if (CHAR_TABLE_P (vector))
|
||
stop = MAX_5_BYTE_CHAR + 1, to = MAX_CHAR + 1;
|
||
else
|
||
stop = to = ASIZE (vector);
|
||
|
||
for (i = from; ; i++)
|
||
{
|
||
int this_shadowed = 0;
|
||
int range_beg, range_end;
|
||
Lisp_Object val;
|
||
|
||
QUIT;
|
||
|
||
if (i == stop)
|
||
{
|
||
if (i == to)
|
||
break;
|
||
stop = to;
|
||
}
|
||
|
||
starting_i = i;
|
||
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
range_beg = i;
|
||
i = stop - 1;
|
||
val = char_table_ref_and_range (vector, range_beg, &range_beg, &i);
|
||
}
|
||
else
|
||
val = AREF (vector, i);
|
||
definition = get_keyelt (val, 0);
|
||
|
||
if (NILP (definition)) continue;
|
||
|
||
/* Don't mention suppressed commands. */
|
||
if (SYMBOLP (definition) && partial)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = Fget (definition, suppress);
|
||
|
||
if (!NILP (tem)) continue;
|
||
}
|
||
|
||
character = make_number (starting_i);
|
||
ASET (kludge, 0, character);
|
||
|
||
/* If this binding is shadowed by some other map, ignore it. */
|
||
if (!NILP (shadow))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = shadow_lookup (shadow, kludge, Qt, 0);
|
||
|
||
if (!NILP (tem))
|
||
{
|
||
if (mention_shadow)
|
||
this_shadowed = 1;
|
||
else
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Ignore this definition if it is shadowed by an earlier
|
||
one in the same keymap. */
|
||
if (!NILP (entire_map))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = Flookup_key (entire_map, kludge, Qt);
|
||
|
||
if (!EQ (tem, definition))
|
||
continue;
|
||
}
|
||
|
||
if (first)
|
||
{
|
||
insert ("\n", 1);
|
||
first = 0;
|
||
}
|
||
|
||
/* Output the prefix that applies to every entry in this map. */
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
|
||
insert1 (Fkey_description (kludge, prefix));
|
||
|
||
/* Find all consecutive characters or rows that have the same
|
||
definition. But, VECTOR is a char-table, we had better put a
|
||
boundary between normal characters (-#x3FFF7F) and 8-bit
|
||
characters (#x3FFF80-). */
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
while (i + 1 < stop
|
||
&& (range_beg = i + 1, range_end = stop - 1,
|
||
val = char_table_ref_and_range (vector, range_beg,
|
||
&range_beg, &range_end),
|
||
tem2 = get_keyelt (val, 0),
|
||
!NILP (tem2))
|
||
&& !NILP (Fequal (tem2, definition)))
|
||
i = range_end;
|
||
}
|
||
else
|
||
while (i + 1 < stop
|
||
&& (tem2 = get_keyelt (AREF (vector, i + 1), 0),
|
||
!NILP (tem2))
|
||
&& !NILP (Fequal (tem2, definition)))
|
||
i++;
|
||
|
||
/* If we have a range of more than one character,
|
||
print where the range reaches to. */
|
||
|
||
if (i != starting_i)
|
||
{
|
||
insert (" .. ", 4);
|
||
|
||
ASET (kludge, 0, make_number (i));
|
||
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
|
||
insert1 (Fkey_description (kludge, prefix));
|
||
}
|
||
|
||
/* Print a description of the definition of this character.
|
||
elt_describer will take care of spacing out far enough
|
||
for alignment purposes. */
|
||
(*elt_describer) (definition, args);
|
||
|
||
if (this_shadowed)
|
||
{
|
||
SET_PT (PT - 1);
|
||
insert_string (" (binding currently shadowed)");
|
||
SET_PT (PT + 1);
|
||
}
|
||
}
|
||
|
||
if (CHAR_TABLE_P (vector) && ! NILP (XCHAR_TABLE (vector)->defalt))
|
||
{
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
insert ("default", 7);
|
||
(*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
/* Apropos - finding all symbols whose names match a regexp. */
|
||
static Lisp_Object apropos_predicate;
|
||
static Lisp_Object apropos_accumulate;
|
||
|
||
static void
|
||
apropos_accum (Lisp_Object symbol, Lisp_Object string)
|
||
{
|
||
register Lisp_Object tem;
|
||
|
||
tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
|
||
if (!NILP (tem) && !NILP (apropos_predicate))
|
||
tem = call1 (apropos_predicate, symbol);
|
||
if (!NILP (tem))
|
||
apropos_accumulate = Fcons (symbol, apropos_accumulate);
|
||
}
|
||
|
||
DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
|
||
doc: /* Show all symbols whose names contain match for REGEXP.
|
||
If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
|
||
for each symbol and a symbol is mentioned only if that returns non-nil.
|
||
Return list of symbols found. */)
|
||
(Lisp_Object regexp, Lisp_Object predicate)
|
||
{
|
||
Lisp_Object tem;
|
||
CHECK_STRING (regexp);
|
||
apropos_predicate = predicate;
|
||
apropos_accumulate = Qnil;
|
||
map_obarray (Vobarray, apropos_accum, regexp);
|
||
tem = Fsort (apropos_accumulate, Qstring_lessp);
|
||
apropos_accumulate = Qnil;
|
||
apropos_predicate = Qnil;
|
||
return tem;
|
||
}
|
||
|
||
void
|
||
syms_of_keymap (void)
|
||
{
|
||
DEFSYM (Qkeymap, "keymap");
|
||
staticpro (&apropos_predicate);
|
||
staticpro (&apropos_accumulate);
|
||
apropos_predicate = Qnil;
|
||
apropos_accumulate = Qnil;
|
||
|
||
DEFSYM (Qkeymap_canonicalize, "keymap-canonicalize");
|
||
|
||
/* Now we are ready to set up this property, so we can
|
||
create char tables. */
|
||
Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
|
||
|
||
/* Initialize the keymaps standardly used.
|
||
Each one is the value of a Lisp variable, and is also
|
||
pointed to by a C variable */
|
||
|
||
global_map = Fmake_keymap (Qnil);
|
||
Fset (intern_c_string ("global-map"), global_map);
|
||
|
||
current_global_map = global_map;
|
||
staticpro (&global_map);
|
||
staticpro (¤t_global_map);
|
||
|
||
meta_map = Fmake_keymap (Qnil);
|
||
Fset (intern_c_string ("esc-map"), meta_map);
|
||
Ffset (intern_c_string ("ESC-prefix"), meta_map);
|
||
|
||
control_x_map = Fmake_keymap (Qnil);
|
||
Fset (intern_c_string ("ctl-x-map"), control_x_map);
|
||
Ffset (intern_c_string ("Control-X-prefix"), control_x_map);
|
||
|
||
exclude_keys
|
||
= pure_cons (pure_cons (build_pure_c_string ("DEL"), build_pure_c_string ("\\d")),
|
||
pure_cons (pure_cons (build_pure_c_string ("TAB"), build_pure_c_string ("\\t")),
|
||
pure_cons (pure_cons (build_pure_c_string ("RET"), build_pure_c_string ("\\r")),
|
||
pure_cons (pure_cons (build_pure_c_string ("ESC"), build_pure_c_string ("\\e")),
|
||
pure_cons (pure_cons (build_pure_c_string ("SPC"), build_pure_c_string (" ")),
|
||
Qnil)))));
|
||
staticpro (&exclude_keys);
|
||
|
||
DEFVAR_LISP ("define-key-rebound-commands", Vdefine_key_rebound_commands,
|
||
doc: /* List of commands given new key bindings recently.
|
||
This is used for internal purposes during Emacs startup;
|
||
don't alter it yourself. */);
|
||
Vdefine_key_rebound_commands = Qt;
|
||
|
||
DEFVAR_LISP ("minibuffer-local-map", Vminibuffer_local_map,
|
||
doc: /* Default keymap to use when reading from the minibuffer. */);
|
||
Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("minibuffer-local-ns-map", Vminibuffer_local_ns_map,
|
||
doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
|
||
Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
|
||
Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
|
||
|
||
|
||
DEFVAR_LISP ("minor-mode-map-alist", Vminor_mode_map_alist,
|
||
doc: /* Alist of keymaps to use for minor modes.
|
||
Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
|
||
key sequences and look up bindings if VARIABLE's value is non-nil.
|
||
If two active keymaps bind the same key, the keymap appearing earlier
|
||
in the list takes precedence. */);
|
||
Vminor_mode_map_alist = Qnil;
|
||
|
||
DEFVAR_LISP ("minor-mode-overriding-map-alist", Vminor_mode_overriding_map_alist,
|
||
doc: /* Alist of keymaps to use for minor modes, in current major mode.
|
||
This variable is an alist just like `minor-mode-map-alist', and it is
|
||
used the same way (and before `minor-mode-map-alist'); however,
|
||
it is provided for major modes to bind locally. */);
|
||
Vminor_mode_overriding_map_alist = Qnil;
|
||
|
||
DEFVAR_LISP ("emulation-mode-map-alists", Vemulation_mode_map_alists,
|
||
doc: /* List of keymap alists to use for emulations modes.
|
||
It is intended for modes or packages using multiple minor-mode keymaps.
|
||
Each element is a keymap alist just like `minor-mode-map-alist', or a
|
||
symbol with a variable binding which is a keymap alist, and it is used
|
||
the same way. The "active" keymaps in each alist are used before
|
||
`minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
|
||
Vemulation_mode_map_alists = Qnil;
|
||
|
||
DEFVAR_LISP ("where-is-preferred-modifier", Vwhere_is_preferred_modifier,
|
||
doc: /* Preferred modifier key to use for `where-is'.
|
||
When a single binding is requested, `where-is' will return one that
|
||
uses this modifier key if possible. If nil, or if no such binding
|
||
exists, bindings using keys without modifiers (or only with meta) will
|
||
be preferred. */);
|
||
Vwhere_is_preferred_modifier = Qnil;
|
||
where_is_preferred_modifier = 0;
|
||
|
||
staticpro (&Vmouse_events);
|
||
Vmouse_events = pure_cons (intern_c_string ("menu-bar"),
|
||
pure_cons (intern_c_string ("tool-bar"),
|
||
pure_cons (intern_c_string ("header-line"),
|
||
pure_cons (intern_c_string ("mode-line"),
|
||
pure_cons (intern_c_string ("mouse-1"),
|
||
pure_cons (intern_c_string ("mouse-2"),
|
||
pure_cons (intern_c_string ("mouse-3"),
|
||
pure_cons (intern_c_string ("mouse-4"),
|
||
pure_cons (intern_c_string ("mouse-5"),
|
||
Qnil)))))))));
|
||
|
||
DEFSYM (Qsingle_key_description, "single-key-description");
|
||
DEFSYM (Qkey_description, "key-description");
|
||
DEFSYM (Qkeymapp, "keymapp");
|
||
DEFSYM (Qnon_ascii, "non-ascii");
|
||
DEFSYM (Qmenu_item, "menu-item");
|
||
DEFSYM (Qremap, "remap");
|
||
DEFSYM (QCadvertised_binding, ":advertised-binding");
|
||
|
||
command_remapping_vector = Fmake_vector (make_number (2), Qremap);
|
||
staticpro (&command_remapping_vector);
|
||
|
||
where_is_cache_keymaps = Qt;
|
||
where_is_cache = Qnil;
|
||
staticpro (&where_is_cache);
|
||
staticpro (&where_is_cache_keymaps);
|
||
|
||
defsubr (&Skeymapp);
|
||
defsubr (&Skeymap_parent);
|
||
defsubr (&Skeymap_prompt);
|
||
defsubr (&Sset_keymap_parent);
|
||
defsubr (&Smake_keymap);
|
||
defsubr (&Smake_sparse_keymap);
|
||
defsubr (&Smap_keymap_internal);
|
||
defsubr (&Smap_keymap);
|
||
defsubr (&Scopy_keymap);
|
||
defsubr (&Scommand_remapping);
|
||
defsubr (&Skey_binding);
|
||
defsubr (&Slocal_key_binding);
|
||
defsubr (&Sglobal_key_binding);
|
||
defsubr (&Sminor_mode_key_binding);
|
||
defsubr (&Sdefine_key);
|
||
defsubr (&Slookup_key);
|
||
defsubr (&Sdefine_prefix_command);
|
||
defsubr (&Suse_global_map);
|
||
defsubr (&Suse_local_map);
|
||
defsubr (&Scurrent_local_map);
|
||
defsubr (&Scurrent_global_map);
|
||
defsubr (&Scurrent_minor_mode_maps);
|
||
defsubr (&Scurrent_active_maps);
|
||
defsubr (&Saccessible_keymaps);
|
||
defsubr (&Skey_description);
|
||
defsubr (&Sdescribe_vector);
|
||
defsubr (&Ssingle_key_description);
|
||
defsubr (&Stext_char_description);
|
||
defsubr (&Swhere_is_internal);
|
||
defsubr (&Sdescribe_buffer_bindings);
|
||
defsubr (&Sapropos_internal);
|
||
}
|
||
|
||
void
|
||
keys_of_keymap (void)
|
||
{
|
||
initial_define_key (global_map, 033, "ESC-prefix");
|
||
initial_define_key (global_map, Ctl ('X'), "Control-X-prefix");
|
||
}
|