1
Fork 0
mirror of git://git.sv.gnu.org/emacs.git synced 2025-12-26 07:11:34 -08:00
emacs/mps/code/segsmss.c
Richard Brooksby 4b50f3688b Adding mps_key_gen generation keyword to pools that take a chain (except amc), so that you can specify which generation to allocate in by default. this allows some flexibility when the client can predict the lifetimes of objects.
The AWL and LO pools allocate into generation 1 of the arena default chain if neither MPS_KEY_CHAIN or MPS_KEY_GEN is specified, simulating the default setup before the chain-zones branch.

Copied from Perforce
 Change: 184231
 ServerID: perforce.ravenbrook.com
2014-01-30 14:27:09 +00:00

912 lines
25 KiB
C

/* segsmss.c: Segment splitting and merging stress test
*
* $Id$
* Copyright (c) 2001-2013 Ravenbrook Limited. See end of file for license.
* Portions copyright (c) 2002 Global Graphics Software.
*
* .design: Adapted from amsss.c (because AMS already supports
* a protocol for subclassing AMS segments). Defines a new pool
* class, AMST. Segments are split and merged during BufferFill
* operations. Buffered segments are also split and merged between
* allocation requests.
*/
#include "mpm.h"
#include "poolams.h"
#include "fmtdy.h"
#include "fmtdytst.h"
#include "testlib.h"
#include "mpslib.h"
#include "chain.h"
#include "mpscams.h"
#include "mpsavm.h"
#include "mpstd.h"
#ifdef MPS_OS_W3
#include "mpsw3.h"
#endif
#include "mps.h"
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <string.h>
/* Forward declarations */
static SegClass AMSTSegClassGet(void);
static PoolClass AMSTPoolClassGet(void);
/* Start by defining the AMST pool (AMS Test pool) */
#define AMSTSig ((Sig)0x519A3529) /* SIGnature AMST */
/* AMSTStruct -- AMST pool instance structure */
typedef struct AMSTStruct {
AMSStruct amsStruct; /* generic AMS structure */
Chain chain; /* chain to use */
Bool failSegs; /* fail seg splits & merges when true */
Count splits; /* count of successful segment splits */
Count merges; /* count of successful segment merges */
Count badSplits; /* count of unsuccessful segment splits */
Count badMerges; /* count of unsuccessful segment merges */
Count bsplits; /* count of buffered segment splits */
Count bmerges; /* count of buffered segment merges */
Sig sig; /* <design/pool/#outer-structure.sig> */
} AMSTStruct;
typedef struct AMSTStruct *AMST;
#define Pool2AMST(pool) PARENT(AMSTStruct, amsStruct, PARENT(AMSStruct, poolStruct, (pool)))
#define AMST2AMS(amst) (&(amst)->amsStruct)
/* AMSTCheck -- the check method for an AMST */
static Bool AMSTCheck(AMST amst)
{
CHECKS(AMST, amst);
CHECKL(AMSCheck(AMST2AMS(amst)));
return TRUE;
}
/* AMSTFailOperation -- should a split/merge operation fail?
*
* returns TRUE if so.
*/
static Bool AMSTFailOperation(AMST amst)
{
if (amst->failSegs) {
return rnd() % 2;
} else {
return FALSE;
}
}
/* AMSTSegStruct: AMST segment instances */
#define AMSTSegSig ((Sig)0x519A3525) /* SIGnature AMST Seg */
typedef struct AMSTSegStruct *AMSTSeg;
typedef struct AMSTSegStruct {
AMSSegStruct amsSegStruct; /* superclass fields must come first */
AMSTSeg next; /* mergeable next segment, or NULL */
AMSTSeg prev; /* mergeable prev segment, or NULL */
Sig sig; /* <design/pool/#outer-structure.sig> */
} AMSTSegStruct;
/* AMSTSegCheck -- check the AMST segment */
static Bool AMSTSegCheck(AMSTSeg amstseg)
{
CHECKS(AMSTSeg, amstseg);
CHECKL(AMSSegCheck(&amstseg->amsSegStruct));
/* don't bother to do other checks - this is a stress test */
return TRUE;
}
#define Seg2AMSTSeg(seg) ((AMSTSeg)(seg))
#define AMSTSeg2Seg(amstseg) ((Seg)(amstseg))
/* amstSegInit -- initialise an amst segment */
static Res amstSegInit(Seg seg, Pool pool, Addr base, Size size,
Bool reservoirPermit, ArgList args)
{
SegClass super;
AMSTSeg amstseg;
AMST amst;
Res res;
AVERT(Seg, seg);
amstseg = Seg2AMSTSeg(seg);
AVERT(Pool, pool);
amst = Pool2AMST(pool);
AVERT(AMST, amst);
/* no useful checks for base and size */
AVER(BoolCheck(reservoirPermit));
/* Initialize the superclass fields first via next-method call */
super = SEG_SUPERCLASS(AMSTSegClass);
res = super->init(seg, pool, base, size, reservoirPermit, args);
if (res != ResOK)
return res;
amstseg->next = NULL;
amstseg->prev = NULL;
amstseg->sig = AMSTSegSig;
AVERT(AMSTSeg, amstseg);
return ResOK;
}
/* amstSegFinish -- Finish method for AMST segments */
static void amstSegFinish(Seg seg)
{
SegClass super;
AMSTSeg amstseg;
AVERT(Seg, seg);
amstseg = Seg2AMSTSeg(seg);
AVERT(AMSTSeg, amstseg);
if (amstseg->next != NULL)
amstseg->next->prev = NULL;
if (amstseg->prev != NULL)
amstseg->prev->next = NULL;
amstseg->sig = SigInvalid;
/* finish the superclass fields last */
super = SEG_SUPERCLASS(AMSTSegClass);
super->finish(seg);
}
/* amstSegMerge -- AMSTSeg merge method
*
* .fail: Test proper handling of the most complex failure cases
* by deliberately detecting failure sometimes after calling the
* next method. We handle the error by calling the anti-method.
* This isn't strictly safe (see <design/poolams/#split-merge.fail>).
* But we assume here that we won't run out of memory when calling the
* anti-method.
*/
static Res amstSegMerge(Seg seg, Seg segHi,
Addr base, Addr mid, Addr limit,
Bool withReservoirPermit)
{
SegClass super;
AMST amst;
AMSTSeg amstseg, amstsegHi;
Res res;
AVERT(Seg, seg);
AVERT(Seg, segHi);
amstseg = Seg2AMSTSeg(seg);
amstsegHi = Seg2AMSTSeg(segHi);
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
amst = Pool2AMST(SegPool(seg));
/* Merge the superclass fields via direct next-method call */
super = SEG_SUPERCLASS(AMSTSegClass);
res = super->merge(seg, segHi, base, mid, limit,
withReservoirPermit);
if (res != ResOK)
goto failSuper;
if (AMSTFailOperation(amst)) {
amst->badMerges++;
printf("D");
goto failDeliberate;
}
amstseg->next = amstsegHi->next;
amstsegHi->sig = SigInvalid;
AVERT(AMSTSeg, amstseg);
amst->merges++;
printf("M");
return ResOK;
failDeliberate:
/* Call the anti-method (see .fail) */
res = super->split(seg, segHi, base, mid, limit,
withReservoirPermit);
AVER(res == ResOK);
res = ResFAIL;
failSuper:
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
return res;
}
/* amstSegSplit -- AMSTSeg split method */
static Res amstSegSplit(Seg seg, Seg segHi,
Addr base, Addr mid, Addr limit,
Bool withReservoirPermit)
{
SegClass super;
AMST amst;
AMSTSeg amstseg, amstsegHi;
Res res;
AVERT(Seg, seg);
AVER(segHi != NULL); /* can't check fully, it's not initialized */
amstseg = Seg2AMSTSeg(seg);
amstsegHi = Seg2AMSTSeg(segHi);
AVERT(AMSTSeg, amstseg);
amst = Pool2AMST(SegPool(seg));
/* Split the superclass fields via direct next-method call */
super = SEG_SUPERCLASS(AMSTSegClass);
res = super->split(seg, segHi, base, mid, limit,
withReservoirPermit);
if (res != ResOK)
goto failSuper;
if (AMSTFailOperation(amst)) {
amst->badSplits++;
printf("B");
goto failDeliberate;
}
/* Full initialization for segHi. */
amstsegHi->next = amstseg->next;
amstsegHi->prev = amstseg;
amstsegHi->sig = AMSTSegSig;
amstseg->next = amstsegHi;
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
amst->splits++;
printf("S");
return ResOK;
failDeliberate:
/* Call the anti-method. (see .fail) */
res = super->merge(seg, segHi, base, mid, limit,
withReservoirPermit);
AVER(res == ResOK);
res = ResFAIL;
failSuper:
AVERT(AMSTSeg, amstseg);
return res;
}
/* AMSTSegClass -- Class definition for AMST segments */
DEFINE_SEG_CLASS(AMSTSegClass, class)
{
INHERIT_CLASS(class, AMSSegClass);
class->name = "AMSTSEG";
class->size = sizeof(AMSTSegStruct);
class->init = amstSegInit;
class->finish = amstSegFinish;
class->split = amstSegSplit;
class->merge = amstSegMerge;
}
/* AMSTSegSizePolicy
*
* Picks double the default segment size.
*/
static Res AMSTSegSizePolicy(Size *sizeReturn,
Pool pool, Size size, RankSet rankSet)
{
Arena arena;
Size basic, want;
AVER(sizeReturn != NULL);
AVERT(Pool, pool);
AVER(size > 0);
AVER(RankSetCheck(rankSet));
arena = PoolArena(pool);
basic = SizeAlignUp(size, ArenaAlign(arena));
if (basic == 0) {
/* overflow */
return ResMEMORY;
}
want = basic + basic;
if (want <= basic) {
/* overflow */
return ResMEMORY;
}
*sizeReturn = want;
return ResOK;
}
/* AMSTInit -- the pool class initialization method */
static Res AMSTInit(Pool pool, ArgList args)
{
AMST amst; AMS ams;
Format format;
Chain chain;
Res res;
static GenParamStruct genParam = { 1024, 0.2 };
ArgStruct arg;
AVERT(Pool, pool);
ArgRequire(&arg, args, MPS_KEY_FORMAT);
format = arg.val.format;
res = ChainCreate(&chain, pool->arena, 1, &genParam);
if (res != ResOK)
return res;
res = AMSInitInternal(Pool2AMS(pool), format, chain, 0, FALSE);
if (res != ResOK)
return res;
amst = Pool2AMST(pool);
ams = Pool2AMS(pool);
ams->segSize = AMSTSegSizePolicy;
ams->segClass = AMSTSegClassGet;
amst->chain = chain;
amst->failSegs = TRUE;
amst->splits = 0;
amst->merges = 0;
amst->badSplits = 0;
amst->badMerges = 0;
amst->bsplits = 0;
amst->bmerges = 0;
amst->sig = AMSTSig;
AVERT(AMST, amst);
return ResOK;
}
/* AMSTFinish -- the pool class finish method */
static void AMSTFinish(Pool pool)
{
AMST amst;
AVERT(Pool, pool);
amst = Pool2AMST(pool);
AVERT(AMST, amst);
printf("\nDestroying pool, having performed:\n");
printf(" %"PRIuLONGEST" splits (S)\n", (ulongest_t)amst->splits);
printf(" %"PRIuLONGEST" merges (M)\n", (ulongest_t)amst->merges);
printf(" %"PRIuLONGEST" aborted splits (B)\n", (ulongest_t)amst->badSplits);
printf(" %"PRIuLONGEST" aborted merges (D)\n", (ulongest_t)amst->badMerges);
printf(" which included:\n");
printf(" %"PRIuLONGEST" buffered splits (C)\n", (ulongest_t)amst->bsplits);
printf(" %"PRIuLONGEST" buffered merges (J)\n", (ulongest_t)amst->bmerges);
AMSFinish(pool);
amst->sig = SigInvalid;
ChainDestroy(amst->chain);
}
/* AMSSegIsFree -- return TRUE if a seg is all unallocated */
static Bool AMSSegIsFree(Seg seg)
{
AMSSeg amsseg;
AVERT(Seg, seg);
amsseg = Seg2AMSSeg(seg);
return(amsseg->free == amsseg->grains);
}
/* AMSSegRegionIsFree -- return TRUE if a region is all unallocated */
static Bool AMSSegRegionIsFree(Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg;
AMS ams;
Count bgrain, lgrain;
Addr sbase;
AVERT(Seg, seg);
amsseg = Seg2AMSSeg(seg);
sbase = SegBase(seg);
ams = Pool2AMS(SegPool(seg));
bgrain = AMSGrains(ams, AddrOffset(sbase, base));
lgrain = AMSGrains(ams, AddrOffset(sbase, limit));
if (amsseg->allocTableInUse) {
return BTIsResRange(amsseg->allocTable, bgrain, lgrain);
} else {
return amsseg->firstFree <= bgrain;
}
}
/* AMSUnallocateRange -- set a range to be unallocated
*
* Used as a means of overriding the behaviour of AMSBufferFill.
* The code is similar to AMSBufferEmpty.
*/
static void AMSUnallocateRange(Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg;
Index baseIndex, limitIndex;
/* parameters checked by caller */
amsseg = Seg2AMSSeg(seg);
baseIndex = AMS_ADDR_INDEX(seg, base);
limitIndex = AMS_ADDR_INDEX(seg, limit);
if (amsseg->allocTableInUse) {
/* check that it's allocated */
AVER(BTIsSetRange(amsseg->allocTable, baseIndex, limitIndex));
BTResRange(amsseg->allocTable, baseIndex, limitIndex);
} else {
/* check that it's allocated */
AVER(limitIndex <= amsseg->firstFree);
if (limitIndex == amsseg->firstFree) /* is it at the end? */ {
amsseg->firstFree = baseIndex;
} else { /* start using allocTable */
amsseg->allocTableInUse = TRUE;
BTSetRange(amsseg->allocTable, 0, amsseg->firstFree);
if (amsseg->firstFree < amsseg->grains)
BTResRange(amsseg->allocTable, amsseg->firstFree, amsseg->grains);
BTResRange(amsseg->allocTable, baseIndex, limitIndex);
}
}
amsseg->free += limitIndex - baseIndex;
amsseg->newAlloc -= limitIndex - baseIndex;
}
/* AMSAllocateRange -- set a range to be allocated
*
* Used as a means of overriding the behaviour of AMSBufferFill.
* The code is similar to AMSUnallocateRange.
*/
static void AMSAllocateRange(Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg;
Index baseIndex, limitIndex;
/* parameters checked by caller */
amsseg = Seg2AMSSeg(seg);
baseIndex = AMS_ADDR_INDEX(seg, base);
limitIndex = AMS_ADDR_INDEX(seg, limit);
if (amsseg->allocTableInUse) {
/* check that it's not allocated */
AVER(BTIsResRange(amsseg->allocTable, baseIndex, limitIndex));
BTSetRange(amsseg->allocTable, baseIndex, limitIndex);
} else {
/* check that it's not allocated */
AVER(baseIndex >= amsseg->firstFree);
if (baseIndex == amsseg->firstFree) /* is it at the end? */ {
amsseg->firstFree = limitIndex;
} else { /* start using allocTable */
amsseg->allocTableInUse = TRUE;
BTSetRange(amsseg->allocTable, 0, amsseg->firstFree);
if (amsseg->firstFree < amsseg->grains)
BTResRange(amsseg->allocTable, amsseg->firstFree, amsseg->grains);
BTSetRange(amsseg->allocTable, baseIndex, limitIndex);
}
}
AVER(amsseg->free >= limitIndex - baseIndex);
amsseg->free -= limitIndex - baseIndex;
amsseg->newAlloc += limitIndex - baseIndex;
}
/* AMSTBufferFill -- the pool class buffer fill method
*
* Calls next method - but possibly splits or merges the chosen
* segment.
*
* .merge: A merge is performed when the next method returns
* the entire segment, this segment had previously been split
* from the segment below, and the segment below is appropriately
* similar (i.e. not already attached to a buffer and similarly grey)
*
* .split: If we're not merging, a split is performed if the next method
* returns the entire segment, and yet lower half of the segment would
* meet the request.
*/
static Res AMSTBufferFill(Addr *baseReturn, Addr *limitReturn,
Pool pool, Buffer buffer, Size size,
Bool withReservoirPermit)
{
PoolClass super;
Addr base, limit;
Arena arena;
AMST amst;
Bool b;
Seg seg;
AMSTSeg amstseg;
Res res;
AVERT(Pool, pool);
AVER(baseReturn != NULL);
AVER(limitReturn != NULL);
/* other parameters are checked by next method */
arena = PoolArena(pool);
amst = Pool2AMST(pool);
/* call next method */
super = POOL_SUPERCLASS(AMSTPoolClass);
res = super->bufferFill(&base, &limit, pool, buffer, size,
withReservoirPermit);
if (res != ResOK)
return res;
b = SegOfAddr(&seg, arena, base);
AVER(b);
amstseg = Seg2AMSTSeg(seg);
if (SegLimit(seg) == limit && SegBase(seg) == base) {
if (amstseg->prev != NULL) {
Seg segLo = AMSTSeg2Seg(amstseg->prev);
if (SegBuffer(segLo) == NULL && SegGrey(segLo) == SegGrey(seg)) {
/* .merge */
Seg mergedSeg;
Res mres;
AMSUnallocateRange(seg, base, limit);
mres = SegMerge(&mergedSeg, segLo, seg, withReservoirPermit);
if (ResOK == mres) { /* successful merge */
AMSAllocateRange(mergedSeg, base, limit);
/* leave range as-is */
} else { /* failed to merge */
AVER(amst->failSegs); /* deliberate fails only */
AMSAllocateRange(seg, base, limit);
}
}
} else {
Size half = SegSize(seg) / 2;
if (half >= size && SizeIsAligned(half, ArenaAlign(arena))) {
/* .split */
Addr mid = AddrAdd(base, half);
Seg segLo, segHi;
Res sres;
AMSUnallocateRange(seg, mid, limit);
sres = SegSplit(&segLo, &segHi, seg, mid, withReservoirPermit);
if (ResOK == sres) { /* successful split */
limit = mid; /* range is lower segment */
} else { /* failed to split */
AVER(amst->failSegs); /* deliberate fails only */
AMSAllocateRange(seg, mid, limit);
}
}
}
}
*baseReturn = base;
*limitReturn = limit;
return ResOK;
}
/* AMSTStressBufferedSeg -- Stress test for a buffered seg
*
* Test splitting or merging a buffered seg.
*
* .bmerge: A merge is performed when the segment had previously
* been split and the segment above meets the constraints (i.e. empty,
* not already attached to a buffer and similar colour)
*
* .bsplit: Whether or not a merge happpened, a split is performed if
* the limit of the buffered region is arena aligned, and yet does not
* correspond to the segment limit, provided that the part of the segment
* above the buffer is all free.
*/
static void AMSTStressBufferedSeg(Seg seg, Buffer buffer)
{
AMSTSeg amstseg;
AMST amst;
Arena arena;
Addr limit;
AVERT(Seg, seg);
AVERT(Buffer, buffer);
AVER(SegBuffer(seg) == buffer);
amstseg = Seg2AMSTSeg(seg);
AVERT(AMSTSeg, amstseg);
limit = BufferLimit(buffer);
arena = PoolArena(SegPool(seg));
amst = Pool2AMST(SegPool(seg));
AVERT(AMST, amst);
if (amstseg->next != NULL) {
Seg segHi = AMSTSeg2Seg(amstseg->next);
if (AMSSegIsFree(segHi) && SegGrey(segHi) == SegGrey(seg)) {
/* .bmerge */
Seg mergedSeg;
Res res;
res = SegMerge(&mergedSeg, seg, segHi, FALSE);
if (ResOK == res) {
amst->bmerges++;
printf("J");
} else {
/* deliberate fails only */
AVER(amst->failSegs);
}
}
}
if (SegLimit(seg) != limit &&
AddrIsAligned(limit, ArenaAlign(arena)) &&
AMSSegRegionIsFree(seg, limit, SegLimit(seg))) {
/* .bsplit */
Seg segLo, segHi;
Res res;
res = SegSplit(&segLo, &segHi, seg, limit, FALSE);
if (ResOK == res) {
amst->bsplits++;
printf("C");
} else {
/* deliberate fails only */
AVER(amst->failSegs);
}
}
}
/* AMSTPoolClass -- the pool class definition */
DEFINE_POOL_CLASS(AMSTPoolClass, this)
{
INHERIT_CLASS(this, AMSPoolClass);
this->name = "AMST";
this->size = sizeof(AMSTStruct);
this->offset = offsetof(AMSTStruct, amsStruct) + offsetof(AMSStruct, poolStruct);
this->init = AMSTInit;
this->finish = AMSTFinish;
this->bufferFill = AMSTBufferFill;
}
/* mps_amst_ap_stress -- stress an active buffer
*
* Attempt to either split or merge a segment attached to an AP
*/
static void mps_amst_ap_stress(mps_ap_t ap)
{
Buffer buffer;
Seg seg;
buffer = BufferOfAP(ap);
AVERT(Buffer, buffer);
seg = BufferSeg(buffer);
AMSTStressBufferedSeg(seg, buffer);
}
/* mps_class_amst -- return the pool class descriptor to the client */
static mps_class_t mps_class_amst(void)
{
return (mps_class_t)AMSTPoolClassGet();
}
/* AMS collection parameters */
#define exactRootsCOUNT 50
#define ambigRootsCOUNT 100
#define sizeScale 4
/* This is enough for five GCs. */
#define totalSizeMAX sizeScale * 800 * (size_t)1024
#define totalSizeSTEP 200 * (size_t)1024
/* objNULL needs to be odd so that it's ignored in exactRoots. */
#define objNULL ((mps_addr_t)MPS_WORD_CONST(0xDECEA5ED))
#define testArenaSIZE ((size_t)16<<20)
#define initTestFREQ 6000
#define stressTestFREQ 40
/* static variables for the test */
static mps_pool_t pool;
static mps_ap_t ap;
static mps_addr_t exactRoots[exactRootsCOUNT];
static mps_addr_t ambigRoots[ambigRootsCOUNT];
static size_t totalSize = 0;
/* make -- object allocation and init */
static mps_addr_t make(void)
{
size_t length = rnd() % 20, size = (length+2) * sizeof(mps_word_t);
mps_addr_t p;
mps_res_t res;
do {
MPS_RESERVE_BLOCK(res, p, ap, size);
if (res)
die(res, "MPS_RESERVE_BLOCK");
res = dylan_init(p, size, exactRoots, exactRootsCOUNT);
if (res)
die(res, "dylan_init");
} while(!mps_commit(ap, p, size));
totalSize += size;
return p;
}
/* test -- the actual stress test */
static void *test(void *arg, size_t s)
{
mps_arena_t arena;
mps_fmt_t format;
mps_root_t exactRoot, ambigRoot;
size_t lastStep = 0, i, r;
unsigned long objs;
mps_ap_t busy_ap;
mps_addr_t busy_init;
const char *indent = " ";
arena = (mps_arena_t)arg;
(void)s; /* unused */
die(mps_fmt_create_A(&format, arena, dylan_fmt_A()), "fmt_create");
MPS_ARGS_BEGIN(args) {
MPS_ARGS_ADD(args, MPS_KEY_FORMAT, format);
MPS_ARGS_DONE(args);
die(mps_pool_create_k(&pool, arena, mps_class_amst(), args),
"pool_create(amst)");
} MPS_ARGS_END(args);
die(mps_ap_create(&ap, pool, mps_rank_exact()), "BufferCreate");
die(mps_ap_create(&busy_ap, pool, mps_rank_exact()), "BufferCreate 2");
for(i = 0; i < exactRootsCOUNT; ++i)
exactRoots[i] = objNULL;
for(i = 0; i < ambigRootsCOUNT; ++i)
ambigRoots[i] = rnd_addr();
die(mps_root_create_table_masked(&exactRoot, arena,
mps_rank_exact(), (mps_rm_t)0,
&exactRoots[0], exactRootsCOUNT,
(mps_word_t)1),
"root_create_table(exact)");
die(mps_root_create_table(&ambigRoot, arena,
mps_rank_ambig(), (mps_rm_t)0,
&ambigRoots[0], ambigRootsCOUNT),
"root_create_table(ambig)");
fputs(indent, stdout);
/* create an ap, and leave it busy */
die(mps_reserve(&busy_init, busy_ap, 64), "mps_reserve busy");
objs = 0;
while(totalSize < totalSizeMAX) {
if (totalSize > lastStep + totalSizeSTEP) {
lastStep = totalSize;
printf("\nSize %"PRIuLONGEST" bytes, %"PRIuLONGEST" objects.\n",
(ulongest_t)totalSize, (ulongest_t)objs);
printf("%s", indent);
fflush(stdout);
for(i = 0; i < exactRootsCOUNT; ++i)
cdie(exactRoots[i] == objNULL || dylan_check(exactRoots[i]),
"all roots check");
}
r = (size_t)rnd();
if (r & 1) {
i = (r >> 1) % exactRootsCOUNT;
if (exactRoots[i] != objNULL)
cdie(dylan_check(exactRoots[i]), "dying root check");
exactRoots[i] = make();
if (exactRoots[(exactRootsCOUNT-1) - i] != objNULL)
dylan_write(exactRoots[(exactRootsCOUNT-1) - i],
exactRoots, exactRootsCOUNT);
} else {
i = (r >> 1) % ambigRootsCOUNT;
ambigRoots[(ambigRootsCOUNT-1) - i] = make();
/* Create random interior pointers */
ambigRoots[i] = (mps_addr_t)((char *)(ambigRoots[i/2]) + 1);
}
if (rnd() % stressTestFREQ == 0)
mps_amst_ap_stress(ap); /* stress active buffer */
if (rnd() % initTestFREQ == 0)
*(int*)busy_init = -1; /* check that the buffer is still there */
++objs;
if (objs % 256 == 0) {
printf(".");
fflush(stdout);
}
}
(void)mps_commit(busy_ap, busy_init, 64);
mps_ap_destroy(busy_ap);
mps_ap_destroy(ap);
mps_root_destroy(exactRoot);
mps_root_destroy(ambigRoot);
mps_pool_destroy(pool);
mps_fmt_destroy(format);
return NULL;
}
int main(int argc, char *argv[])
{
mps_arena_t arena;
mps_thr_t thread;
void *r;
randomize(argc, argv);
mps_lib_assert_fail_install(assert_die);
die(mps_arena_create(&arena, mps_arena_class_vm(), testArenaSIZE),
"arena_create");
die(mps_thread_reg(&thread, arena), "thread_reg");
mps_tramp(&r, test, arena, 0);
mps_thread_dereg(thread);
mps_arena_destroy(arena);
printf("%s: Conclusion: Failed to find any defects.\n", argv[0]);
return 0;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (c) 2001-2013 Ravenbrook Limited <http://www.ravenbrook.com/>.
* All rights reserved. This is an open source license. Contact
* Ravenbrook for commercial licensing options.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Redistributions in any form must be accompanied by information on how
* to obtain complete source code for this software and any accompanying
* software that uses this software. The source code must either be
* included in the distribution or be available for no more than the cost
* of distribution plus a nominal fee, and must be freely redistributable
* under reasonable conditions. For an executable file, complete source
* code means the source code for all modules it contains. It does not
* include source code for modules or files that typically accompany the
* major components of the operating system on which the executable file
* runs.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/