mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-25 06:50:46 -08:00
Qccl_translation_table, Qccl_translation_table_id): New variables. append new symbols. Qccl_translation_table and Qccl_translation_table_id. (CCL_Call): Fix the comment. (CCL_ReadMultibyteCharacter, CCL_WriteMultibyteCharacter, CCL_UnifyCharacter, CCL_UnifyCharacterConstTbl, CCL_IterateMultipleMap, CCL_TranslateMultipleMap): New macros for CCL Commands. (EXCMD): New macro. (ccl_driver): New case lable `CCL_Extention'. (setup_ccl_program): Initialize the member `private_state' of CCL. (Fregister_ccl_program): Delete unused variable IDX. (Fregister_ccl_translation_table): New function. (syms_of_ccl): Intern and staticpro Qccl_program, Qccl_translation_table, and Qccl_translation_table_id. Declare `ccl-translation-table-vector' as a Lisp variable. Declare register-ccl-translation-table as a Lisp function.
1733 lines
47 KiB
C
1733 lines
47 KiB
C
/* CCL (Code Conversion Language) interpreter.
|
|
Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
|
|
Licensed to the Free Software Foundation.
|
|
|
|
This file is part of GNU Emacs.
|
|
|
|
GNU Emacs is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Emacs is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Emacs; see the file COPYING. If not, write to
|
|
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include <stdio.h>
|
|
|
|
#ifdef emacs
|
|
|
|
#include <config.h>
|
|
#include "lisp.h"
|
|
#include "charset.h"
|
|
#include "ccl.h"
|
|
#include "coding.h"
|
|
|
|
#else /* not emacs */
|
|
|
|
#include "mulelib.h"
|
|
|
|
#endif /* not emacs */
|
|
|
|
/* Where is stored translation tables for CCL program. */
|
|
Lisp_Object Vccl_translation_table_vector;
|
|
|
|
/* Alist of fontname patterns vs corresponding CCL program. */
|
|
Lisp_Object Vfont_ccl_encoder_alist;
|
|
|
|
/* This symbol is property which assocate with ccl program vector. e.g.
|
|
(get 'ccl-big5-encoder 'ccl-program) returns ccl program vector */
|
|
Lisp_Object Qccl_program;
|
|
|
|
/* These symbol is properties whish associate with ccl translation table and its id
|
|
respectively. */
|
|
Lisp_Object Qccl_translation_table;
|
|
Lisp_Object Qccl_translation_table_id;
|
|
|
|
/* Vector of CCL program names vs corresponding program data. */
|
|
Lisp_Object Vccl_program_table;
|
|
|
|
/* CCL (Code Conversion Language) is a simple language which has
|
|
operations on one input buffer, one output buffer, and 7 registers.
|
|
The syntax of CCL is described in `ccl.el'. Emacs Lisp function
|
|
`ccl-compile' compiles a CCL program and produces a CCL code which
|
|
is a vector of integers. The structure of this vector is as
|
|
follows: The 1st element: buffer-magnification, a factor for the
|
|
size of output buffer compared with the size of input buffer. The
|
|
2nd element: address of CCL code to be executed when encountered
|
|
with end of input stream. The 3rd and the remaining elements: CCL
|
|
codes. */
|
|
|
|
/* Header of CCL compiled code */
|
|
#define CCL_HEADER_BUF_MAG 0
|
|
#define CCL_HEADER_EOF 1
|
|
#define CCL_HEADER_MAIN 2
|
|
|
|
/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
|
|
MSB is always 0), each contains CCL command and/or arguments in the
|
|
following format:
|
|
|
|
|----------------- integer (28-bit) ------------------|
|
|
|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
|--constant argument--|-register-|-register-|-command-|
|
|
ccccccccccccccccc RRR rrr XXXXX
|
|
or
|
|
|------- relative address -------|-register-|-command-|
|
|
cccccccccccccccccccc rrr XXXXX
|
|
or
|
|
|------------- constant or other args ----------------|
|
|
cccccccccccccccccccccccccccc
|
|
|
|
where, `cc...c' is a non-negative integer indicating constant value
|
|
(the left most `c' is always 0) or an absolute jump address, `RRR'
|
|
and `rrr' are CCL register number, `XXXXX' is one of the following
|
|
CCL commands. */
|
|
|
|
/* CCL commands
|
|
|
|
Each comment fields shows one or more lines for command syntax and
|
|
the following lines for semantics of the command. In semantics, IC
|
|
stands for Instruction Counter. */
|
|
|
|
#define CCL_SetRegister 0x00 /* Set register a register value:
|
|
1:00000000000000000RRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = reg[RRR];
|
|
*/
|
|
|
|
#define CCL_SetShortConst 0x01 /* Set register a short constant value:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = CCCCCCCCCCCCCCCCCCC;
|
|
*/
|
|
|
|
#define CCL_SetConst 0x02 /* Set register a constant value:
|
|
1:00000000000000000000rrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] = CONSTANT;
|
|
IC++;
|
|
*/
|
|
|
|
#define CCL_SetArray 0x03 /* Set register an element of array:
|
|
1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
|
|
2:ELEMENT[0]
|
|
3:ELEMENT[1]
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[RRR] < CC..C)
|
|
reg[rrr] = ELEMENT[reg[RRR]];
|
|
IC += CC..C;
|
|
*/
|
|
|
|
#define CCL_Jump 0x04 /* Jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
------------------------------
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
/* Note: If CC..C is greater than 0, the second code is omitted. */
|
|
|
|
#define CCL_JumpCond 0x05 /* Jump conditional:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
------------------------------
|
|
if (!reg[rrr])
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
|
|
#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
------------------------------
|
|
write (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
write (reg[rrr]);
|
|
IC++;
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
second code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_WriteConstJump 0x08 /* Write constant and jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
2:CONST
|
|
------------------------------
|
|
write (CONST);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:CONST
|
|
3:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
write (CONST);
|
|
IC += 2;
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
second code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_WriteStringJump 0x0A /* Write string and jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
2:LENGTH
|
|
3:0000STRIN[0]STRIN[1]STRIN[2]
|
|
...
|
|
------------------------------
|
|
write_string (STRING, LENGTH);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:LENGTH
|
|
3:ELEMENET[0]
|
|
4:ELEMENET[1]
|
|
...
|
|
N:A--D--D--R--E--S--S-rrrYYYYY
|
|
------------------------------
|
|
if (0 <= reg[rrr] < LENGTH)
|
|
write (ELEMENT[reg[rrr]]);
|
|
IC += LENGTH + 2; (... pointing at N+1)
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
Nth code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_ReadJump 0x0C /* Read and jump:
|
|
1:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_Branch 0x0D /* Jump by branch table:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:A--D--D--R--E-S-S[0]000XXXXX
|
|
3:A--D--D--R--E-S-S[1]000XXXXX
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[rrr] < CC..C)
|
|
IC += ADDRESS[reg[rrr]];
|
|
else
|
|
IC += ADDRESS[CC..C];
|
|
*/
|
|
|
|
#define CCL_ReadRegister 0x0E /* Read bytes into registers:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
...
|
|
------------------------------
|
|
while (CCC--)
|
|
read (reg[rrr]);
|
|
*/
|
|
|
|
#define CCL_WriteExprConst 0x0F /* write result of expression:
|
|
1:00000OPERATION000RRR000XXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
write (reg[RRR] OPERATION CONSTANT);
|
|
IC++;
|
|
*/
|
|
|
|
/* Note: If the Nth read is suspended, the resumed execution starts
|
|
from the Nth code. */
|
|
|
|
#define CCL_ReadBranch 0x10 /* Read one byte into a register,
|
|
and jump by branch table:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:A--D--D--R--E-S-S[0]000XXXXX
|
|
3:A--D--D--R--E-S-S[1]000XXXXX
|
|
...
|
|
------------------------------
|
|
read (read[rrr]);
|
|
if (0 <= reg[rrr] < CC..C)
|
|
IC += ADDRESS[reg[rrr]];
|
|
else
|
|
IC += ADDRESS[CC..C];
|
|
*/
|
|
|
|
#define CCL_WriteRegister 0x11 /* Write registers:
|
|
1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
...
|
|
------------------------------
|
|
while (CCC--)
|
|
write (reg[rrr]);
|
|
...
|
|
*/
|
|
|
|
/* Note: If the Nth write is suspended, the resumed execution
|
|
starts from the Nth code. */
|
|
|
|
#define CCL_WriteExprRegister 0x12 /* Write result of expression
|
|
1:00000OPERATIONRrrRRR000XXXXX
|
|
------------------------------
|
|
write (reg[RRR] OPERATION reg[Rrr]);
|
|
*/
|
|
|
|
#define CCL_Call 0x13 /* Call the CCL program whose ID is
|
|
(CC..C).
|
|
1:CCCCCCCCCCCCCCCCCCCC000XXXXX
|
|
------------------------------
|
|
call (CC..C)
|
|
*/
|
|
|
|
#define CCL_WriteConstString 0x14 /* Write a constant or a string:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
[2:0000STRIN[0]STRIN[1]STRIN[2]]
|
|
[...]
|
|
-----------------------------
|
|
if (!rrr)
|
|
write (CC..C)
|
|
else
|
|
write_string (STRING, CC..C);
|
|
IC += (CC..C + 2) / 3;
|
|
*/
|
|
|
|
#define CCL_WriteArray 0x15 /* Write an element of array:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:ELEMENT[0]
|
|
3:ELEMENT[1]
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[rrr] < CC..C)
|
|
write (ELEMENT[reg[rrr]]);
|
|
IC += CC..C;
|
|
*/
|
|
|
|
#define CCL_End 0x16 /* Terminate:
|
|
1:00000000000000000000000XXXXX
|
|
------------------------------
|
|
terminate ();
|
|
*/
|
|
|
|
/* The following two codes execute an assignment arithmetic/logical
|
|
operation. The form of the operation is like REG OP= OPERAND. */
|
|
|
|
#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
|
|
1:00000OPERATION000000rrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] OPERATION= CONSTANT;
|
|
*/
|
|
|
|
#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
|
|
1:00000OPERATION000RRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] OPERATION= reg[RRR];
|
|
*/
|
|
|
|
/* The following codes execute an arithmetic/logical operation. The
|
|
form of the operation is like REG_X = REG_Y OP OPERAND2. */
|
|
|
|
#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
|
|
1:00000OPERATION000RRRrrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] = reg[RRR] OPERATION CONSTANT;
|
|
IC++;
|
|
*/
|
|
|
|
#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
|
|
1:00000OPERATIONRrrRRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = reg[RRR] OPERATION reg[Rrr];
|
|
*/
|
|
|
|
#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
|
|
an operation on constant:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:CONSTANT
|
|
-----------------------------
|
|
reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
if (!(reg[7]))
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2
|
|
*/
|
|
|
|
#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
|
|
an operation on register:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:RRR
|
|
-----------------------------
|
|
reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
|
|
to an operation on constant:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:CONSTANT
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
|
|
to an operation on register:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:RRR
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_Extention 0x1F /* Extended CCL code
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
2:ARGUEMENT
|
|
3:...
|
|
------------------------------
|
|
extended_command (rrr,RRR,Rrr,ARGS)
|
|
*/
|
|
|
|
/*
|
|
From here, Extended CCL Instruction.
|
|
Bit length of extended command is 14.
|
|
Therefore the instruction code begins from 0 to 16384(0x3fff).
|
|
*/
|
|
|
|
#define CCL_ReadMultibyteCharacter 0x00 /* Read Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
|
|
Read a multibyte characeter.
|
|
A code point is stored
|
|
into rrr register.
|
|
A charset ID is stored
|
|
into RRR register.
|
|
*/
|
|
#define CCL_WriteMultibyteCharacter 0x01 /* Write Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
|
|
Write a multibyte character.
|
|
Write a character whose code point
|
|
is in rrr register, and its charset ID
|
|
is in RRR charset.
|
|
*/
|
|
#define CCL_UnifyCharacter 0x02 /* Unify Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
|
|
Unify a character where its code point
|
|
is in rrr register, and its charset ID
|
|
is in RRR register with the table of
|
|
the unification table ID
|
|
in Rrr register.
|
|
|
|
Return a unified character where its
|
|
code point is in rrr register, and its
|
|
charset ID is in RRR register.
|
|
*/
|
|
#define CCL_UnifyCharacterConstTbl 0x03 /* Unify Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
2:ARGUMENT(Unification Table ID)
|
|
|
|
Unify a character where its code point
|
|
is in rrr register, and its charset ID
|
|
is in RRR register with the table of
|
|
the unification table ID
|
|
in 2nd argument.
|
|
|
|
Return a unified character where its
|
|
code point is in rrr register, and its
|
|
charset ID is in RRR register.
|
|
*/
|
|
#define CCL_IterateMultipleMap 0x10 /* Iterate Multiple Map
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:NUMBER of TABLES
|
|
3:TABLE-ID1
|
|
4:TABLE-ID2
|
|
...
|
|
|
|
iterate to lookup tables from a number
|
|
until finding a value.
|
|
|
|
Each table consists of a vector
|
|
whose element is number or
|
|
nil or t or lambda.
|
|
If the element is nil,
|
|
its table is neglected.
|
|
In the case of t or lambda,
|
|
return the original value.
|
|
|
|
*/
|
|
#define CCL_TranslateMultipleMap 0x11 /* Translate Multiple Map
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:NUMBER of TABLE-IDs and SEPARATERs
|
|
(i.e. m1+m2+m3+...mk+k-1)
|
|
3:TABLE-ID 1,1
|
|
4:TABLE-ID 1,2
|
|
...
|
|
m1+2:TABLE-ID 1,m1
|
|
m1+3: -1 (SEPARATOR)
|
|
m1+4:TABLE-ID 2,1
|
|
...
|
|
m1+m2+4:TABLE-ID 2,m2
|
|
m1+m2+5: -1
|
|
...
|
|
m1+m2+...+mk+k+1:TABLE-ID k,mk
|
|
|
|
Translate the code point in
|
|
rrr register by tables.
|
|
Translation starts from the table
|
|
where RRR register points out.
|
|
|
|
We translate the given value
|
|
from the tables which are separated
|
|
by -1.
|
|
When each translation is failed to find
|
|
any values, we regard the traslation
|
|
as identity.
|
|
|
|
We iterate to traslate by using each
|
|
table set(tables separated by -1)
|
|
until lookup the last table except
|
|
lookup lambda.
|
|
|
|
Each table consists of a vector
|
|
whose element is number
|
|
or nil or t or lambda.
|
|
If the element is nil,
|
|
it is neglected and use the next table.
|
|
In the case of t,
|
|
it is translated to the original value.
|
|
In the case of lambda,
|
|
it cease the translation and return the
|
|
current value.
|
|
|
|
*/
|
|
#define CCL_TranslateSingleMap 0x12 /* Translate Single Map
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:TABLE-ID
|
|
|
|
Translate a number in rrr register.
|
|
If it is not found any translation,
|
|
set RRR register -1 but rrr register
|
|
is not changed.
|
|
*/
|
|
|
|
/* CCL arithmetic/logical operators. */
|
|
#define CCL_PLUS 0x00 /* X = Y + Z */
|
|
#define CCL_MINUS 0x01 /* X = Y - Z */
|
|
#define CCL_MUL 0x02 /* X = Y * Z */
|
|
#define CCL_DIV 0x03 /* X = Y / Z */
|
|
#define CCL_MOD 0x04 /* X = Y % Z */
|
|
#define CCL_AND 0x05 /* X = Y & Z */
|
|
#define CCL_OR 0x06 /* X = Y | Z */
|
|
#define CCL_XOR 0x07 /* X = Y ^ Z */
|
|
#define CCL_LSH 0x08 /* X = Y << Z */
|
|
#define CCL_RSH 0x09 /* X = Y >> Z */
|
|
#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
|
|
#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
|
|
#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
|
|
#define CCL_LS 0x10 /* X = (X < Y) */
|
|
#define CCL_GT 0x11 /* X = (X > Y) */
|
|
#define CCL_EQ 0x12 /* X = (X == Y) */
|
|
#define CCL_LE 0x13 /* X = (X <= Y) */
|
|
#define CCL_GE 0x14 /* X = (X >= Y) */
|
|
#define CCL_NE 0x15 /* X = (X != Y) */
|
|
|
|
#define CCL_ENCODE_SJIS 0x16 /* X = HIGHER_BYTE (SJIS (Y, Z))
|
|
r[7] = LOWER_BYTE (SJIS (Y, Z) */
|
|
#define CCL_DECODE_SJIS 0x17 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
|
|
r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
|
|
|
|
/* Terminate CCL program successfully. */
|
|
#define CCL_SUCCESS \
|
|
do { \
|
|
ccl->status = CCL_STAT_SUCCESS; \
|
|
ccl->ic = CCL_HEADER_MAIN; \
|
|
goto ccl_finish; \
|
|
} while (0)
|
|
|
|
/* Suspend CCL program because of reading from empty input buffer or
|
|
writing to full output buffer. When this program is resumed, the
|
|
same I/O command is executed. */
|
|
#define CCL_SUSPEND(stat) \
|
|
do { \
|
|
ic--; \
|
|
ccl->status = stat; \
|
|
goto ccl_finish; \
|
|
} while (0)
|
|
|
|
/* Terminate CCL program because of invalid command. Should not occur
|
|
in the normal case. */
|
|
#define CCL_INVALID_CMD \
|
|
do { \
|
|
ccl->status = CCL_STAT_INVALID_CMD; \
|
|
goto ccl_error_handler; \
|
|
} while (0)
|
|
|
|
/* Encode one character CH to multibyte form and write to the current
|
|
output buffer. If CH is less than 256, CH is written as is. */
|
|
#define CCL_WRITE_CHAR(ch) \
|
|
do { \
|
|
if (!dst) \
|
|
CCL_INVALID_CMD; \
|
|
else \
|
|
{ \
|
|
unsigned char work[4], *str; \
|
|
int len = CHAR_STRING (ch, work, str); \
|
|
if (dst + len <= (dst_bytes ? dst_end : src)) \
|
|
{ \
|
|
bcopy (str, dst, len); \
|
|
dst += len; \
|
|
} \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Write a string at ccl_prog[IC] of length LEN to the current output
|
|
buffer. */
|
|
#define CCL_WRITE_STRING(len) \
|
|
do { \
|
|
if (!dst) \
|
|
CCL_INVALID_CMD; \
|
|
else if (dst + len <= (dst_bytes ? dst_end : src)) \
|
|
for (i = 0; i < len; i++) \
|
|
*dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
|
|
>> ((2 - (i % 3)) * 8)) & 0xFF; \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
|
|
} while (0)
|
|
|
|
/* Read one byte from the current input buffer into Rth register. */
|
|
#define CCL_READ_CHAR(r) \
|
|
do { \
|
|
if (!src) \
|
|
CCL_INVALID_CMD; \
|
|
else if (src < src_end) \
|
|
r = *src++; \
|
|
else if (ccl->last_block) \
|
|
{ \
|
|
ic = ccl->eof_ic; \
|
|
goto ccl_finish; \
|
|
} \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
|
|
} while (0)
|
|
|
|
|
|
/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
|
|
text goes to a place pointed by DESTINATION, the length of which
|
|
should not exceed DST_BYTES. The bytes actually processed is
|
|
returned as *CONSUMED. The return value is the length of the
|
|
resulting text. As a side effect, the contents of CCL registers
|
|
are updated. If SOURCE or DESTINATION is NULL, only operations on
|
|
registers are permitted. */
|
|
|
|
#ifdef CCL_DEBUG
|
|
#define CCL_DEBUG_BACKTRACE_LEN 256
|
|
int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
|
|
int ccl_backtrace_idx;
|
|
#endif
|
|
|
|
struct ccl_prog_stack
|
|
{
|
|
Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
|
|
int ic; /* Instruction Counter. */
|
|
};
|
|
|
|
ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
|
|
struct ccl_program *ccl;
|
|
unsigned char *source, *destination;
|
|
int src_bytes, dst_bytes;
|
|
int *consumed;
|
|
{
|
|
register int *reg = ccl->reg;
|
|
register int ic = ccl->ic;
|
|
register int code, field1, field2;
|
|
register Lisp_Object *ccl_prog = ccl->prog;
|
|
unsigned char *src = source, *src_end = src + src_bytes;
|
|
unsigned char *dst = destination, *dst_end = dst + dst_bytes;
|
|
int jump_address;
|
|
int i, j, op;
|
|
int stack_idx = 0;
|
|
/* For the moment, we only support depth 256 of stack. */
|
|
struct ccl_prog_stack ccl_prog_stack_struct[256];
|
|
|
|
if (ic >= ccl->eof_ic)
|
|
ic = CCL_HEADER_MAIN;
|
|
|
|
#ifdef CCL_DEBUG
|
|
ccl_backtrace_idx = 0;
|
|
#endif
|
|
|
|
for (;;)
|
|
{
|
|
#ifdef CCL_DEBUG
|
|
ccl_backtrace_table[ccl_backtrace_idx++] = ic;
|
|
if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
|
|
ccl_backtrace_idx = 0;
|
|
ccl_backtrace_table[ccl_backtrace_idx] = 0;
|
|
#endif
|
|
|
|
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
|
|
{
|
|
/* We can't just signal Qquit, instead break the loop as if
|
|
the whole data is processed. Don't reset Vquit_flag, it
|
|
must be handled later at a safer place. */
|
|
if (consumed)
|
|
src = source + src_bytes;
|
|
ccl->status = CCL_STAT_QUIT;
|
|
break;
|
|
}
|
|
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
|
|
#define rrr field2
|
|
#define RRR (field1 & 7)
|
|
#define Rrr ((field1 >> 3) & 7)
|
|
#define ADDR field1
|
|
#define EXCMD (field1 >> 6)
|
|
|
|
switch (code & 0x1F)
|
|
{
|
|
case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
|
|
reg[rrr] = reg[RRR];
|
|
break;
|
|
|
|
case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
reg[rrr] = field1;
|
|
break;
|
|
|
|
case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
|
|
reg[rrr] = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
break;
|
|
|
|
case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = field1 >> 3;
|
|
if ((unsigned int) i < j)
|
|
reg[rrr] = XINT (ccl_prog[ic + i]);
|
|
ic += j;
|
|
break;
|
|
|
|
case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
if (!reg[rrr])
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
ic++;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
CCL_WRITE_CHAR (i);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
CCL_WRITE_CHAR (i);
|
|
ic++;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
j = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
CCL_WRITE_STRING (j);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
j = XINT (ccl_prog[ic]);
|
|
if ((unsigned int) i < j)
|
|
{
|
|
i = XINT (ccl_prog[ic + 1 + i]);
|
|
CCL_WRITE_CHAR (i);
|
|
}
|
|
ic += j + 2;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - (j + 2);
|
|
break;
|
|
|
|
case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
/* fall through ... */
|
|
case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
if ((unsigned int) reg[rrr] < field1)
|
|
ic += XINT (ccl_prog[ic + reg[rrr]]);
|
|
else
|
|
ic += XINT (ccl_prog[ic + field1]);
|
|
break;
|
|
|
|
case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
|
|
while (1)
|
|
{
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
if (!field1) break;
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
|
|
rrr = 7;
|
|
i = reg[RRR];
|
|
j = XINT (ccl_prog[ic]);
|
|
op = field1 >> 6;
|
|
ic++;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
while (1)
|
|
{
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
if (!field1) break;
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
|
|
rrr = 7;
|
|
i = reg[RRR];
|
|
j = reg[Rrr];
|
|
op = field1 >> 6;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */
|
|
{
|
|
Lisp_Object slot;
|
|
|
|
if (stack_idx >= 256
|
|
|| field1 < 0
|
|
|| field1 >= XVECTOR (Vccl_program_table)->size
|
|
|| (slot = XVECTOR (Vccl_program_table)->contents[field1],
|
|
!CONSP (slot))
|
|
|| !VECTORP (XCONS (slot)->cdr))
|
|
{
|
|
if (stack_idx > 0)
|
|
{
|
|
ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
|
|
ic = ccl_prog_stack_struct[0].ic;
|
|
}
|
|
CCL_INVALID_CMD;
|
|
}
|
|
|
|
ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
|
|
ccl_prog_stack_struct[stack_idx].ic = ic;
|
|
stack_idx++;
|
|
ccl_prog = XVECTOR (XCONS (slot)->cdr)->contents;
|
|
ic = CCL_HEADER_MAIN;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
if (!rrr)
|
|
CCL_WRITE_CHAR (field1);
|
|
else
|
|
{
|
|
CCL_WRITE_STRING (field1);
|
|
ic += (field1 + 2) / 3;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
i = reg[rrr];
|
|
if ((unsigned int) i < field1)
|
|
{
|
|
j = XINT (ccl_prog[ic + i]);
|
|
CCL_WRITE_CHAR (j);
|
|
}
|
|
ic += field1;
|
|
break;
|
|
|
|
case CCL_End: /* 0000000000000000000000XXXXX */
|
|
if (stack_idx-- > 0)
|
|
{
|
|
ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
|
|
ic = ccl_prog_stack_struct[stack_idx].ic;
|
|
break;
|
|
}
|
|
CCL_SUCCESS;
|
|
|
|
case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
op = field1 >> 6;
|
|
goto ccl_expr_self;
|
|
|
|
case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
op = field1 >> 6;
|
|
|
|
ccl_expr_self:
|
|
switch (op)
|
|
{
|
|
case CCL_PLUS: reg[rrr] += i; break;
|
|
case CCL_MINUS: reg[rrr] -= i; break;
|
|
case CCL_MUL: reg[rrr] *= i; break;
|
|
case CCL_DIV: reg[rrr] /= i; break;
|
|
case CCL_MOD: reg[rrr] %= i; break;
|
|
case CCL_AND: reg[rrr] &= i; break;
|
|
case CCL_OR: reg[rrr] |= i; break;
|
|
case CCL_XOR: reg[rrr] ^= i; break;
|
|
case CCL_LSH: reg[rrr] <<= i; break;
|
|
case CCL_RSH: reg[rrr] >>= i; break;
|
|
case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
|
|
case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
|
|
case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
|
|
case CCL_LS: reg[rrr] = reg[rrr] < i; break;
|
|
case CCL_GT: reg[rrr] = reg[rrr] > i; break;
|
|
case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
|
|
case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
|
|
case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
|
|
case CCL_NE: reg[rrr] = reg[rrr] != i; break;
|
|
default: CCL_INVALID_CMD;
|
|
}
|
|
break;
|
|
|
|
case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = XINT (ccl_prog[ic]);
|
|
op = field1 >> 6;
|
|
jump_address = ++ic;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = reg[Rrr];
|
|
op = field1 >> 6;
|
|
jump_address = ic;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
op = XINT (ccl_prog[ic]);
|
|
jump_address = ic++ + ADDR;
|
|
j = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
rrr = 7;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
case CCL_JumpCondExprReg:
|
|
i = reg[rrr];
|
|
op = XINT (ccl_prog[ic]);
|
|
jump_address = ic++ + ADDR;
|
|
j = reg[XINT (ccl_prog[ic])];
|
|
ic++;
|
|
rrr = 7;
|
|
|
|
ccl_set_expr:
|
|
switch (op)
|
|
{
|
|
case CCL_PLUS: reg[rrr] = i + j; break;
|
|
case CCL_MINUS: reg[rrr] = i - j; break;
|
|
case CCL_MUL: reg[rrr] = i * j; break;
|
|
case CCL_DIV: reg[rrr] = i / j; break;
|
|
case CCL_MOD: reg[rrr] = i % j; break;
|
|
case CCL_AND: reg[rrr] = i & j; break;
|
|
case CCL_OR: reg[rrr] = i | j; break;
|
|
case CCL_XOR: reg[rrr] = i ^ j;; break;
|
|
case CCL_LSH: reg[rrr] = i << j; break;
|
|
case CCL_RSH: reg[rrr] = i >> j; break;
|
|
case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
|
|
case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
|
|
case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
|
|
case CCL_LS: reg[rrr] = i < j; break;
|
|
case CCL_GT: reg[rrr] = i > j; break;
|
|
case CCL_EQ: reg[rrr] = i == j; break;
|
|
case CCL_LE: reg[rrr] = i <= j; break;
|
|
case CCL_GE: reg[rrr] = i >= j; break;
|
|
case CCL_NE: reg[rrr] = i != j; break;
|
|
case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
default: CCL_INVALID_CMD;
|
|
}
|
|
code &= 0x1F;
|
|
if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
|
|
{
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
}
|
|
else if (!reg[rrr])
|
|
ic = jump_address;
|
|
break;
|
|
|
|
case CCL_Extention:
|
|
switch (EXCMD)
|
|
{
|
|
case CCL_ReadMultibyteCharacter:
|
|
if (!src)
|
|
CCL_INVALID_CMD;
|
|
do {
|
|
if (src >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
|
|
i = *src++;
|
|
if (i == LEADING_CODE_COMPOSITION)
|
|
{
|
|
if (src >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
if (*src == 0xFF)
|
|
{
|
|
ccl->private_state = COMPOSING_WITH_RULE_HEAD;
|
|
src++;
|
|
}
|
|
else
|
|
ccl->private_state = COMPOSING_NO_RULE_HEAD;
|
|
}
|
|
if (ccl->private_state != 0)
|
|
{
|
|
/* composite character */
|
|
if (*src < 0xA0)
|
|
ccl->private_state = 0;
|
|
else
|
|
{
|
|
if (i == 0xA0)
|
|
{
|
|
if (src >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
i = *src++ & 0x7F;
|
|
}
|
|
else
|
|
i -= 0x20;
|
|
|
|
if (COMPOSING_WITH_RULE_RULE == ccl->private_state)
|
|
{
|
|
ccl->private_state = COMPOSING_WITH_RULE_HEAD;
|
|
continue;
|
|
}
|
|
else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state)
|
|
ccl->private_state = COMPOSING_WITH_RULE_RULE;
|
|
}
|
|
}
|
|
if (i < 0x80)
|
|
{
|
|
/* ASCII */
|
|
reg[rrr] = i;
|
|
reg[RRR] = CHARSET_ASCII;
|
|
}
|
|
else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION1)
|
|
{
|
|
if (src >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = i;
|
|
reg[rrr] = (*src++ & 0x7F);
|
|
}
|
|
else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
|
|
{
|
|
if ((src + 1) >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = i;
|
|
i = (*src++ & 0x7F);
|
|
reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
src++;
|
|
}
|
|
else if ((i == LEADING_CODE_PRIVATE_11) ||
|
|
(i == LEADING_CODE_PRIVATE_12))
|
|
{
|
|
if ((src + 1) >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = *src++;
|
|
reg[rrr] = (*src++ & 0x7F);
|
|
}
|
|
else if ((i == LEADING_CODE_PRIVATE_21) ||
|
|
(i == LEADING_CODE_PRIVATE_22))
|
|
{
|
|
if ((src + 2) >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = *src++;
|
|
i = (*src++ & 0x7F);
|
|
reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
src++;
|
|
}
|
|
else
|
|
{
|
|
/* INVALID CODE
|
|
Returned charset is -1.*/
|
|
reg[RRR] = -1;
|
|
}
|
|
} while (0);
|
|
break;
|
|
|
|
ccl_read_multibyte_character_suspend:
|
|
src--;
|
|
if (ccl->last_block)
|
|
{
|
|
ic = ccl->eof_ic;
|
|
goto ccl_finish;
|
|
}
|
|
else
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
|
|
|
|
break;
|
|
|
|
case CCL_WriteMultibyteCharacter:
|
|
i = reg[RRR]; /* charset */
|
|
if (i == CHARSET_ASCII)
|
|
i = reg[rrr] & 0x7F;
|
|
else if (i == CHARSET_COMPOSITION)
|
|
i = MAKE_COMPOSITE_CHAR (reg[rrr]);
|
|
else if (CHARSET_DIMENSION (i) == 1)
|
|
i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
|
|
i = ((i - 0x8F) << 14) | reg[rrr];
|
|
else
|
|
i = ((i - 0xE0) << 14) | reg[rrr];
|
|
|
|
CCL_WRITE_CHAR (i);
|
|
|
|
break;
|
|
|
|
case CCL_UnifyCharacter:
|
|
i = reg[RRR]; /* charset */
|
|
if (i == CHARSET_ASCII)
|
|
i = reg[rrr] & 0x7F;
|
|
else if (i == CHARSET_COMPOSITION)
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
else if (CHARSET_DIMENSION (i) == 1)
|
|
i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
|
|
i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
|
|
else
|
|
i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
|
|
|
|
op = unify_char (UNIFICATION_ID_TABLE (reg[Rrr]), i, -1, 0, 0);
|
|
SPLIT_CHAR (op, reg[RRR], i, j);
|
|
if (j != -1)
|
|
i = (i << 7) | j;
|
|
|
|
reg[rrr] = i;
|
|
break;
|
|
|
|
case CCL_UnifyCharacterConstTbl:
|
|
op = XINT (ccl_prog[ic]); /* table */
|
|
ic++;
|
|
i = reg[RRR]; /* charset */
|
|
if (i == CHARSET_ASCII)
|
|
i = reg[rrr] & 0x7F;
|
|
else if (i == CHARSET_COMPOSITION)
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
else if (CHARSET_DIMENSION (i) == 1)
|
|
i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
|
|
i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
|
|
else
|
|
i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
|
|
|
|
op = unify_char (UNIFICATION_ID_TABLE (op), i, -1, 0, 0);
|
|
SPLIT_CHAR (op, reg[RRR], i, j);
|
|
if (j != -1)
|
|
i = (i << 7) | j;
|
|
|
|
reg[rrr] = i;
|
|
break;
|
|
|
|
case CCL_IterateMultipleMap:
|
|
{
|
|
Lisp_Object table, content, attrib, value;
|
|
int point, size, fin_ic;
|
|
|
|
j = XINT (ccl_prog[ic++]); /* number of tables. */
|
|
fin_ic = ic + j;
|
|
op = reg[rrr];
|
|
if ((j > reg[RRR]) && (j >= 0))
|
|
{
|
|
ic += reg[RRR];
|
|
i = reg[RRR];
|
|
}
|
|
else
|
|
{
|
|
reg[RRR] = -1;
|
|
ic = fin_ic;
|
|
break;
|
|
}
|
|
|
|
for (;i < j;i++)
|
|
{
|
|
|
|
size = XVECTOR (Vccl_translation_table_vector)->size;
|
|
point = ccl_prog[ic++];
|
|
if (point >= size) continue;
|
|
table = XVECTOR (Vccl_translation_table_vector)->
|
|
contents[point];
|
|
if (!CONSP (table)) continue;
|
|
table = XCONS(table)->cdr;
|
|
if (!VECTORP (table)) continue;
|
|
size = XVECTOR (table)->size;
|
|
if (size <= 1) continue;
|
|
point = XUINT (XVECTOR (table)->contents[0]);
|
|
point = op - point + 1;
|
|
if (!((point >= 1) && (point < size))) continue;
|
|
content = XVECTOR (table)->contents[point];
|
|
|
|
if (NILP (content))
|
|
continue;
|
|
else if (NUMBERP (content))
|
|
{
|
|
reg[RRR] = i;
|
|
reg[rrr] = XUINT(content);
|
|
break;
|
|
}
|
|
else if (EQ (content, Qt) || EQ (content, Qlambda))
|
|
{
|
|
reg[RRR] = i;
|
|
break;
|
|
}
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCONS (content)->car;
|
|
value = XCONS (content)->cdr;
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
reg[RRR] = i;
|
|
reg[rrr] = XUINT(value);
|
|
break;
|
|
}
|
|
}
|
|
if (i == j)
|
|
reg[RRR] = -1;
|
|
ic = fin_ic;
|
|
}
|
|
break;
|
|
|
|
case CCL_TranslateMultipleMap:
|
|
{
|
|
Lisp_Object table, content, attrib, value;
|
|
int point, size, table_vector_size;
|
|
int skip_to_next, fin_ic;
|
|
|
|
j = XINT (ccl_prog[ic++]); /* number of tables and separators. */
|
|
fin_ic = ic + j;
|
|
if ((j > reg[RRR]) && (j >= 0))
|
|
{
|
|
ic += reg[RRR];
|
|
i = reg[RRR];
|
|
}
|
|
else
|
|
{
|
|
ic = fin_ic;
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
op = reg[rrr];
|
|
reg[RRR] = -1;
|
|
skip_to_next = 0;
|
|
table_vector_size = XVECTOR (Vccl_translation_table_vector)->size;
|
|
for (;i < j;i++)
|
|
{
|
|
point = ccl_prog[ic++];
|
|
if (XINT(point) == -1)
|
|
{
|
|
skip_to_next = 0;
|
|
continue;
|
|
}
|
|
if (skip_to_next) continue;
|
|
if (point >= table_vector_size) continue;
|
|
table = XVECTOR (Vccl_translation_table_vector)->
|
|
contents[point];
|
|
if (!CONSP (table)) continue;
|
|
table = XCONS (table)->cdr;
|
|
if (!VECTORP (table)) continue;
|
|
size = XVECTOR (table)->size;
|
|
if (size <= 1) continue;
|
|
point = XUINT (XVECTOR (table)->contents[0]);
|
|
point = op - point + 1;
|
|
if (!((point >= 1) && (point < size))) continue;
|
|
content = XVECTOR (table)->contents[point];
|
|
|
|
if (NILP (content))
|
|
continue;
|
|
else if (NUMBERP (content))
|
|
{
|
|
op = XUINT (content);
|
|
reg[RRR] = i;
|
|
skip_to_next = 1;
|
|
}
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCONS (content)->car;
|
|
value = XCONS (content)->cdr;
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
reg[RRR] = i;
|
|
op = XUINT (value);
|
|
|
|
}
|
|
else if (EQ (content, Qt))
|
|
{
|
|
reg[RRR] = i;
|
|
op = reg[rrr];
|
|
skip_to_next = 1;
|
|
}
|
|
else if (EQ (content, Qlambda))
|
|
break;
|
|
}
|
|
ic = fin_ic;
|
|
}
|
|
reg[rrr] = op;
|
|
break;
|
|
|
|
case CCL_TranslateSingleMap:
|
|
{
|
|
Lisp_Object table, attrib, value, content;
|
|
int size, point;
|
|
j = XINT (ccl_prog[ic++]); /* table_id */
|
|
op = reg[rrr];
|
|
if (j >= XVECTOR (Vccl_translation_table_vector)->size)
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
table = XVECTOR (Vccl_translation_table_vector)->
|
|
contents[j];
|
|
if (!CONSP (table))
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
table = XCONS(table)->cdr;
|
|
if (!VECTORP (table))
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
size = XVECTOR (table)->size;
|
|
point = XUINT (XVECTOR (table)->contents[0]);
|
|
point = op - point + 1;
|
|
reg[RRR] = 0;
|
|
if ((size <= 1) ||
|
|
(!((point >= 1) && (point < size))))
|
|
reg[RRR] = -1;
|
|
else
|
|
{
|
|
content = XVECTOR (table)->contents[point];
|
|
if (NILP (content))
|
|
reg[RRR] = -1;
|
|
else if (NUMBERP (content))
|
|
reg[rrr] = XUINT (content);
|
|
else if (EQ (content, Qt))
|
|
reg[RRR] = i;
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCONS (content)->car;
|
|
value = XCONS (content)->cdr;
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
reg[rrr] = XUINT(value);
|
|
break;
|
|
}
|
|
else
|
|
reg[RRR] = -1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CCL_INVALID_CMD;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CCL_INVALID_CMD;
|
|
}
|
|
}
|
|
|
|
ccl_error_handler:
|
|
if (destination)
|
|
{
|
|
/* We can insert an error message only if DESTINATION is
|
|
specified and we still have a room to store the message
|
|
there. */
|
|
char msg[256];
|
|
int msglen;
|
|
|
|
switch (ccl->status)
|
|
{
|
|
case CCL_STAT_INVALID_CMD:
|
|
sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
|
|
code & 0x1F, code, ic);
|
|
#ifdef CCL_DEBUG
|
|
{
|
|
int i = ccl_backtrace_idx - 1;
|
|
int j;
|
|
|
|
msglen = strlen (msg);
|
|
if (dst + msglen <= (dst_bytes ? dst_end : src))
|
|
{
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
|
|
for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
|
|
{
|
|
if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
|
|
if (ccl_backtrace_table[i] == 0)
|
|
break;
|
|
sprintf(msg, " %d", ccl_backtrace_table[i]);
|
|
msglen = strlen (msg);
|
|
if (dst + msglen > (dst_bytes ? dst_end : src))
|
|
break;
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
}
|
|
#endif
|
|
goto ccl_finish;
|
|
|
|
case CCL_STAT_QUIT:
|
|
sprintf(msg, "\nCCL: Quited.");
|
|
break;
|
|
|
|
default:
|
|
sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
|
|
}
|
|
|
|
msglen = strlen (msg);
|
|
if (dst + msglen <= (dst_bytes ? dst_end : src))
|
|
{
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
}
|
|
|
|
ccl_finish:
|
|
ccl->ic = ic;
|
|
if (consumed) *consumed = src - source;
|
|
return dst - destination;
|
|
}
|
|
|
|
/* Setup fields of the structure pointed by CCL appropriately for the
|
|
execution of compiled CCL code in VEC (vector of integer). */
|
|
void
|
|
setup_ccl_program (ccl, vec)
|
|
struct ccl_program *ccl;
|
|
Lisp_Object vec;
|
|
{
|
|
int i;
|
|
|
|
ccl->size = XVECTOR (vec)->size;
|
|
ccl->prog = XVECTOR (vec)->contents;
|
|
ccl->ic = CCL_HEADER_MAIN;
|
|
ccl->eof_ic = XINT (XVECTOR (vec)->contents[CCL_HEADER_EOF]);
|
|
ccl->buf_magnification = XINT (XVECTOR (vec)->contents[CCL_HEADER_BUF_MAG]);
|
|
for (i = 0; i < 8; i++)
|
|
ccl->reg[i] = 0;
|
|
ccl->last_block = 0;
|
|
ccl->private_state = 0;
|
|
ccl->status = 0;
|
|
}
|
|
|
|
#ifdef emacs
|
|
|
|
DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
|
|
"Execute CCL-PROGRAM with registers initialized by REGISTERS.\n\
|
|
CCL-PROGRAM is a compiled code generated by `ccl-compile',\n\
|
|
no I/O commands should appear in the CCL program.\n\
|
|
REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value\n\
|
|
of Nth register.\n\
|
|
As side effect, each element of REGISTER holds the value of\n\
|
|
corresponding register after the execution.")
|
|
(ccl_prog, reg)
|
|
Lisp_Object ccl_prog, reg;
|
|
{
|
|
struct ccl_program ccl;
|
|
int i;
|
|
|
|
CHECK_VECTOR (ccl_prog, 0);
|
|
CHECK_VECTOR (reg, 1);
|
|
if (XVECTOR (reg)->size != 8)
|
|
error ("Invalid length of vector REGISTERS");
|
|
|
|
setup_ccl_program (&ccl, ccl_prog);
|
|
for (i = 0; i < 8; i++)
|
|
ccl.reg[i] = (INTEGERP (XVECTOR (reg)->contents[i])
|
|
? XINT (XVECTOR (reg)->contents[i])
|
|
: 0);
|
|
|
|
ccl_driver (&ccl, (char *)0, (char *)0, 0, 0, (int *)0);
|
|
QUIT;
|
|
if (ccl.status != CCL_STAT_SUCCESS)
|
|
error ("Error in CCL program at %dth code", ccl.ic);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
|
|
return Qnil;
|
|
}
|
|
|
|
DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
|
|
3, 4, 0,
|
|
"Execute CCL-PROGRAM with initial STATUS on STRING.\n\
|
|
CCL-PROGRAM is a compiled code generated by `ccl-compile'.\n\
|
|
Read buffer is set to STRING, and write buffer is allocated automatically.\n\
|
|
STATUS is a vector of [R0 R1 ... R7 IC], where\n\
|
|
R0..R7 are initial values of corresponding registers,\n\
|
|
IC is the instruction counter specifying from where to start the program.\n\
|
|
If R0..R7 are nil, they are initialized to 0.\n\
|
|
If IC is nil, it is initialized to head of the CCL program.\n\
|
|
Returns the contents of write buffer as a string,\n\
|
|
and as side effect, STATUS is updated.\n\
|
|
If optional 4th arg CONTINUE is non-nil, keep IC on read operation\n\
|
|
when read buffer is exausted, else, IC is always set to the end of\n\
|
|
CCL-PROGRAM on exit.")
|
|
(ccl_prog, status, str, contin)
|
|
Lisp_Object ccl_prog, status, str, contin;
|
|
{
|
|
Lisp_Object val;
|
|
struct ccl_program ccl;
|
|
int i, produced;
|
|
int outbufsize;
|
|
char *outbuf;
|
|
struct gcpro gcpro1, gcpro2, gcpro3;
|
|
|
|
CHECK_VECTOR (ccl_prog, 0);
|
|
CHECK_VECTOR (status, 1);
|
|
if (XVECTOR (status)->size != 9)
|
|
error ("Invalid length of vector STATUS");
|
|
CHECK_STRING (str, 2);
|
|
GCPRO3 (ccl_prog, status, str);
|
|
|
|
setup_ccl_program (&ccl, ccl_prog);
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
if (NILP (XVECTOR (status)->contents[i]))
|
|
XSETINT (XVECTOR (status)->contents[i], 0);
|
|
if (INTEGERP (XVECTOR (status)->contents[i]))
|
|
ccl.reg[i] = XINT (XVECTOR (status)->contents[i]);
|
|
}
|
|
if (INTEGERP (XVECTOR (status)->contents[i]))
|
|
{
|
|
i = XFASTINT (XVECTOR (status)->contents[8]);
|
|
if (ccl.ic < i && i < ccl.size)
|
|
ccl.ic = i;
|
|
}
|
|
outbufsize = XSTRING (str)->size_byte * ccl.buf_magnification + 256;
|
|
outbuf = (char *) xmalloc (outbufsize);
|
|
if (!outbuf)
|
|
error ("Not enough memory");
|
|
ccl.last_block = NILP (contin);
|
|
produced = ccl_driver (&ccl, XSTRING (str)->data, outbuf,
|
|
XSTRING (str)->size_byte, outbufsize, (int *)0);
|
|
for (i = 0; i < 8; i++)
|
|
XSET (XVECTOR (status)->contents[i], Lisp_Int, ccl.reg[i]);
|
|
XSETINT (XVECTOR (status)->contents[8], ccl.ic);
|
|
UNGCPRO;
|
|
|
|
val = make_string (outbuf, produced);
|
|
free (outbuf);
|
|
QUIT;
|
|
if (ccl.status != CCL_STAT_SUCCESS
|
|
&& ccl.status != CCL_STAT_SUSPEND_BY_SRC
|
|
&& ccl.status != CCL_STAT_SUSPEND_BY_DST)
|
|
error ("Error in CCL program at %dth code", ccl.ic);
|
|
|
|
return val;
|
|
}
|
|
|
|
DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
|
|
2, 2, 0,
|
|
"Register CCL program PROGRAM of NAME in `ccl-program-table'.\n\
|
|
PROGRAM should be a compiled code of CCL program, or nil.\n\
|
|
Return index number of the registered CCL program.")
|
|
(name, ccl_prog)
|
|
Lisp_Object name, ccl_prog;
|
|
{
|
|
int len = XVECTOR (Vccl_program_table)->size;
|
|
int i;
|
|
|
|
CHECK_SYMBOL (name, 0);
|
|
if (!NILP (ccl_prog))
|
|
CHECK_VECTOR (ccl_prog, 1);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
Lisp_Object slot = XVECTOR (Vccl_program_table)->contents[i];
|
|
|
|
if (!CONSP (slot))
|
|
break;
|
|
|
|
if (EQ (name, XCONS (slot)->car))
|
|
{
|
|
XCONS (slot)->cdr = ccl_prog;
|
|
return make_number (i);
|
|
}
|
|
}
|
|
|
|
if (i == len)
|
|
{
|
|
Lisp_Object new_table = Fmake_vector (make_number (len * 2), Qnil);
|
|
int j;
|
|
|
|
for (j = 0; j < len; j++)
|
|
XVECTOR (new_table)->contents[j]
|
|
= XVECTOR (Vccl_program_table)->contents[j];
|
|
Vccl_program_table = new_table;
|
|
}
|
|
|
|
XVECTOR (Vccl_program_table)->contents[i] = Fcons (name, ccl_prog);
|
|
return make_number (i);
|
|
}
|
|
|
|
/* register CCL translation table.
|
|
CCL translation table consists of numbers and Qt and Qnil and Qlambda.
|
|
The first element is start code point.
|
|
The rest elements are translated numbers.
|
|
Qt shows that an original number before translation.
|
|
Qnil shows that an empty element.
|
|
Qlambda makes translation stopped.
|
|
*/
|
|
|
|
DEFUN ("register-ccl-translation-table", Fregister_ccl_translation_table,
|
|
Sregister_ccl_translation_table,
|
|
2, 2, 0,
|
|
"Register CCL translation table.\n\
|
|
TABLE should be a vector. SYMBOL is used for pointing the translation table out.\n\
|
|
Return index number of the registered translation table.")
|
|
(symbol, table)
|
|
Lisp_Object symbol, table;
|
|
{
|
|
int len = XVECTOR (Vccl_translation_table_vector)->size;
|
|
int i;
|
|
Lisp_Object index;
|
|
|
|
CHECK_SYMBOL (symbol, 0);
|
|
CHECK_VECTOR (table, 1);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
Lisp_Object slot = XVECTOR (Vccl_translation_table_vector)->contents[i];
|
|
|
|
if (!CONSP (slot))
|
|
break;
|
|
|
|
if (EQ (symbol, XCONS (slot)->car))
|
|
{
|
|
index = make_number (i);
|
|
XCONS (slot)->cdr = table;
|
|
Fput (symbol, Qccl_translation_table, table);
|
|
Fput (symbol, Qccl_translation_table_id, index);
|
|
return index;
|
|
}
|
|
}
|
|
|
|
if (i == len)
|
|
{
|
|
Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
|
|
int j;
|
|
|
|
for (j = 0; j < len; j++)
|
|
XVECTOR (new_vector)->contents[j]
|
|
= XVECTOR (Vccl_translation_table_vector)->contents[j];
|
|
Vccl_translation_table_vector = new_vector;
|
|
}
|
|
|
|
index = make_number (i);
|
|
Fput (symbol, Qccl_translation_table, table);
|
|
Fput (symbol, Qccl_translation_table_id, index);
|
|
XVECTOR (Vccl_translation_table_vector)->contents[i] = Fcons (symbol, table);
|
|
return index;
|
|
}
|
|
|
|
|
|
syms_of_ccl ()
|
|
{
|
|
staticpro (&Vccl_program_table);
|
|
Vccl_program_table = Fmake_vector (make_number (32), Qnil);
|
|
|
|
Qccl_program = intern("ccl-program");
|
|
staticpro(&Qccl_program);
|
|
|
|
Qccl_translation_table = intern ("ccl-translation-table");
|
|
staticpro (&Qccl_translation_table);
|
|
|
|
Qccl_translation_table_id = intern ("ccl-translation-table-id");
|
|
staticpro (&Qccl_translation_table_id);
|
|
|
|
DEFVAR_LISP ("ccl-translation-table-vector", &Vccl_translation_table_vector,
|
|
"Where is stored translation tables for CCL program.\n\
|
|
Because CCL program can't access these tables except by the index of the vector.");
|
|
Vccl_translation_table_vector = Fmake_vector (XFASTINT (16), Qnil);
|
|
|
|
DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
|
|
"Alist of fontname patterns vs corresponding CCL program.\n\
|
|
Each element looks like (REGEXP . CCL-CODE),\n\
|
|
where CCL-CODE is a compiled CCL program.\n\
|
|
When a font whose name matches REGEXP is used for displaying a character,\n\
|
|
CCL-CODE is executed to calculate the code point in the font\n\
|
|
from the charset number and position code(s) of the character which are set\n\
|
|
in CCL registers R0, R1, and R2 before the execution.\n\
|
|
The code point in the font is set in CCL registers R1 and R2\n\
|
|
when the execution terminated.\n\
|
|
If the font is single-byte font, the register R2 is not used.");
|
|
Vfont_ccl_encoder_alist = Qnil;
|
|
|
|
defsubr (&Sccl_execute);
|
|
defsubr (&Sccl_execute_on_string);
|
|
defsubr (&Sregister_ccl_program);
|
|
defsubr (&Sregister_ccl_translation_table);
|
|
}
|
|
|
|
#endif /* emacs */
|