mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-24 06:20:43 -08:00
* src/alloc.c (xfree): Return right away for a NULL arg. * src/lread.c (nosuffix): Remove now-useless if-before-xfree tests. * src/gtkutil.c (xg_gtk_scroll_destroy): Likewise. * src/mac.c (create_apple_event_from_event_ref): Likewise. (create_apple_event_from_drag_ref, cfstring_create_normalized): Likewise. * src/doprnt.c (doprnt1): Likewise. * src/frame.c (frame): Likewise. * src/keyboard.c (wipe_kboard): Likewise. * src/macterm.c (x_free_frame_resources, xlfdpat_destroy, XFreePixmap): (init_font_name_table, mac_unload_font, x_delete_display): Likewise. * src/term.c (tty_default_color_capabilities, maybe_fatal) (delete_tty): Likewise. * src/w16select.c (string): Likewise. * src/w32.c (w32_get_resource, SET_ENV_BUF_SIZE): Likewise. * src/w32bdf.c (w32_free_bdf_font): Likewise. * src/w32fns.c (w32_unload_font): Likewise. * src/w32font.c (w32font_close): Likewise. * src/window.c (size_window): Likewise. * src/xselect.c (receive_incremental_selection): Likewise. * src/xterm.c (x_free_frame_resources, x_delete_display): Likewise. * src/mactoolbox.c (create_apple_event_from_drag_ref): Likewise. * src/w32.c (stat): Likewise.
6397 lines
162 KiB
C
6397 lines
162 KiB
C
/* Storage allocation and gc for GNU Emacs Lisp interpreter.
|
||
Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <limits.h> /* For CHAR_BIT. */
|
||
|
||
#ifdef STDC_HEADERS
|
||
#include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
|
||
#endif
|
||
|
||
#ifdef ALLOC_DEBUG
|
||
#undef INLINE
|
||
#endif
|
||
|
||
/* Note that this declares bzero on OSF/1. How dumb. */
|
||
|
||
#include <signal.h>
|
||
|
||
#ifdef HAVE_GTK_AND_PTHREAD
|
||
#include <pthread.h>
|
||
#endif
|
||
|
||
/* This file is part of the core Lisp implementation, and thus must
|
||
deal with the real data structures. If the Lisp implementation is
|
||
replaced, this file likely will not be used. */
|
||
|
||
#undef HIDE_LISP_IMPLEMENTATION
|
||
#include "lisp.h"
|
||
#include "process.h"
|
||
#include "intervals.h"
|
||
#include "puresize.h"
|
||
#include "buffer.h"
|
||
#include "window.h"
|
||
#include "keyboard.h"
|
||
#include "frame.h"
|
||
#include "blockinput.h"
|
||
#include "character.h"
|
||
#include "syssignal.h"
|
||
#include "termhooks.h" /* For struct terminal. */
|
||
#include <setjmp.h>
|
||
|
||
/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
|
||
memory. Can do this only if using gmalloc.c. */
|
||
|
||
#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
|
||
#undef GC_MALLOC_CHECK
|
||
#endif
|
||
|
||
#ifdef HAVE_UNISTD_H
|
||
#include <unistd.h>
|
||
#else
|
||
extern POINTER_TYPE *sbrk ();
|
||
#endif
|
||
|
||
#ifdef HAVE_FCNTL_H
|
||
#define INCLUDED_FCNTL
|
||
#include <fcntl.h>
|
||
#endif
|
||
#ifndef O_WRONLY
|
||
#define O_WRONLY 1
|
||
#endif
|
||
|
||
#ifdef WINDOWSNT
|
||
#include <fcntl.h>
|
||
#include "w32.h"
|
||
#endif
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
|
||
#include <malloc.h>
|
||
/* malloc.h #defines this as size_t, at least in glibc2. */
|
||
#ifndef __malloc_size_t
|
||
#define __malloc_size_t int
|
||
#endif
|
||
|
||
/* Specify maximum number of areas to mmap. It would be nice to use a
|
||
value that explicitly means "no limit". */
|
||
|
||
#define MMAP_MAX_AREAS 100000000
|
||
|
||
#else /* not DOUG_LEA_MALLOC */
|
||
|
||
/* The following come from gmalloc.c. */
|
||
|
||
#define __malloc_size_t size_t
|
||
extern __malloc_size_t _bytes_used;
|
||
extern __malloc_size_t __malloc_extra_blocks;
|
||
|
||
#endif /* not DOUG_LEA_MALLOC */
|
||
|
||
#if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
|
||
|
||
/* When GTK uses the file chooser dialog, different backends can be loaded
|
||
dynamically. One such a backend is the Gnome VFS backend that gets loaded
|
||
if you run Gnome. That backend creates several threads and also allocates
|
||
memory with malloc.
|
||
|
||
If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
|
||
functions below are called from malloc, there is a chance that one
|
||
of these threads preempts the Emacs main thread and the hook variables
|
||
end up in an inconsistent state. So we have a mutex to prevent that (note
|
||
that the backend handles concurrent access to malloc within its own threads
|
||
but Emacs code running in the main thread is not included in that control).
|
||
|
||
When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
|
||
happens in one of the backend threads we will have two threads that tries
|
||
to run Emacs code at once, and the code is not prepared for that.
|
||
To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
|
||
|
||
static pthread_mutex_t alloc_mutex;
|
||
|
||
#define BLOCK_INPUT_ALLOC \
|
||
do \
|
||
{ \
|
||
if (pthread_equal (pthread_self (), main_thread)) \
|
||
BLOCK_INPUT; \
|
||
pthread_mutex_lock (&alloc_mutex); \
|
||
} \
|
||
while (0)
|
||
#define UNBLOCK_INPUT_ALLOC \
|
||
do \
|
||
{ \
|
||
pthread_mutex_unlock (&alloc_mutex); \
|
||
if (pthread_equal (pthread_self (), main_thread)) \
|
||
UNBLOCK_INPUT; \
|
||
} \
|
||
while (0)
|
||
|
||
#else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
|
||
|
||
#define BLOCK_INPUT_ALLOC BLOCK_INPUT
|
||
#define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
|
||
|
||
#endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
|
||
|
||
/* Value of _bytes_used, when spare_memory was freed. */
|
||
|
||
static __malloc_size_t bytes_used_when_full;
|
||
|
||
static __malloc_size_t bytes_used_when_reconsidered;
|
||
|
||
/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
|
||
to a struct Lisp_String. */
|
||
|
||
#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
|
||
#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
|
||
#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
|
||
|
||
#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
|
||
#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
|
||
#define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
|
||
|
||
/* Value is the number of bytes/chars of S, a pointer to a struct
|
||
Lisp_String. This must be used instead of STRING_BYTES (S) or
|
||
S->size during GC, because S->size contains the mark bit for
|
||
strings. */
|
||
|
||
#define GC_STRING_BYTES(S) (STRING_BYTES (S))
|
||
#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
|
||
|
||
/* Number of bytes of consing done since the last gc. */
|
||
|
||
int consing_since_gc;
|
||
|
||
/* Count the amount of consing of various sorts of space. */
|
||
|
||
EMACS_INT cons_cells_consed;
|
||
EMACS_INT floats_consed;
|
||
EMACS_INT vector_cells_consed;
|
||
EMACS_INT symbols_consed;
|
||
EMACS_INT string_chars_consed;
|
||
EMACS_INT misc_objects_consed;
|
||
EMACS_INT intervals_consed;
|
||
EMACS_INT strings_consed;
|
||
|
||
/* Minimum number of bytes of consing since GC before next GC. */
|
||
|
||
EMACS_INT gc_cons_threshold;
|
||
|
||
/* Similar minimum, computed from Vgc_cons_percentage. */
|
||
|
||
EMACS_INT gc_relative_threshold;
|
||
|
||
static Lisp_Object Vgc_cons_percentage;
|
||
|
||
/* Minimum number of bytes of consing since GC before next GC,
|
||
when memory is full. */
|
||
|
||
EMACS_INT memory_full_cons_threshold;
|
||
|
||
/* Nonzero during GC. */
|
||
|
||
int gc_in_progress;
|
||
|
||
/* Nonzero means abort if try to GC.
|
||
This is for code which is written on the assumption that
|
||
no GC will happen, so as to verify that assumption. */
|
||
|
||
int abort_on_gc;
|
||
|
||
/* Nonzero means display messages at beginning and end of GC. */
|
||
|
||
int garbage_collection_messages;
|
||
|
||
#ifndef VIRT_ADDR_VARIES
|
||
extern
|
||
#endif /* VIRT_ADDR_VARIES */
|
||
int malloc_sbrk_used;
|
||
|
||
#ifndef VIRT_ADDR_VARIES
|
||
extern
|
||
#endif /* VIRT_ADDR_VARIES */
|
||
int malloc_sbrk_unused;
|
||
|
||
/* Number of live and free conses etc. */
|
||
|
||
static int total_conses, total_markers, total_symbols, total_vector_size;
|
||
static int total_free_conses, total_free_markers, total_free_symbols;
|
||
static int total_free_floats, total_floats;
|
||
|
||
/* Points to memory space allocated as "spare", to be freed if we run
|
||
out of memory. We keep one large block, four cons-blocks, and
|
||
two string blocks. */
|
||
|
||
static char *spare_memory[7];
|
||
|
||
/* Amount of spare memory to keep in large reserve block. */
|
||
|
||
#define SPARE_MEMORY (1 << 14)
|
||
|
||
/* Number of extra blocks malloc should get when it needs more core. */
|
||
|
||
static int malloc_hysteresis;
|
||
|
||
/* Non-nil means defun should do purecopy on the function definition. */
|
||
|
||
Lisp_Object Vpurify_flag;
|
||
|
||
/* Non-nil means we are handling a memory-full error. */
|
||
|
||
Lisp_Object Vmemory_full;
|
||
|
||
#ifndef HAVE_SHM
|
||
|
||
/* Initialize it to a nonzero value to force it into data space
|
||
(rather than bss space). That way unexec will remap it into text
|
||
space (pure), on some systems. We have not implemented the
|
||
remapping on more recent systems because this is less important
|
||
nowadays than in the days of small memories and timesharing. */
|
||
|
||
EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
|
||
#define PUREBEG (char *) pure
|
||
|
||
#else /* HAVE_SHM */
|
||
|
||
#define pure PURE_SEG_BITS /* Use shared memory segment */
|
||
#define PUREBEG (char *)PURE_SEG_BITS
|
||
|
||
#endif /* HAVE_SHM */
|
||
|
||
/* Pointer to the pure area, and its size. */
|
||
|
||
static char *purebeg;
|
||
static size_t pure_size;
|
||
|
||
/* Number of bytes of pure storage used before pure storage overflowed.
|
||
If this is non-zero, this implies that an overflow occurred. */
|
||
|
||
static size_t pure_bytes_used_before_overflow;
|
||
|
||
/* Value is non-zero if P points into pure space. */
|
||
|
||
#define PURE_POINTER_P(P) \
|
||
(((PNTR_COMPARISON_TYPE) (P) \
|
||
< (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
|
||
&& ((PNTR_COMPARISON_TYPE) (P) \
|
||
>= (PNTR_COMPARISON_TYPE) purebeg))
|
||
|
||
/* Total number of bytes allocated in pure storage. */
|
||
|
||
EMACS_INT pure_bytes_used;
|
||
|
||
/* Index in pure at which next pure Lisp object will be allocated.. */
|
||
|
||
static EMACS_INT pure_bytes_used_lisp;
|
||
|
||
/* Number of bytes allocated for non-Lisp objects in pure storage. */
|
||
|
||
static EMACS_INT pure_bytes_used_non_lisp;
|
||
|
||
/* If nonzero, this is a warning delivered by malloc and not yet
|
||
displayed. */
|
||
|
||
char *pending_malloc_warning;
|
||
|
||
/* Pre-computed signal argument for use when memory is exhausted. */
|
||
|
||
Lisp_Object Vmemory_signal_data;
|
||
|
||
/* Maximum amount of C stack to save when a GC happens. */
|
||
|
||
#ifndef MAX_SAVE_STACK
|
||
#define MAX_SAVE_STACK 16000
|
||
#endif
|
||
|
||
/* Buffer in which we save a copy of the C stack at each GC. */
|
||
|
||
static char *stack_copy;
|
||
static int stack_copy_size;
|
||
|
||
/* Non-zero means ignore malloc warnings. Set during initialization.
|
||
Currently not used. */
|
||
|
||
static int ignore_warnings;
|
||
|
||
Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
|
||
|
||
/* Hook run after GC has finished. */
|
||
|
||
Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
||
|
||
Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
|
||
EMACS_INT gcs_done; /* accumulated GCs */
|
||
|
||
static void mark_buffer P_ ((Lisp_Object));
|
||
static void mark_terminals P_ ((void));
|
||
extern void mark_kboards P_ ((void));
|
||
extern void mark_ttys P_ ((void));
|
||
extern void mark_backtrace P_ ((void));
|
||
static void gc_sweep P_ ((void));
|
||
static void mark_glyph_matrix P_ ((struct glyph_matrix *));
|
||
static void mark_face_cache P_ ((struct face_cache *));
|
||
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
extern void mark_fringe_data P_ ((void));
|
||
#endif /* HAVE_WINDOW_SYSTEM */
|
||
|
||
static struct Lisp_String *allocate_string P_ ((void));
|
||
static void compact_small_strings P_ ((void));
|
||
static void free_large_strings P_ ((void));
|
||
static void sweep_strings P_ ((void));
|
||
|
||
extern int message_enable_multibyte;
|
||
|
||
/* When scanning the C stack for live Lisp objects, Emacs keeps track
|
||
of what memory allocated via lisp_malloc is intended for what
|
||
purpose. This enumeration specifies the type of memory. */
|
||
|
||
enum mem_type
|
||
{
|
||
MEM_TYPE_NON_LISP,
|
||
MEM_TYPE_BUFFER,
|
||
MEM_TYPE_CONS,
|
||
MEM_TYPE_STRING,
|
||
MEM_TYPE_MISC,
|
||
MEM_TYPE_SYMBOL,
|
||
MEM_TYPE_FLOAT,
|
||
/* We used to keep separate mem_types for subtypes of vectors such as
|
||
process, hash_table, frame, terminal, and window, but we never made
|
||
use of the distinction, so it only caused source-code complexity
|
||
and runtime slowdown. Minor but pointless. */
|
||
MEM_TYPE_VECTORLIKE
|
||
};
|
||
|
||
static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
|
||
static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
|
||
void refill_memory_reserve ();
|
||
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
#include <stdio.h> /* For fprintf. */
|
||
#endif
|
||
|
||
/* A unique object in pure space used to make some Lisp objects
|
||
on free lists recognizable in O(1). */
|
||
|
||
static Lisp_Object Vdead;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
|
||
enum mem_type allocated_mem_type;
|
||
static int dont_register_blocks;
|
||
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
/* A node in the red-black tree describing allocated memory containing
|
||
Lisp data. Each such block is recorded with its start and end
|
||
address when it is allocated, and removed from the tree when it
|
||
is freed.
|
||
|
||
A red-black tree is a balanced binary tree with the following
|
||
properties:
|
||
|
||
1. Every node is either red or black.
|
||
2. Every leaf is black.
|
||
3. If a node is red, then both of its children are black.
|
||
4. Every simple path from a node to a descendant leaf contains
|
||
the same number of black nodes.
|
||
5. The root is always black.
|
||
|
||
When nodes are inserted into the tree, or deleted from the tree,
|
||
the tree is "fixed" so that these properties are always true.
|
||
|
||
A red-black tree with N internal nodes has height at most 2
|
||
log(N+1). Searches, insertions and deletions are done in O(log N).
|
||
Please see a text book about data structures for a detailed
|
||
description of red-black trees. Any book worth its salt should
|
||
describe them. */
|
||
|
||
struct mem_node
|
||
{
|
||
/* Children of this node. These pointers are never NULL. When there
|
||
is no child, the value is MEM_NIL, which points to a dummy node. */
|
||
struct mem_node *left, *right;
|
||
|
||
/* The parent of this node. In the root node, this is NULL. */
|
||
struct mem_node *parent;
|
||
|
||
/* Start and end of allocated region. */
|
||
void *start, *end;
|
||
|
||
/* Node color. */
|
||
enum {MEM_BLACK, MEM_RED} color;
|
||
|
||
/* Memory type. */
|
||
enum mem_type type;
|
||
};
|
||
|
||
/* Base address of stack. Set in main. */
|
||
|
||
Lisp_Object *stack_base;
|
||
|
||
/* Root of the tree describing allocated Lisp memory. */
|
||
|
||
static struct mem_node *mem_root;
|
||
|
||
/* Lowest and highest known address in the heap. */
|
||
|
||
static void *min_heap_address, *max_heap_address;
|
||
|
||
/* Sentinel node of the tree. */
|
||
|
||
static struct mem_node mem_z;
|
||
#define MEM_NIL &mem_z
|
||
|
||
static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
|
||
static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
|
||
static void lisp_free P_ ((POINTER_TYPE *));
|
||
static void mark_stack P_ ((void));
|
||
static int live_vector_p P_ ((struct mem_node *, void *));
|
||
static int live_buffer_p P_ ((struct mem_node *, void *));
|
||
static int live_string_p P_ ((struct mem_node *, void *));
|
||
static int live_cons_p P_ ((struct mem_node *, void *));
|
||
static int live_symbol_p P_ ((struct mem_node *, void *));
|
||
static int live_float_p P_ ((struct mem_node *, void *));
|
||
static int live_misc_p P_ ((struct mem_node *, void *));
|
||
static void mark_maybe_object P_ ((Lisp_Object));
|
||
static void mark_memory P_ ((void *, void *, int));
|
||
static void mem_init P_ ((void));
|
||
static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
|
||
static void mem_insert_fixup P_ ((struct mem_node *));
|
||
static void mem_rotate_left P_ ((struct mem_node *));
|
||
static void mem_rotate_right P_ ((struct mem_node *));
|
||
static void mem_delete P_ ((struct mem_node *));
|
||
static void mem_delete_fixup P_ ((struct mem_node *));
|
||
static INLINE struct mem_node *mem_find P_ ((void *));
|
||
|
||
|
||
#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
|
||
static void check_gcpros P_ ((void));
|
||
#endif
|
||
|
||
#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
|
||
|
||
/* Recording what needs to be marked for gc. */
|
||
|
||
struct gcpro *gcprolist;
|
||
|
||
/* Addresses of staticpro'd variables. Initialize it to a nonzero
|
||
value; otherwise some compilers put it into BSS. */
|
||
|
||
#define NSTATICS 0x600
|
||
static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
|
||
|
||
/* Index of next unused slot in staticvec. */
|
||
|
||
static int staticidx = 0;
|
||
|
||
static POINTER_TYPE *pure_alloc P_ ((size_t, int));
|
||
|
||
|
||
/* Value is SZ rounded up to the next multiple of ALIGNMENT.
|
||
ALIGNMENT must be a power of 2. */
|
||
|
||
#define ALIGN(ptr, ALIGNMENT) \
|
||
((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
|
||
& ~((ALIGNMENT) - 1)))
|
||
|
||
|
||
|
||
/************************************************************************
|
||
Malloc
|
||
************************************************************************/
|
||
|
||
/* Function malloc calls this if it finds we are near exhausting storage. */
|
||
|
||
void
|
||
malloc_warning (str)
|
||
char *str;
|
||
{
|
||
pending_malloc_warning = str;
|
||
}
|
||
|
||
|
||
/* Display an already-pending malloc warning. */
|
||
|
||
void
|
||
display_malloc_warning ()
|
||
{
|
||
call3 (intern ("display-warning"),
|
||
intern ("alloc"),
|
||
build_string (pending_malloc_warning),
|
||
intern ("emergency"));
|
||
pending_malloc_warning = 0;
|
||
}
|
||
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
# define BYTES_USED (mallinfo ().uordblks)
|
||
#else
|
||
# define BYTES_USED _bytes_used
|
||
#endif
|
||
|
||
/* Called if we can't allocate relocatable space for a buffer. */
|
||
|
||
void
|
||
buffer_memory_full ()
|
||
{
|
||
/* If buffers use the relocating allocator, no need to free
|
||
spare_memory, because we may have plenty of malloc space left
|
||
that we could get, and if we don't, the malloc that fails will
|
||
itself cause spare_memory to be freed. If buffers don't use the
|
||
relocating allocator, treat this like any other failing
|
||
malloc. */
|
||
|
||
#ifndef REL_ALLOC
|
||
memory_full ();
|
||
#endif
|
||
|
||
/* This used to call error, but if we've run out of memory, we could
|
||
get infinite recursion trying to build the string. */
|
||
xsignal (Qnil, Vmemory_signal_data);
|
||
}
|
||
|
||
|
||
#ifdef XMALLOC_OVERRUN_CHECK
|
||
|
||
/* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
|
||
and a 16 byte trailer around each block.
|
||
|
||
The header consists of 12 fixed bytes + a 4 byte integer contaning the
|
||
original block size, while the trailer consists of 16 fixed bytes.
|
||
|
||
The header is used to detect whether this block has been allocated
|
||
through these functions -- as it seems that some low-level libc
|
||
functions may bypass the malloc hooks.
|
||
*/
|
||
|
||
|
||
#define XMALLOC_OVERRUN_CHECK_SIZE 16
|
||
|
||
static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
|
||
{ 0x9a, 0x9b, 0xae, 0xaf,
|
||
0xbf, 0xbe, 0xce, 0xcf,
|
||
0xea, 0xeb, 0xec, 0xed };
|
||
|
||
static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
|
||
{ 0xaa, 0xab, 0xac, 0xad,
|
||
0xba, 0xbb, 0xbc, 0xbd,
|
||
0xca, 0xcb, 0xcc, 0xcd,
|
||
0xda, 0xdb, 0xdc, 0xdd };
|
||
|
||
/* Macros to insert and extract the block size in the header. */
|
||
|
||
#define XMALLOC_PUT_SIZE(ptr, size) \
|
||
(ptr[-1] = (size & 0xff), \
|
||
ptr[-2] = ((size >> 8) & 0xff), \
|
||
ptr[-3] = ((size >> 16) & 0xff), \
|
||
ptr[-4] = ((size >> 24) & 0xff))
|
||
|
||
#define XMALLOC_GET_SIZE(ptr) \
|
||
(size_t)((unsigned)(ptr[-1]) | \
|
||
((unsigned)(ptr[-2]) << 8) | \
|
||
((unsigned)(ptr[-3]) << 16) | \
|
||
((unsigned)(ptr[-4]) << 24))
|
||
|
||
|
||
/* The call depth in overrun_check functions. For example, this might happen:
|
||
xmalloc()
|
||
overrun_check_malloc()
|
||
-> malloc -> (via hook)_-> emacs_blocked_malloc
|
||
-> overrun_check_malloc
|
||
call malloc (hooks are NULL, so real malloc is called).
|
||
malloc returns 10000.
|
||
add overhead, return 10016.
|
||
<- (back in overrun_check_malloc)
|
||
add overhead again, return 10032
|
||
xmalloc returns 10032.
|
||
|
||
(time passes).
|
||
|
||
xfree(10032)
|
||
overrun_check_free(10032)
|
||
decrease overhed
|
||
free(10016) <- crash, because 10000 is the original pointer. */
|
||
|
||
static int check_depth;
|
||
|
||
/* Like malloc, but wraps allocated block with header and trailer. */
|
||
|
||
POINTER_TYPE *
|
||
overrun_check_malloc (size)
|
||
size_t size;
|
||
{
|
||
register unsigned char *val;
|
||
size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
|
||
|
||
val = (unsigned char *) malloc (size + overhead);
|
||
if (val && check_depth == 1)
|
||
{
|
||
bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
|
||
val += XMALLOC_OVERRUN_CHECK_SIZE;
|
||
XMALLOC_PUT_SIZE(val, size);
|
||
bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
}
|
||
--check_depth;
|
||
return (POINTER_TYPE *)val;
|
||
}
|
||
|
||
|
||
/* Like realloc, but checks old block for overrun, and wraps new block
|
||
with header and trailer. */
|
||
|
||
POINTER_TYPE *
|
||
overrun_check_realloc (block, size)
|
||
POINTER_TYPE *block;
|
||
size_t size;
|
||
{
|
||
register unsigned char *val = (unsigned char *)block;
|
||
size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
|
||
|
||
if (val
|
||
&& check_depth == 1
|
||
&& bcmp (xmalloc_overrun_check_header,
|
||
val - XMALLOC_OVERRUN_CHECK_SIZE,
|
||
XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
|
||
{
|
||
size_t osize = XMALLOC_GET_SIZE (val);
|
||
if (bcmp (xmalloc_overrun_check_trailer,
|
||
val + osize,
|
||
XMALLOC_OVERRUN_CHECK_SIZE))
|
||
abort ();
|
||
bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE;
|
||
bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
}
|
||
|
||
val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
|
||
|
||
if (val && check_depth == 1)
|
||
{
|
||
bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
|
||
val += XMALLOC_OVERRUN_CHECK_SIZE;
|
||
XMALLOC_PUT_SIZE(val, size);
|
||
bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
}
|
||
--check_depth;
|
||
return (POINTER_TYPE *)val;
|
||
}
|
||
|
||
/* Like free, but checks block for overrun. */
|
||
|
||
void
|
||
overrun_check_free (block)
|
||
POINTER_TYPE *block;
|
||
{
|
||
unsigned char *val = (unsigned char *)block;
|
||
|
||
++check_depth;
|
||
if (val
|
||
&& check_depth == 1
|
||
&& bcmp (xmalloc_overrun_check_header,
|
||
val - XMALLOC_OVERRUN_CHECK_SIZE,
|
||
XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
|
||
{
|
||
size_t osize = XMALLOC_GET_SIZE (val);
|
||
if (bcmp (xmalloc_overrun_check_trailer,
|
||
val + osize,
|
||
XMALLOC_OVERRUN_CHECK_SIZE))
|
||
abort ();
|
||
#ifdef XMALLOC_CLEAR_FREE_MEMORY
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE;
|
||
memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
|
||
#else
|
||
bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE;
|
||
bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
#endif
|
||
}
|
||
|
||
free (val);
|
||
--check_depth;
|
||
}
|
||
|
||
#undef malloc
|
||
#undef realloc
|
||
#undef free
|
||
#define malloc overrun_check_malloc
|
||
#define realloc overrun_check_realloc
|
||
#define free overrun_check_free
|
||
#endif
|
||
|
||
#ifdef SYNC_INPUT
|
||
/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
|
||
there's no need to block input around malloc. */
|
||
#define MALLOC_BLOCK_INPUT ((void)0)
|
||
#define MALLOC_UNBLOCK_INPUT ((void)0)
|
||
#else
|
||
#define MALLOC_BLOCK_INPUT BLOCK_INPUT
|
||
#define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
|
||
#endif
|
||
|
||
/* Like malloc but check for no memory and block interrupt input.. */
|
||
|
||
POINTER_TYPE *
|
||
xmalloc (size)
|
||
size_t size;
|
||
{
|
||
register POINTER_TYPE *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
val = (POINTER_TYPE *) malloc (size);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
if (!val && size)
|
||
memory_full ();
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Like realloc but check for no memory and block interrupt input.. */
|
||
|
||
POINTER_TYPE *
|
||
xrealloc (block, size)
|
||
POINTER_TYPE *block;
|
||
size_t size;
|
||
{
|
||
register POINTER_TYPE *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
/* We must call malloc explicitly when BLOCK is 0, since some
|
||
reallocs don't do this. */
|
||
if (! block)
|
||
val = (POINTER_TYPE *) malloc (size);
|
||
else
|
||
val = (POINTER_TYPE *) realloc (block, size);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
if (!val && size) memory_full ();
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Like free but block interrupt input. */
|
||
|
||
void
|
||
xfree (block)
|
||
POINTER_TYPE *block;
|
||
{
|
||
if (!block)
|
||
return;
|
||
MALLOC_BLOCK_INPUT;
|
||
free (block);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
/* We don't call refill_memory_reserve here
|
||
because that duplicates doing so in emacs_blocked_free
|
||
and the criterion should go there. */
|
||
}
|
||
|
||
|
||
/* Like strdup, but uses xmalloc. */
|
||
|
||
char *
|
||
xstrdup (s)
|
||
const char *s;
|
||
{
|
||
size_t len = strlen (s) + 1;
|
||
char *p = (char *) xmalloc (len);
|
||
bcopy (s, p, len);
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Unwind for SAFE_ALLOCA */
|
||
|
||
Lisp_Object
|
||
safe_alloca_unwind (arg)
|
||
Lisp_Object arg;
|
||
{
|
||
register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
|
||
|
||
p->dogc = 0;
|
||
xfree (p->pointer);
|
||
p->pointer = 0;
|
||
free_misc (arg);
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
/* Like malloc but used for allocating Lisp data. NBYTES is the
|
||
number of bytes to allocate, TYPE describes the intended use of the
|
||
allcated memory block (for strings, for conses, ...). */
|
||
|
||
#ifndef USE_LSB_TAG
|
||
static void *lisp_malloc_loser;
|
||
#endif
|
||
|
||
static POINTER_TYPE *
|
||
lisp_malloc (nbytes, type)
|
||
size_t nbytes;
|
||
enum mem_type type;
|
||
{
|
||
register void *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
allocated_mem_type = type;
|
||
#endif
|
||
|
||
val = (void *) malloc (nbytes);
|
||
|
||
#ifndef USE_LSB_TAG
|
||
/* If the memory just allocated cannot be addressed thru a Lisp
|
||
object's pointer, and it needs to be,
|
||
that's equivalent to running out of memory. */
|
||
if (val && type != MEM_TYPE_NON_LISP)
|
||
{
|
||
Lisp_Object tem;
|
||
XSETCONS (tem, (char *) val + nbytes - 1);
|
||
if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
|
||
{
|
||
lisp_malloc_loser = val;
|
||
free (val);
|
||
val = 0;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
if (val && type != MEM_TYPE_NON_LISP)
|
||
mem_insert (val, (char *) val + nbytes, type);
|
||
#endif
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
if (!val && nbytes)
|
||
memory_full ();
|
||
return val;
|
||
}
|
||
|
||
/* Free BLOCK. This must be called to free memory allocated with a
|
||
call to lisp_malloc. */
|
||
|
||
static void
|
||
lisp_free (block)
|
||
POINTER_TYPE *block;
|
||
{
|
||
MALLOC_BLOCK_INPUT;
|
||
free (block);
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_delete (mem_find (block));
|
||
#endif
|
||
MALLOC_UNBLOCK_INPUT;
|
||
}
|
||
|
||
/* Allocation of aligned blocks of memory to store Lisp data. */
|
||
/* The entry point is lisp_align_malloc which returns blocks of at most */
|
||
/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
|
||
|
||
/* Use posix_memalloc if the system has it and we're using the system's
|
||
malloc (because our gmalloc.c routines don't have posix_memalign although
|
||
its memalloc could be used). */
|
||
#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
|
||
#define USE_POSIX_MEMALIGN 1
|
||
#endif
|
||
|
||
/* BLOCK_ALIGN has to be a power of 2. */
|
||
#define BLOCK_ALIGN (1 << 10)
|
||
|
||
/* Padding to leave at the end of a malloc'd block. This is to give
|
||
malloc a chance to minimize the amount of memory wasted to alignment.
|
||
It should be tuned to the particular malloc library used.
|
||
On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
|
||
posix_memalign on the other hand would ideally prefer a value of 4
|
||
because otherwise, there's 1020 bytes wasted between each ablocks.
|
||
In Emacs, testing shows that those 1020 can most of the time be
|
||
efficiently used by malloc to place other objects, so a value of 0 can
|
||
still preferable unless you have a lot of aligned blocks and virtually
|
||
nothing else. */
|
||
#define BLOCK_PADDING 0
|
||
#define BLOCK_BYTES \
|
||
(BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
|
||
|
||
/* Internal data structures and constants. */
|
||
|
||
#define ABLOCKS_SIZE 16
|
||
|
||
/* An aligned block of memory. */
|
||
struct ablock
|
||
{
|
||
union
|
||
{
|
||
char payload[BLOCK_BYTES];
|
||
struct ablock *next_free;
|
||
} x;
|
||
/* `abase' is the aligned base of the ablocks. */
|
||
/* It is overloaded to hold the virtual `busy' field that counts
|
||
the number of used ablock in the parent ablocks.
|
||
The first ablock has the `busy' field, the others have the `abase'
|
||
field. To tell the difference, we assume that pointers will have
|
||
integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
|
||
is used to tell whether the real base of the parent ablocks is `abase'
|
||
(if not, the word before the first ablock holds a pointer to the
|
||
real base). */
|
||
struct ablocks *abase;
|
||
/* The padding of all but the last ablock is unused. The padding of
|
||
the last ablock in an ablocks is not allocated. */
|
||
#if BLOCK_PADDING
|
||
char padding[BLOCK_PADDING];
|
||
#endif
|
||
};
|
||
|
||
/* A bunch of consecutive aligned blocks. */
|
||
struct ablocks
|
||
{
|
||
struct ablock blocks[ABLOCKS_SIZE];
|
||
};
|
||
|
||
/* Size of the block requested from malloc or memalign. */
|
||
#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
|
||
|
||
#define ABLOCK_ABASE(block) \
|
||
(((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
|
||
? (struct ablocks *)(block) \
|
||
: (block)->abase)
|
||
|
||
/* Virtual `busy' field. */
|
||
#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
|
||
|
||
/* Pointer to the (not necessarily aligned) malloc block. */
|
||
#ifdef USE_POSIX_MEMALIGN
|
||
#define ABLOCKS_BASE(abase) (abase)
|
||
#else
|
||
#define ABLOCKS_BASE(abase) \
|
||
(1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
|
||
#endif
|
||
|
||
/* The list of free ablock. */
|
||
static struct ablock *free_ablock;
|
||
|
||
/* Allocate an aligned block of nbytes.
|
||
Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
|
||
smaller or equal to BLOCK_BYTES. */
|
||
static POINTER_TYPE *
|
||
lisp_align_malloc (nbytes, type)
|
||
size_t nbytes;
|
||
enum mem_type type;
|
||
{
|
||
void *base, *val;
|
||
struct ablocks *abase;
|
||
|
||
eassert (nbytes <= BLOCK_BYTES);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
allocated_mem_type = type;
|
||
#endif
|
||
|
||
if (!free_ablock)
|
||
{
|
||
int i;
|
||
EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs. */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
#ifdef USE_POSIX_MEMALIGN
|
||
{
|
||
int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
|
||
if (err)
|
||
base = NULL;
|
||
abase = base;
|
||
}
|
||
#else
|
||
base = malloc (ABLOCKS_BYTES);
|
||
abase = ALIGN (base, BLOCK_ALIGN);
|
||
#endif
|
||
|
||
if (base == 0)
|
||
{
|
||
MALLOC_UNBLOCK_INPUT;
|
||
memory_full ();
|
||
}
|
||
|
||
aligned = (base == abase);
|
||
if (!aligned)
|
||
((void**)abase)[-1] = base;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
#ifndef USE_LSB_TAG
|
||
/* If the memory just allocated cannot be addressed thru a Lisp
|
||
object's pointer, and it needs to be, that's equivalent to
|
||
running out of memory. */
|
||
if (type != MEM_TYPE_NON_LISP)
|
||
{
|
||
Lisp_Object tem;
|
||
char *end = (char *) base + ABLOCKS_BYTES - 1;
|
||
XSETCONS (tem, end);
|
||
if ((char *) XCONS (tem) != end)
|
||
{
|
||
lisp_malloc_loser = base;
|
||
free (base);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
memory_full ();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Initialize the blocks and put them on the free list.
|
||
Is `base' was not properly aligned, we can't use the last block. */
|
||
for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
|
||
{
|
||
abase->blocks[i].abase = abase;
|
||
abase->blocks[i].x.next_free = free_ablock;
|
||
free_ablock = &abase->blocks[i];
|
||
}
|
||
ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
|
||
|
||
eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
|
||
eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
|
||
eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
|
||
eassert (ABLOCKS_BASE (abase) == base);
|
||
eassert (aligned == (long) ABLOCKS_BUSY (abase));
|
||
}
|
||
|
||
abase = ABLOCK_ABASE (free_ablock);
|
||
ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
|
||
val = free_ablock;
|
||
free_ablock = free_ablock->x.next_free;
|
||
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
if (val && type != MEM_TYPE_NON_LISP)
|
||
mem_insert (val, (char *) val + nbytes, type);
|
||
#endif
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
if (!val && nbytes)
|
||
memory_full ();
|
||
|
||
eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
|
||
return val;
|
||
}
|
||
|
||
static void
|
||
lisp_align_free (block)
|
||
POINTER_TYPE *block;
|
||
{
|
||
struct ablock *ablock = block;
|
||
struct ablocks *abase = ABLOCK_ABASE (ablock);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_delete (mem_find (block));
|
||
#endif
|
||
/* Put on free list. */
|
||
ablock->x.next_free = free_ablock;
|
||
free_ablock = ablock;
|
||
/* Update busy count. */
|
||
ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
|
||
|
||
if (2 > (long) ABLOCKS_BUSY (abase))
|
||
{ /* All the blocks are free. */
|
||
int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
|
||
struct ablock **tem = &free_ablock;
|
||
struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
|
||
|
||
while (*tem)
|
||
{
|
||
if (*tem >= (struct ablock *) abase && *tem < atop)
|
||
{
|
||
i++;
|
||
*tem = (*tem)->x.next_free;
|
||
}
|
||
else
|
||
tem = &(*tem)->x.next_free;
|
||
}
|
||
eassert ((aligned & 1) == aligned);
|
||
eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
|
||
#ifdef USE_POSIX_MEMALIGN
|
||
eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
|
||
#endif
|
||
free (ABLOCKS_BASE (abase));
|
||
}
|
||
MALLOC_UNBLOCK_INPUT;
|
||
}
|
||
|
||
/* Return a new buffer structure allocated from the heap with
|
||
a call to lisp_malloc. */
|
||
|
||
struct buffer *
|
||
allocate_buffer ()
|
||
{
|
||
struct buffer *b
|
||
= (struct buffer *) lisp_malloc (sizeof (struct buffer),
|
||
MEM_TYPE_BUFFER);
|
||
b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
|
||
XSETPVECTYPE (b, PVEC_BUFFER);
|
||
return b;
|
||
}
|
||
|
||
|
||
#ifndef SYSTEM_MALLOC
|
||
|
||
/* Arranging to disable input signals while we're in malloc.
|
||
|
||
This only works with GNU malloc. To help out systems which can't
|
||
use GNU malloc, all the calls to malloc, realloc, and free
|
||
elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
|
||
pair; unfortunately, we have no idea what C library functions
|
||
might call malloc, so we can't really protect them unless you're
|
||
using GNU malloc. Fortunately, most of the major operating systems
|
||
can use GNU malloc. */
|
||
|
||
#ifndef SYNC_INPUT
|
||
/* When using SYNC_INPUT, we don't call malloc from a signal handler, so
|
||
there's no need to block input around malloc. */
|
||
|
||
#ifndef DOUG_LEA_MALLOC
|
||
extern void * (*__malloc_hook) P_ ((size_t, const void *));
|
||
extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
|
||
extern void (*__free_hook) P_ ((void *, const void *));
|
||
/* Else declared in malloc.h, perhaps with an extra arg. */
|
||
#endif /* DOUG_LEA_MALLOC */
|
||
static void * (*old_malloc_hook) P_ ((size_t, const void *));
|
||
static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
|
||
static void (*old_free_hook) P_ ((void*, const void*));
|
||
|
||
/* This function is used as the hook for free to call. */
|
||
|
||
static void
|
||
emacs_blocked_free (ptr, ptr2)
|
||
void *ptr;
|
||
const void *ptr2;
|
||
{
|
||
BLOCK_INPUT_ALLOC;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
if (ptr)
|
||
{
|
||
struct mem_node *m;
|
||
|
||
m = mem_find (ptr);
|
||
if (m == MEM_NIL || m->start != ptr)
|
||
{
|
||
fprintf (stderr,
|
||
"Freeing `%p' which wasn't allocated with malloc\n", ptr);
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
/* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
|
||
mem_delete (m);
|
||
}
|
||
}
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
__free_hook = old_free_hook;
|
||
free (ptr);
|
||
|
||
/* If we released our reserve (due to running out of memory),
|
||
and we have a fair amount free once again,
|
||
try to set aside another reserve in case we run out once more. */
|
||
if (! NILP (Vmemory_full)
|
||
/* Verify there is enough space that even with the malloc
|
||
hysteresis this call won't run out again.
|
||
The code here is correct as long as SPARE_MEMORY
|
||
is substantially larger than the block size malloc uses. */
|
||
&& (bytes_used_when_full
|
||
> ((bytes_used_when_reconsidered = BYTES_USED)
|
||
+ max (malloc_hysteresis, 4) * SPARE_MEMORY)))
|
||
refill_memory_reserve ();
|
||
|
||
__free_hook = emacs_blocked_free;
|
||
UNBLOCK_INPUT_ALLOC;
|
||
}
|
||
|
||
|
||
/* This function is the malloc hook that Emacs uses. */
|
||
|
||
static void *
|
||
emacs_blocked_malloc (size, ptr)
|
||
size_t size;
|
||
const void *ptr;
|
||
{
|
||
void *value;
|
||
|
||
BLOCK_INPUT_ALLOC;
|
||
__malloc_hook = old_malloc_hook;
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Segfaults on my system. --lorentey */
|
||
/* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
|
||
#else
|
||
__malloc_extra_blocks = malloc_hysteresis;
|
||
#endif
|
||
|
||
value = (void *) malloc (size);
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
{
|
||
struct mem_node *m = mem_find (value);
|
||
if (m != MEM_NIL)
|
||
{
|
||
fprintf (stderr, "Malloc returned %p which is already in use\n",
|
||
value);
|
||
fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
|
||
m->start, m->end, (char *) m->end - (char *) m->start,
|
||
m->type);
|
||
abort ();
|
||
}
|
||
|
||
if (!dont_register_blocks)
|
||
{
|
||
mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
|
||
allocated_mem_type = MEM_TYPE_NON_LISP;
|
||
}
|
||
}
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
__malloc_hook = emacs_blocked_malloc;
|
||
UNBLOCK_INPUT_ALLOC;
|
||
|
||
/* fprintf (stderr, "%p malloc\n", value); */
|
||
return value;
|
||
}
|
||
|
||
|
||
/* This function is the realloc hook that Emacs uses. */
|
||
|
||
static void *
|
||
emacs_blocked_realloc (ptr, size, ptr2)
|
||
void *ptr;
|
||
size_t size;
|
||
const void *ptr2;
|
||
{
|
||
void *value;
|
||
|
||
BLOCK_INPUT_ALLOC;
|
||
__realloc_hook = old_realloc_hook;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
if (ptr)
|
||
{
|
||
struct mem_node *m = mem_find (ptr);
|
||
if (m == MEM_NIL || m->start != ptr)
|
||
{
|
||
fprintf (stderr,
|
||
"Realloc of %p which wasn't allocated with malloc\n",
|
||
ptr);
|
||
abort ();
|
||
}
|
||
|
||
mem_delete (m);
|
||
}
|
||
|
||
/* fprintf (stderr, "%p -> realloc\n", ptr); */
|
||
|
||
/* Prevent malloc from registering blocks. */
|
||
dont_register_blocks = 1;
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
value = (void *) realloc (ptr, size);
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
dont_register_blocks = 0;
|
||
|
||
{
|
||
struct mem_node *m = mem_find (value);
|
||
if (m != MEM_NIL)
|
||
{
|
||
fprintf (stderr, "Realloc returns memory that is already in use\n");
|
||
abort ();
|
||
}
|
||
|
||
/* Can't handle zero size regions in the red-black tree. */
|
||
mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
|
||
}
|
||
|
||
/* fprintf (stderr, "%p <- realloc\n", value); */
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
__realloc_hook = emacs_blocked_realloc;
|
||
UNBLOCK_INPUT_ALLOC;
|
||
|
||
return value;
|
||
}
|
||
|
||
|
||
#ifdef HAVE_GTK_AND_PTHREAD
|
||
/* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
|
||
normal malloc. Some thread implementations need this as they call
|
||
malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
|
||
calls malloc because it is the first call, and we have an endless loop. */
|
||
|
||
void
|
||
reset_malloc_hooks ()
|
||
{
|
||
__free_hook = old_free_hook;
|
||
__malloc_hook = old_malloc_hook;
|
||
__realloc_hook = old_realloc_hook;
|
||
}
|
||
#endif /* HAVE_GTK_AND_PTHREAD */
|
||
|
||
|
||
/* Called from main to set up malloc to use our hooks. */
|
||
|
||
void
|
||
uninterrupt_malloc ()
|
||
{
|
||
#ifdef HAVE_GTK_AND_PTHREAD
|
||
#ifdef DOUG_LEA_MALLOC
|
||
pthread_mutexattr_t attr;
|
||
|
||
/* GLIBC has a faster way to do this, but lets keep it portable.
|
||
This is according to the Single UNIX Specification. */
|
||
pthread_mutexattr_init (&attr);
|
||
pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
|
||
pthread_mutex_init (&alloc_mutex, &attr);
|
||
#else /* !DOUG_LEA_MALLOC */
|
||
/* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
|
||
and the bundled gmalloc.c doesn't require it. */
|
||
pthread_mutex_init (&alloc_mutex, NULL);
|
||
#endif /* !DOUG_LEA_MALLOC */
|
||
#endif /* HAVE_GTK_AND_PTHREAD */
|
||
|
||
if (__free_hook != emacs_blocked_free)
|
||
old_free_hook = __free_hook;
|
||
__free_hook = emacs_blocked_free;
|
||
|
||
if (__malloc_hook != emacs_blocked_malloc)
|
||
old_malloc_hook = __malloc_hook;
|
||
__malloc_hook = emacs_blocked_malloc;
|
||
|
||
if (__realloc_hook != emacs_blocked_realloc)
|
||
old_realloc_hook = __realloc_hook;
|
||
__realloc_hook = emacs_blocked_realloc;
|
||
}
|
||
|
||
#endif /* not SYNC_INPUT */
|
||
#endif /* not SYSTEM_MALLOC */
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Interval Allocation
|
||
***********************************************************************/
|
||
|
||
/* Number of intervals allocated in an interval_block structure.
|
||
The 1020 is 1024 minus malloc overhead. */
|
||
|
||
#define INTERVAL_BLOCK_SIZE \
|
||
((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
|
||
|
||
/* Intervals are allocated in chunks in form of an interval_block
|
||
structure. */
|
||
|
||
struct interval_block
|
||
{
|
||
/* Place `intervals' first, to preserve alignment. */
|
||
struct interval intervals[INTERVAL_BLOCK_SIZE];
|
||
struct interval_block *next;
|
||
};
|
||
|
||
/* Current interval block. Its `next' pointer points to older
|
||
blocks. */
|
||
|
||
static struct interval_block *interval_block;
|
||
|
||
/* Index in interval_block above of the next unused interval
|
||
structure. */
|
||
|
||
static int interval_block_index;
|
||
|
||
/* Number of free and live intervals. */
|
||
|
||
static int total_free_intervals, total_intervals;
|
||
|
||
/* List of free intervals. */
|
||
|
||
INTERVAL interval_free_list;
|
||
|
||
/* Total number of interval blocks now in use. */
|
||
|
||
static int n_interval_blocks;
|
||
|
||
|
||
/* Initialize interval allocation. */
|
||
|
||
static void
|
||
init_intervals ()
|
||
{
|
||
interval_block = NULL;
|
||
interval_block_index = INTERVAL_BLOCK_SIZE;
|
||
interval_free_list = 0;
|
||
n_interval_blocks = 0;
|
||
}
|
||
|
||
|
||
/* Return a new interval. */
|
||
|
||
INTERVAL
|
||
make_interval ()
|
||
{
|
||
INTERVAL val;
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (interval_free_list)
|
||
{
|
||
val = interval_free_list;
|
||
interval_free_list = INTERVAL_PARENT (interval_free_list);
|
||
}
|
||
else
|
||
{
|
||
if (interval_block_index == INTERVAL_BLOCK_SIZE)
|
||
{
|
||
register struct interval_block *newi;
|
||
|
||
newi = (struct interval_block *) lisp_malloc (sizeof *newi,
|
||
MEM_TYPE_NON_LISP);
|
||
|
||
newi->next = interval_block;
|
||
interval_block = newi;
|
||
interval_block_index = 0;
|
||
n_interval_blocks++;
|
||
}
|
||
val = &interval_block->intervals[interval_block_index++];
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
consing_since_gc += sizeof (struct interval);
|
||
intervals_consed++;
|
||
RESET_INTERVAL (val);
|
||
val->gcmarkbit = 0;
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Mark Lisp objects in interval I. */
|
||
|
||
static void
|
||
mark_interval (i, dummy)
|
||
register INTERVAL i;
|
||
Lisp_Object dummy;
|
||
{
|
||
eassert (!i->gcmarkbit); /* Intervals are never shared. */
|
||
i->gcmarkbit = 1;
|
||
mark_object (i->plist);
|
||
}
|
||
|
||
|
||
/* Mark the interval tree rooted in TREE. Don't call this directly;
|
||
use the macro MARK_INTERVAL_TREE instead. */
|
||
|
||
static void
|
||
mark_interval_tree (tree)
|
||
register INTERVAL tree;
|
||
{
|
||
/* No need to test if this tree has been marked already; this
|
||
function is always called through the MARK_INTERVAL_TREE macro,
|
||
which takes care of that. */
|
||
|
||
traverse_intervals_noorder (tree, mark_interval, Qnil);
|
||
}
|
||
|
||
|
||
/* Mark the interval tree rooted in I. */
|
||
|
||
#define MARK_INTERVAL_TREE(i) \
|
||
do { \
|
||
if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
|
||
mark_interval_tree (i); \
|
||
} while (0)
|
||
|
||
|
||
#define UNMARK_BALANCE_INTERVALS(i) \
|
||
do { \
|
||
if (! NULL_INTERVAL_P (i)) \
|
||
(i) = balance_intervals (i); \
|
||
} while (0)
|
||
|
||
|
||
/* Number support. If NO_UNION_TYPE isn't in effect, we
|
||
can't create number objects in macros. */
|
||
#ifndef make_number
|
||
Lisp_Object
|
||
make_number (n)
|
||
EMACS_INT n;
|
||
{
|
||
Lisp_Object obj;
|
||
obj.s.val = n;
|
||
obj.s.type = Lisp_Int;
|
||
return obj;
|
||
}
|
||
#endif
|
||
|
||
/***********************************************************************
|
||
String Allocation
|
||
***********************************************************************/
|
||
|
||
/* Lisp_Strings are allocated in string_block structures. When a new
|
||
string_block is allocated, all the Lisp_Strings it contains are
|
||
added to a free-list string_free_list. When a new Lisp_String is
|
||
needed, it is taken from that list. During the sweep phase of GC,
|
||
string_blocks that are entirely free are freed, except two which
|
||
we keep.
|
||
|
||
String data is allocated from sblock structures. Strings larger
|
||
than LARGE_STRING_BYTES, get their own sblock, data for smaller
|
||
strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
|
||
|
||
Sblocks consist internally of sdata structures, one for each
|
||
Lisp_String. The sdata structure points to the Lisp_String it
|
||
belongs to. The Lisp_String points back to the `u.data' member of
|
||
its sdata structure.
|
||
|
||
When a Lisp_String is freed during GC, it is put back on
|
||
string_free_list, and its `data' member and its sdata's `string'
|
||
pointer is set to null. The size of the string is recorded in the
|
||
`u.nbytes' member of the sdata. So, sdata structures that are no
|
||
longer used, can be easily recognized, and it's easy to compact the
|
||
sblocks of small strings which we do in compact_small_strings. */
|
||
|
||
/* Size in bytes of an sblock structure used for small strings. This
|
||
is 8192 minus malloc overhead. */
|
||
|
||
#define SBLOCK_SIZE 8188
|
||
|
||
/* Strings larger than this are considered large strings. String data
|
||
for large strings is allocated from individual sblocks. */
|
||
|
||
#define LARGE_STRING_BYTES 1024
|
||
|
||
/* Structure describing string memory sub-allocated from an sblock.
|
||
This is where the contents of Lisp strings are stored. */
|
||
|
||
struct sdata
|
||
{
|
||
/* Back-pointer to the string this sdata belongs to. If null, this
|
||
structure is free, and the NBYTES member of the union below
|
||
contains the string's byte size (the same value that STRING_BYTES
|
||
would return if STRING were non-null). If non-null, STRING_BYTES
|
||
(STRING) is the size of the data, and DATA contains the string's
|
||
contents. */
|
||
struct Lisp_String *string;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
EMACS_INT nbytes;
|
||
unsigned char data[1];
|
||
|
||
#define SDATA_NBYTES(S) (S)->nbytes
|
||
#define SDATA_DATA(S) (S)->data
|
||
|
||
#else /* not GC_CHECK_STRING_BYTES */
|
||
|
||
union
|
||
{
|
||
/* When STRING in non-null. */
|
||
unsigned char data[1];
|
||
|
||
/* When STRING is null. */
|
||
EMACS_INT nbytes;
|
||
} u;
|
||
|
||
|
||
#define SDATA_NBYTES(S) (S)->u.nbytes
|
||
#define SDATA_DATA(S) (S)->u.data
|
||
|
||
#endif /* not GC_CHECK_STRING_BYTES */
|
||
};
|
||
|
||
|
||
/* Structure describing a block of memory which is sub-allocated to
|
||
obtain string data memory for strings. Blocks for small strings
|
||
are of fixed size SBLOCK_SIZE. Blocks for large strings are made
|
||
as large as needed. */
|
||
|
||
struct sblock
|
||
{
|
||
/* Next in list. */
|
||
struct sblock *next;
|
||
|
||
/* Pointer to the next free sdata block. This points past the end
|
||
of the sblock if there isn't any space left in this block. */
|
||
struct sdata *next_free;
|
||
|
||
/* Start of data. */
|
||
struct sdata first_data;
|
||
};
|
||
|
||
/* Number of Lisp strings in a string_block structure. The 1020 is
|
||
1024 minus malloc overhead. */
|
||
|
||
#define STRING_BLOCK_SIZE \
|
||
((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
|
||
|
||
/* Structure describing a block from which Lisp_String structures
|
||
are allocated. */
|
||
|
||
struct string_block
|
||
{
|
||
/* Place `strings' first, to preserve alignment. */
|
||
struct Lisp_String strings[STRING_BLOCK_SIZE];
|
||
struct string_block *next;
|
||
};
|
||
|
||
/* Head and tail of the list of sblock structures holding Lisp string
|
||
data. We always allocate from current_sblock. The NEXT pointers
|
||
in the sblock structures go from oldest_sblock to current_sblock. */
|
||
|
||
static struct sblock *oldest_sblock, *current_sblock;
|
||
|
||
/* List of sblocks for large strings. */
|
||
|
||
static struct sblock *large_sblocks;
|
||
|
||
/* List of string_block structures, and how many there are. */
|
||
|
||
static struct string_block *string_blocks;
|
||
static int n_string_blocks;
|
||
|
||
/* Free-list of Lisp_Strings. */
|
||
|
||
static struct Lisp_String *string_free_list;
|
||
|
||
/* Number of live and free Lisp_Strings. */
|
||
|
||
static int total_strings, total_free_strings;
|
||
|
||
/* Number of bytes used by live strings. */
|
||
|
||
static int total_string_size;
|
||
|
||
/* Given a pointer to a Lisp_String S which is on the free-list
|
||
string_free_list, return a pointer to its successor in the
|
||
free-list. */
|
||
|
||
#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
|
||
|
||
/* Return a pointer to the sdata structure belonging to Lisp string S.
|
||
S must be live, i.e. S->data must not be null. S->data is actually
|
||
a pointer to the `u.data' member of its sdata structure; the
|
||
structure starts at a constant offset in front of that. */
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
#define SDATA_OF_STRING(S) \
|
||
((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
|
||
- sizeof (EMACS_INT)))
|
||
|
||
#else /* not GC_CHECK_STRING_BYTES */
|
||
|
||
#define SDATA_OF_STRING(S) \
|
||
((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
|
||
|
||
#endif /* not GC_CHECK_STRING_BYTES */
|
||
|
||
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
|
||
/* We check for overrun in string data blocks by appending a small
|
||
"cookie" after each allocated string data block, and check for the
|
||
presence of this cookie during GC. */
|
||
|
||
#define GC_STRING_OVERRUN_COOKIE_SIZE 4
|
||
static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
|
||
{ 0xde, 0xad, 0xbe, 0xef };
|
||
|
||
#else
|
||
#define GC_STRING_OVERRUN_COOKIE_SIZE 0
|
||
#endif
|
||
|
||
/* Value is the size of an sdata structure large enough to hold NBYTES
|
||
bytes of string data. The value returned includes a terminating
|
||
NUL byte, the size of the sdata structure, and padding. */
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
#define SDATA_SIZE(NBYTES) \
|
||
((sizeof (struct Lisp_String *) \
|
||
+ (NBYTES) + 1 \
|
||
+ sizeof (EMACS_INT) \
|
||
+ sizeof (EMACS_INT) - 1) \
|
||
& ~(sizeof (EMACS_INT) - 1))
|
||
|
||
#else /* not GC_CHECK_STRING_BYTES */
|
||
|
||
#define SDATA_SIZE(NBYTES) \
|
||
((sizeof (struct Lisp_String *) \
|
||
+ (NBYTES) + 1 \
|
||
+ sizeof (EMACS_INT) - 1) \
|
||
& ~(sizeof (EMACS_INT) - 1))
|
||
|
||
#endif /* not GC_CHECK_STRING_BYTES */
|
||
|
||
/* Extra bytes to allocate for each string. */
|
||
|
||
#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
|
||
|
||
/* Initialize string allocation. Called from init_alloc_once. */
|
||
|
||
static void
|
||
init_strings ()
|
||
{
|
||
total_strings = total_free_strings = total_string_size = 0;
|
||
oldest_sblock = current_sblock = large_sblocks = NULL;
|
||
string_blocks = NULL;
|
||
n_string_blocks = 0;
|
||
string_free_list = NULL;
|
||
empty_unibyte_string = make_pure_string ("", 0, 0, 0);
|
||
empty_multibyte_string = make_pure_string ("", 0, 0, 1);
|
||
}
|
||
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
static int check_string_bytes_count;
|
||
|
||
static void check_string_bytes P_ ((int));
|
||
static void check_sblock P_ ((struct sblock *));
|
||
|
||
#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
|
||
|
||
|
||
/* Like GC_STRING_BYTES, but with debugging check. */
|
||
|
||
int
|
||
string_bytes (s)
|
||
struct Lisp_String *s;
|
||
{
|
||
int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
|
||
if (!PURE_POINTER_P (s)
|
||
&& s->data
|
||
&& nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
|
||
abort ();
|
||
return nbytes;
|
||
}
|
||
|
||
/* Check validity of Lisp strings' string_bytes member in B. */
|
||
|
||
static void
|
||
check_sblock (b)
|
||
struct sblock *b;
|
||
{
|
||
struct sdata *from, *end, *from_end;
|
||
|
||
end = b->next_free;
|
||
|
||
for (from = &b->first_data; from < end; from = from_end)
|
||
{
|
||
/* Compute the next FROM here because copying below may
|
||
overwrite data we need to compute it. */
|
||
int nbytes;
|
||
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
if (from->string)
|
||
CHECK_STRING_BYTES (from->string);
|
||
|
||
if (from->string)
|
||
nbytes = GC_STRING_BYTES (from->string);
|
||
else
|
||
nbytes = SDATA_NBYTES (from);
|
||
|
||
nbytes = SDATA_SIZE (nbytes);
|
||
from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
|
||
}
|
||
}
|
||
|
||
|
||
/* Check validity of Lisp strings' string_bytes member. ALL_P
|
||
non-zero means check all strings, otherwise check only most
|
||
recently allocated strings. Used for hunting a bug. */
|
||
|
||
static void
|
||
check_string_bytes (all_p)
|
||
int all_p;
|
||
{
|
||
if (all_p)
|
||
{
|
||
struct sblock *b;
|
||
|
||
for (b = large_sblocks; b; b = b->next)
|
||
{
|
||
struct Lisp_String *s = b->first_data.string;
|
||
if (s)
|
||
CHECK_STRING_BYTES (s);
|
||
}
|
||
|
||
for (b = oldest_sblock; b; b = b->next)
|
||
check_sblock (b);
|
||
}
|
||
else
|
||
check_sblock (current_sblock);
|
||
}
|
||
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
#ifdef GC_CHECK_STRING_FREE_LIST
|
||
|
||
/* Walk through the string free list looking for bogus next pointers.
|
||
This may catch buffer overrun from a previous string. */
|
||
|
||
static void
|
||
check_string_free_list ()
|
||
{
|
||
struct Lisp_String *s;
|
||
|
||
/* Pop a Lisp_String off the free-list. */
|
||
s = string_free_list;
|
||
while (s != NULL)
|
||
{
|
||
if ((unsigned)s < 1024)
|
||
abort();
|
||
s = NEXT_FREE_LISP_STRING (s);
|
||
}
|
||
}
|
||
#else
|
||
#define check_string_free_list()
|
||
#endif
|
||
|
||
/* Return a new Lisp_String. */
|
||
|
||
static struct Lisp_String *
|
||
allocate_string ()
|
||
{
|
||
struct Lisp_String *s;
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
/* If the free-list is empty, allocate a new string_block, and
|
||
add all the Lisp_Strings in it to the free-list. */
|
||
if (string_free_list == NULL)
|
||
{
|
||
struct string_block *b;
|
||
int i;
|
||
|
||
b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
|
||
bzero (b, sizeof *b);
|
||
b->next = string_blocks;
|
||
string_blocks = b;
|
||
++n_string_blocks;
|
||
|
||
for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
|
||
{
|
||
s = b->strings + i;
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
}
|
||
|
||
total_free_strings += STRING_BLOCK_SIZE;
|
||
}
|
||
|
||
check_string_free_list ();
|
||
|
||
/* Pop a Lisp_String off the free-list. */
|
||
s = string_free_list;
|
||
string_free_list = NEXT_FREE_LISP_STRING (s);
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
/* Probably not strictly necessary, but play it safe. */
|
||
bzero (s, sizeof *s);
|
||
|
||
--total_free_strings;
|
||
++total_strings;
|
||
++strings_consed;
|
||
consing_since_gc += sizeof *s;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (!noninteractive)
|
||
{
|
||
if (++check_string_bytes_count == 200)
|
||
{
|
||
check_string_bytes_count = 0;
|
||
check_string_bytes (1);
|
||
}
|
||
else
|
||
check_string_bytes (0);
|
||
}
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
return s;
|
||
}
|
||
|
||
|
||
/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
|
||
plus a NUL byte at the end. Allocate an sdata structure for S, and
|
||
set S->data to its `u.data' member. Store a NUL byte at the end of
|
||
S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
|
||
S->data if it was initially non-null. */
|
||
|
||
void
|
||
allocate_string_data (s, nchars, nbytes)
|
||
struct Lisp_String *s;
|
||
int nchars, nbytes;
|
||
{
|
||
struct sdata *data, *old_data;
|
||
struct sblock *b;
|
||
int needed, old_nbytes;
|
||
|
||
/* Determine the number of bytes needed to store NBYTES bytes
|
||
of string data. */
|
||
needed = SDATA_SIZE (nbytes);
|
||
old_data = s->data ? SDATA_OF_STRING (s) : NULL;
|
||
old_nbytes = GC_STRING_BYTES (s);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (nbytes > LARGE_STRING_BYTES)
|
||
{
|
||
size_t size = sizeof *b - sizeof (struct sdata) + needed;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs.
|
||
|
||
In case you think of allowing it in a dumped Emacs at the
|
||
cost of not being able to re-dump, there's another reason:
|
||
mmap'ed data typically have an address towards the top of the
|
||
address space, which won't fit into an EMACS_INT (at least on
|
||
32-bit systems with the current tagging scheme). --fx */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
b->next_free = &b->first_data;
|
||
b->first_data.string = NULL;
|
||
b->next = large_sblocks;
|
||
large_sblocks = b;
|
||
}
|
||
else if (current_sblock == NULL
|
||
|| (((char *) current_sblock + SBLOCK_SIZE
|
||
- (char *) current_sblock->next_free)
|
||
< (needed + GC_STRING_EXTRA)))
|
||
{
|
||
/* Not enough room in the current sblock. */
|
||
b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
|
||
b->next_free = &b->first_data;
|
||
b->first_data.string = NULL;
|
||
b->next = NULL;
|
||
|
||
if (current_sblock)
|
||
current_sblock->next = b;
|
||
else
|
||
oldest_sblock = b;
|
||
current_sblock = b;
|
||
}
|
||
else
|
||
b = current_sblock;
|
||
|
||
data = b->next_free;
|
||
b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
data->string = s;
|
||
s->data = SDATA_DATA (data);
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
SDATA_NBYTES (data) = nbytes;
|
||
#endif
|
||
s->size = nchars;
|
||
s->size_byte = nbytes;
|
||
s->data[nbytes] = '\0';
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
bcopy (string_overrun_cookie, (char *) data + needed,
|
||
GC_STRING_OVERRUN_COOKIE_SIZE);
|
||
#endif
|
||
|
||
/* If S had already data assigned, mark that as free by setting its
|
||
string back-pointer to null, and recording the size of the data
|
||
in it. */
|
||
if (old_data)
|
||
{
|
||
SDATA_NBYTES (old_data) = old_nbytes;
|
||
old_data->string = NULL;
|
||
}
|
||
|
||
consing_since_gc += needed;
|
||
}
|
||
|
||
|
||
/* Sweep and compact strings. */
|
||
|
||
static void
|
||
sweep_strings ()
|
||
{
|
||
struct string_block *b, *next;
|
||
struct string_block *live_blocks = NULL;
|
||
|
||
string_free_list = NULL;
|
||
total_strings = total_free_strings = 0;
|
||
total_string_size = 0;
|
||
|
||
/* Scan strings_blocks, free Lisp_Strings that aren't marked. */
|
||
for (b = string_blocks; b; b = next)
|
||
{
|
||
int i, nfree = 0;
|
||
struct Lisp_String *free_list_before = string_free_list;
|
||
|
||
next = b->next;
|
||
|
||
for (i = 0; i < STRING_BLOCK_SIZE; ++i)
|
||
{
|
||
struct Lisp_String *s = b->strings + i;
|
||
|
||
if (s->data)
|
||
{
|
||
/* String was not on free-list before. */
|
||
if (STRING_MARKED_P (s))
|
||
{
|
||
/* String is live; unmark it and its intervals. */
|
||
UNMARK_STRING (s);
|
||
|
||
if (!NULL_INTERVAL_P (s->intervals))
|
||
UNMARK_BALANCE_INTERVALS (s->intervals);
|
||
|
||
++total_strings;
|
||
total_string_size += STRING_BYTES (s);
|
||
}
|
||
else
|
||
{
|
||
/* String is dead. Put it on the free-list. */
|
||
struct sdata *data = SDATA_OF_STRING (s);
|
||
|
||
/* Save the size of S in its sdata so that we know
|
||
how large that is. Reset the sdata's string
|
||
back-pointer so that we know it's free. */
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
|
||
abort ();
|
||
#else
|
||
data->u.nbytes = GC_STRING_BYTES (s);
|
||
#endif
|
||
data->string = NULL;
|
||
|
||
/* Reset the strings's `data' member so that we
|
||
know it's free. */
|
||
s->data = NULL;
|
||
|
||
/* Put the string on the free-list. */
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
++nfree;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* S was on the free-list before. Put it there again. */
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
++nfree;
|
||
}
|
||
}
|
||
|
||
/* Free blocks that contain free Lisp_Strings only, except
|
||
the first two of them. */
|
||
if (nfree == STRING_BLOCK_SIZE
|
||
&& total_free_strings > STRING_BLOCK_SIZE)
|
||
{
|
||
lisp_free (b);
|
||
--n_string_blocks;
|
||
string_free_list = free_list_before;
|
||
}
|
||
else
|
||
{
|
||
total_free_strings += nfree;
|
||
b->next = live_blocks;
|
||
live_blocks = b;
|
||
}
|
||
}
|
||
|
||
check_string_free_list ();
|
||
|
||
string_blocks = live_blocks;
|
||
free_large_strings ();
|
||
compact_small_strings ();
|
||
|
||
check_string_free_list ();
|
||
}
|
||
|
||
|
||
/* Free dead large strings. */
|
||
|
||
static void
|
||
free_large_strings ()
|
||
{
|
||
struct sblock *b, *next;
|
||
struct sblock *live_blocks = NULL;
|
||
|
||
for (b = large_sblocks; b; b = next)
|
||
{
|
||
next = b->next;
|
||
|
||
if (b->first_data.string == NULL)
|
||
lisp_free (b);
|
||
else
|
||
{
|
||
b->next = live_blocks;
|
||
live_blocks = b;
|
||
}
|
||
}
|
||
|
||
large_sblocks = live_blocks;
|
||
}
|
||
|
||
|
||
/* Compact data of small strings. Free sblocks that don't contain
|
||
data of live strings after compaction. */
|
||
|
||
static void
|
||
compact_small_strings ()
|
||
{
|
||
struct sblock *b, *tb, *next;
|
||
struct sdata *from, *to, *end, *tb_end;
|
||
struct sdata *to_end, *from_end;
|
||
|
||
/* TB is the sblock we copy to, TO is the sdata within TB we copy
|
||
to, and TB_END is the end of TB. */
|
||
tb = oldest_sblock;
|
||
tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
|
||
to = &tb->first_data;
|
||
|
||
/* Step through the blocks from the oldest to the youngest. We
|
||
expect that old blocks will stabilize over time, so that less
|
||
copying will happen this way. */
|
||
for (b = oldest_sblock; b; b = b->next)
|
||
{
|
||
end = b->next_free;
|
||
xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
|
||
|
||
for (from = &b->first_data; from < end; from = from_end)
|
||
{
|
||
/* Compute the next FROM here because copying below may
|
||
overwrite data we need to compute it. */
|
||
int nbytes;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
if (from->string
|
||
&& GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
|
||
abort ();
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
if (from->string)
|
||
nbytes = GC_STRING_BYTES (from->string);
|
||
else
|
||
nbytes = SDATA_NBYTES (from);
|
||
|
||
if (nbytes > LARGE_STRING_BYTES)
|
||
abort ();
|
||
|
||
nbytes = SDATA_SIZE (nbytes);
|
||
from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
|
||
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
if (bcmp (string_overrun_cookie,
|
||
((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
|
||
GC_STRING_OVERRUN_COOKIE_SIZE))
|
||
abort ();
|
||
#endif
|
||
|
||
/* FROM->string non-null means it's alive. Copy its data. */
|
||
if (from->string)
|
||
{
|
||
/* If TB is full, proceed with the next sblock. */
|
||
to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
|
||
if (to_end > tb_end)
|
||
{
|
||
tb->next_free = to;
|
||
tb = tb->next;
|
||
tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
|
||
to = &tb->first_data;
|
||
to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
|
||
}
|
||
|
||
/* Copy, and update the string's `data' pointer. */
|
||
if (from != to)
|
||
{
|
||
xassert (tb != b || to <= from);
|
||
safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
|
||
to->string->data = SDATA_DATA (to);
|
||
}
|
||
|
||
/* Advance past the sdata we copied to. */
|
||
to = to_end;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The rest of the sblocks following TB don't contain live data, so
|
||
we can free them. */
|
||
for (b = tb->next; b; b = next)
|
||
{
|
||
next = b->next;
|
||
lisp_free (b);
|
||
}
|
||
|
||
tb->next_free = to;
|
||
tb->next = NULL;
|
||
current_sblock = tb;
|
||
}
|
||
|
||
|
||
DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
|
||
doc: /* Return a newly created string of length LENGTH, with INIT in each element.
|
||
LENGTH must be an integer.
|
||
INIT must be an integer that represents a character. */)
|
||
(length, init)
|
||
Lisp_Object length, init;
|
||
{
|
||
register Lisp_Object val;
|
||
register unsigned char *p, *end;
|
||
int c, nbytes;
|
||
|
||
CHECK_NATNUM (length);
|
||
CHECK_NUMBER (init);
|
||
|
||
c = XINT (init);
|
||
if (ASCII_CHAR_P (c))
|
||
{
|
||
nbytes = XINT (length);
|
||
val = make_uninit_string (nbytes);
|
||
p = SDATA (val);
|
||
end = p + SCHARS (val);
|
||
while (p != end)
|
||
*p++ = c;
|
||
}
|
||
else
|
||
{
|
||
unsigned char str[MAX_MULTIBYTE_LENGTH];
|
||
int len = CHAR_STRING (c, str);
|
||
|
||
nbytes = len * XINT (length);
|
||
val = make_uninit_multibyte_string (XINT (length), nbytes);
|
||
p = SDATA (val);
|
||
end = p + nbytes;
|
||
while (p != end)
|
||
{
|
||
bcopy (str, p, len);
|
||
p += len;
|
||
}
|
||
}
|
||
|
||
*p = 0;
|
||
return val;
|
||
}
|
||
|
||
|
||
DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
|
||
doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
|
||
LENGTH must be a number. INIT matters only in whether it is t or nil. */)
|
||
(length, init)
|
||
Lisp_Object length, init;
|
||
{
|
||
register Lisp_Object val;
|
||
struct Lisp_Bool_Vector *p;
|
||
int real_init, i;
|
||
int length_in_chars, length_in_elts, bits_per_value;
|
||
|
||
CHECK_NATNUM (length);
|
||
|
||
bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
|
||
|
||
length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
|
||
length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
|
||
/ BOOL_VECTOR_BITS_PER_CHAR);
|
||
|
||
/* We must allocate one more elements than LENGTH_IN_ELTS for the
|
||
slot `size' of the struct Lisp_Bool_Vector. */
|
||
val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
|
||
|
||
/* Get rid of any bits that would cause confusion. */
|
||
XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
|
||
/* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
|
||
XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
|
||
|
||
p = XBOOL_VECTOR (val);
|
||
p->size = XFASTINT (length);
|
||
|
||
real_init = (NILP (init) ? 0 : -1);
|
||
for (i = 0; i < length_in_chars ; i++)
|
||
p->data[i] = real_init;
|
||
|
||
/* Clear the extraneous bits in the last byte. */
|
||
if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
|
||
p->data[length_in_chars - 1]
|
||
&= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
|
||
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from NBYTES bytes at CONTENTS, and compute the number
|
||
of characters from the contents. This string may be unibyte or
|
||
multibyte, depending on the contents. */
|
||
|
||
Lisp_Object
|
||
make_string (contents, nbytes)
|
||
const char *contents;
|
||
int nbytes;
|
||
{
|
||
register Lisp_Object val;
|
||
int nchars, multibyte_nbytes;
|
||
|
||
parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
|
||
if (nbytes == nchars || nbytes != multibyte_nbytes)
|
||
/* CONTENTS contains no multibyte sequences or contains an invalid
|
||
multibyte sequence. We must make unibyte string. */
|
||
val = make_unibyte_string (contents, nbytes);
|
||
else
|
||
val = make_multibyte_string (contents, nchars, nbytes);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make an unibyte string from LENGTH bytes at CONTENTS. */
|
||
|
||
Lisp_Object
|
||
make_unibyte_string (contents, length)
|
||
const char *contents;
|
||
int length;
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_string (length);
|
||
bcopy (contents, SDATA (val), length);
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a multibyte string from NCHARS characters occupying NBYTES
|
||
bytes at CONTENTS. */
|
||
|
||
Lisp_Object
|
||
make_multibyte_string (contents, nchars, nbytes)
|
||
const char *contents;
|
||
int nchars, nbytes;
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
bcopy (contents, SDATA (val), nbytes);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from NCHARS characters occupying NBYTES bytes at
|
||
CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
|
||
|
||
Lisp_Object
|
||
make_string_from_bytes (contents, nchars, nbytes)
|
||
const char *contents;
|
||
int nchars, nbytes;
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
bcopy (contents, SDATA (val), nbytes);
|
||
if (SBYTES (val) == SCHARS (val))
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from NCHARS characters occupying NBYTES bytes at
|
||
CONTENTS. The argument MULTIBYTE controls whether to label the
|
||
string as multibyte. If NCHARS is negative, it counts the number of
|
||
characters by itself. */
|
||
|
||
Lisp_Object
|
||
make_specified_string (contents, nchars, nbytes, multibyte)
|
||
const char *contents;
|
||
int nchars, nbytes;
|
||
int multibyte;
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
if (nchars < 0)
|
||
{
|
||
if (multibyte)
|
||
nchars = multibyte_chars_in_text (contents, nbytes);
|
||
else
|
||
nchars = nbytes;
|
||
}
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
bcopy (contents, SDATA (val), nbytes);
|
||
if (!multibyte)
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from the data at STR, treating it as multibyte if the
|
||
data warrants. */
|
||
|
||
Lisp_Object
|
||
build_string (str)
|
||
const char *str;
|
||
{
|
||
return make_string (str, strlen (str));
|
||
}
|
||
|
||
|
||
/* Return an unibyte Lisp_String set up to hold LENGTH characters
|
||
occupying LENGTH bytes. */
|
||
|
||
Lisp_Object
|
||
make_uninit_string (length)
|
||
int length;
|
||
{
|
||
Lisp_Object val;
|
||
|
||
if (!length)
|
||
return empty_unibyte_string;
|
||
val = make_uninit_multibyte_string (length, length);
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Return a multibyte Lisp_String set up to hold NCHARS characters
|
||
which occupy NBYTES bytes. */
|
||
|
||
Lisp_Object
|
||
make_uninit_multibyte_string (nchars, nbytes)
|
||
int nchars, nbytes;
|
||
{
|
||
Lisp_Object string;
|
||
struct Lisp_String *s;
|
||
|
||
if (nchars < 0)
|
||
abort ();
|
||
if (!nbytes)
|
||
return empty_multibyte_string;
|
||
|
||
s = allocate_string ();
|
||
allocate_string_data (s, nchars, nbytes);
|
||
XSETSTRING (string, s);
|
||
string_chars_consed += nbytes;
|
||
return string;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Float Allocation
|
||
***********************************************************************/
|
||
|
||
/* We store float cells inside of float_blocks, allocating a new
|
||
float_block with malloc whenever necessary. Float cells reclaimed
|
||
by GC are put on a free list to be reallocated before allocating
|
||
any new float cells from the latest float_block. */
|
||
|
||
#define FLOAT_BLOCK_SIZE \
|
||
(((BLOCK_BYTES - sizeof (struct float_block *) \
|
||
/* The compiler might add padding at the end. */ \
|
||
- (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
|
||
/ (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
|
||
|
||
#define GETMARKBIT(block,n) \
|
||
(((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
|
||
>> ((n) % (sizeof(int) * CHAR_BIT))) \
|
||
& 1)
|
||
|
||
#define SETMARKBIT(block,n) \
|
||
(block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
|
||
|= 1 << ((n) % (sizeof(int) * CHAR_BIT))
|
||
|
||
#define UNSETMARKBIT(block,n) \
|
||
(block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
|
||
&= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
|
||
|
||
#define FLOAT_BLOCK(fptr) \
|
||
((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
|
||
|
||
#define FLOAT_INDEX(fptr) \
|
||
((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
|
||
|
||
struct float_block
|
||
{
|
||
/* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
|
||
struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
|
||
int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
|
||
struct float_block *next;
|
||
};
|
||
|
||
#define FLOAT_MARKED_P(fptr) \
|
||
GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
#define FLOAT_MARK(fptr) \
|
||
SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
#define FLOAT_UNMARK(fptr) \
|
||
UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
/* Current float_block. */
|
||
|
||
struct float_block *float_block;
|
||
|
||
/* Index of first unused Lisp_Float in the current float_block. */
|
||
|
||
int float_block_index;
|
||
|
||
/* Total number of float blocks now in use. */
|
||
|
||
int n_float_blocks;
|
||
|
||
/* Free-list of Lisp_Floats. */
|
||
|
||
struct Lisp_Float *float_free_list;
|
||
|
||
|
||
/* Initialize float allocation. */
|
||
|
||
static void
|
||
init_float ()
|
||
{
|
||
float_block = NULL;
|
||
float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
|
||
float_free_list = 0;
|
||
n_float_blocks = 0;
|
||
}
|
||
|
||
|
||
/* Explicitly free a float cell by putting it on the free-list. */
|
||
|
||
static void
|
||
free_float (ptr)
|
||
struct Lisp_Float *ptr;
|
||
{
|
||
ptr->u.chain = float_free_list;
|
||
float_free_list = ptr;
|
||
}
|
||
|
||
|
||
/* Return a new float object with value FLOAT_VALUE. */
|
||
|
||
Lisp_Object
|
||
make_float (float_value)
|
||
double float_value;
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (float_free_list)
|
||
{
|
||
/* We use the data field for chaining the free list
|
||
so that we won't use the same field that has the mark bit. */
|
||
XSETFLOAT (val, float_free_list);
|
||
float_free_list = float_free_list->u.chain;
|
||
}
|
||
else
|
||
{
|
||
if (float_block_index == FLOAT_BLOCK_SIZE)
|
||
{
|
||
register struct float_block *new;
|
||
|
||
new = (struct float_block *) lisp_align_malloc (sizeof *new,
|
||
MEM_TYPE_FLOAT);
|
||
new->next = float_block;
|
||
bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
|
||
float_block = new;
|
||
float_block_index = 0;
|
||
n_float_blocks++;
|
||
}
|
||
XSETFLOAT (val, &float_block->floats[float_block_index]);
|
||
float_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
XFLOAT_DATA (val) = float_value;
|
||
eassert (!FLOAT_MARKED_P (XFLOAT (val)));
|
||
consing_since_gc += sizeof (struct Lisp_Float);
|
||
floats_consed++;
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Cons Allocation
|
||
***********************************************************************/
|
||
|
||
/* We store cons cells inside of cons_blocks, allocating a new
|
||
cons_block with malloc whenever necessary. Cons cells reclaimed by
|
||
GC are put on a free list to be reallocated before allocating
|
||
any new cons cells from the latest cons_block. */
|
||
|
||
#define CONS_BLOCK_SIZE \
|
||
(((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
|
||
/ (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
|
||
|
||
#define CONS_BLOCK(fptr) \
|
||
((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
|
||
|
||
#define CONS_INDEX(fptr) \
|
||
((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
|
||
|
||
struct cons_block
|
||
{
|
||
/* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
|
||
struct Lisp_Cons conses[CONS_BLOCK_SIZE];
|
||
int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
|
||
struct cons_block *next;
|
||
};
|
||
|
||
#define CONS_MARKED_P(fptr) \
|
||
GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
#define CONS_MARK(fptr) \
|
||
SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
#define CONS_UNMARK(fptr) \
|
||
UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
/* Current cons_block. */
|
||
|
||
struct cons_block *cons_block;
|
||
|
||
/* Index of first unused Lisp_Cons in the current block. */
|
||
|
||
int cons_block_index;
|
||
|
||
/* Free-list of Lisp_Cons structures. */
|
||
|
||
struct Lisp_Cons *cons_free_list;
|
||
|
||
/* Total number of cons blocks now in use. */
|
||
|
||
static int n_cons_blocks;
|
||
|
||
|
||
/* Initialize cons allocation. */
|
||
|
||
static void
|
||
init_cons ()
|
||
{
|
||
cons_block = NULL;
|
||
cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
|
||
cons_free_list = 0;
|
||
n_cons_blocks = 0;
|
||
}
|
||
|
||
|
||
/* Explicitly free a cons cell by putting it on the free-list. */
|
||
|
||
void
|
||
free_cons (ptr)
|
||
struct Lisp_Cons *ptr;
|
||
{
|
||
ptr->u.chain = cons_free_list;
|
||
#if GC_MARK_STACK
|
||
ptr->car = Vdead;
|
||
#endif
|
||
cons_free_list = ptr;
|
||
}
|
||
|
||
DEFUN ("cons", Fcons, Scons, 2, 2, 0,
|
||
doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
|
||
(car, cdr)
|
||
Lisp_Object car, cdr;
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (cons_free_list)
|
||
{
|
||
/* We use the cdr for chaining the free list
|
||
so that we won't use the same field that has the mark bit. */
|
||
XSETCONS (val, cons_free_list);
|
||
cons_free_list = cons_free_list->u.chain;
|
||
}
|
||
else
|
||
{
|
||
if (cons_block_index == CONS_BLOCK_SIZE)
|
||
{
|
||
register struct cons_block *new;
|
||
new = (struct cons_block *) lisp_align_malloc (sizeof *new,
|
||
MEM_TYPE_CONS);
|
||
bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
|
||
new->next = cons_block;
|
||
cons_block = new;
|
||
cons_block_index = 0;
|
||
n_cons_blocks++;
|
||
}
|
||
XSETCONS (val, &cons_block->conses[cons_block_index]);
|
||
cons_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
XSETCAR (val, car);
|
||
XSETCDR (val, cdr);
|
||
eassert (!CONS_MARKED_P (XCONS (val)));
|
||
consing_since_gc += sizeof (struct Lisp_Cons);
|
||
cons_cells_consed++;
|
||
return val;
|
||
}
|
||
|
||
/* Get an error now if there's any junk in the cons free list. */
|
||
void
|
||
check_cons_list ()
|
||
{
|
||
#ifdef GC_CHECK_CONS_LIST
|
||
struct Lisp_Cons *tail = cons_free_list;
|
||
|
||
while (tail)
|
||
tail = tail->u.chain;
|
||
#endif
|
||
}
|
||
|
||
/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
|
||
|
||
Lisp_Object
|
||
list1 (arg1)
|
||
Lisp_Object arg1;
|
||
{
|
||
return Fcons (arg1, Qnil);
|
||
}
|
||
|
||
Lisp_Object
|
||
list2 (arg1, arg2)
|
||
Lisp_Object arg1, arg2;
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Qnil));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list3 (arg1, arg2, arg3)
|
||
Lisp_Object arg1, arg2, arg3;
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list4 (arg1, arg2, arg3, arg4)
|
||
Lisp_Object arg1, arg2, arg3, arg4;
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list5 (arg1, arg2, arg3, arg4, arg5)
|
||
Lisp_Object arg1, arg2, arg3, arg4, arg5;
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
|
||
Fcons (arg5, Qnil)))));
|
||
}
|
||
|
||
|
||
DEFUN ("list", Flist, Slist, 0, MANY, 0,
|
||
doc: /* Return a newly created list with specified arguments as elements.
|
||
Any number of arguments, even zero arguments, are allowed.
|
||
usage: (list &rest OBJECTS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
register Lisp_Object *args;
|
||
{
|
||
register Lisp_Object val;
|
||
val = Qnil;
|
||
|
||
while (nargs > 0)
|
||
{
|
||
nargs--;
|
||
val = Fcons (args[nargs], val);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
|
||
DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
|
||
doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
|
||
(length, init)
|
||
register Lisp_Object length, init;
|
||
{
|
||
register Lisp_Object val;
|
||
register int size;
|
||
|
||
CHECK_NATNUM (length);
|
||
size = XFASTINT (length);
|
||
|
||
val = Qnil;
|
||
while (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Vector Allocation
|
||
***********************************************************************/
|
||
|
||
/* Singly-linked list of all vectors. */
|
||
|
||
static struct Lisp_Vector *all_vectors;
|
||
|
||
/* Total number of vector-like objects now in use. */
|
||
|
||
static int n_vectors;
|
||
|
||
|
||
/* Value is a pointer to a newly allocated Lisp_Vector structure
|
||
with room for LEN Lisp_Objects. */
|
||
|
||
static struct Lisp_Vector *
|
||
allocate_vectorlike (len)
|
||
EMACS_INT len;
|
||
{
|
||
struct Lisp_Vector *p;
|
||
size_t nbytes;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs. */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
/* This gets triggered by code which I haven't bothered to fix. --Stef */
|
||
/* eassert (!handling_signal); */
|
||
|
||
nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
|
||
p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
consing_since_gc += nbytes;
|
||
vector_cells_consed += len;
|
||
|
||
p->next = all_vectors;
|
||
all_vectors = p;
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
++n_vectors;
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Allocate a vector with NSLOTS slots. */
|
||
|
||
struct Lisp_Vector *
|
||
allocate_vector (nslots)
|
||
EMACS_INT nslots;
|
||
{
|
||
struct Lisp_Vector *v = allocate_vectorlike (nslots);
|
||
v->size = nslots;
|
||
return v;
|
||
}
|
||
|
||
|
||
/* Allocate other vector-like structures. */
|
||
|
||
struct Lisp_Vector *
|
||
allocate_pseudovector (memlen, lisplen, tag)
|
||
int memlen, lisplen;
|
||
EMACS_INT tag;
|
||
{
|
||
struct Lisp_Vector *v = allocate_vectorlike (memlen);
|
||
EMACS_INT i;
|
||
|
||
/* Only the first lisplen slots will be traced normally by the GC. */
|
||
v->size = lisplen;
|
||
for (i = 0; i < lisplen; ++i)
|
||
v->contents[i] = Qnil;
|
||
|
||
XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
|
||
return v;
|
||
}
|
||
|
||
struct Lisp_Hash_Table *
|
||
allocate_hash_table (void)
|
||
{
|
||
return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
|
||
}
|
||
|
||
|
||
struct window *
|
||
allocate_window ()
|
||
{
|
||
return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
|
||
}
|
||
|
||
|
||
struct terminal *
|
||
allocate_terminal ()
|
||
{
|
||
struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
|
||
next_terminal, PVEC_TERMINAL);
|
||
/* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
|
||
bzero (&(t->next_terminal),
|
||
((char*)(t+1)) - ((char*)&(t->next_terminal)));
|
||
|
||
return t;
|
||
}
|
||
|
||
struct frame *
|
||
allocate_frame ()
|
||
{
|
||
struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
|
||
face_cache, PVEC_FRAME);
|
||
/* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
|
||
bzero (&(f->face_cache),
|
||
((char*)(f+1)) - ((char*)&(f->face_cache)));
|
||
return f;
|
||
}
|
||
|
||
|
||
struct Lisp_Process *
|
||
allocate_process ()
|
||
{
|
||
return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
|
||
}
|
||
|
||
|
||
DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
|
||
doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
|
||
See also the function `vector'. */)
|
||
(length, init)
|
||
register Lisp_Object length, init;
|
||
{
|
||
Lisp_Object vector;
|
||
register EMACS_INT sizei;
|
||
register int index;
|
||
register struct Lisp_Vector *p;
|
||
|
||
CHECK_NATNUM (length);
|
||
sizei = XFASTINT (length);
|
||
|
||
p = allocate_vector (sizei);
|
||
for (index = 0; index < sizei; index++)
|
||
p->contents[index] = init;
|
||
|
||
XSETVECTOR (vector, p);
|
||
return vector;
|
||
}
|
||
|
||
|
||
DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
|
||
doc: /* Return a newly created vector with specified arguments as elements.
|
||
Any number of arguments, even zero arguments, are allowed.
|
||
usage: (vector &rest OBJECTS) */)
|
||
(nargs, args)
|
||
register int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
register Lisp_Object len, val;
|
||
register int index;
|
||
register struct Lisp_Vector *p;
|
||
|
||
XSETFASTINT (len, nargs);
|
||
val = Fmake_vector (len, Qnil);
|
||
p = XVECTOR (val);
|
||
for (index = 0; index < nargs; index++)
|
||
p->contents[index] = args[index];
|
||
return val;
|
||
}
|
||
|
||
|
||
DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
|
||
doc: /* Create a byte-code object with specified arguments as elements.
|
||
The arguments should be the arglist, bytecode-string, constant vector,
|
||
stack size, (optional) doc string, and (optional) interactive spec.
|
||
The first four arguments are required; at most six have any
|
||
significance.
|
||
usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
|
||
(nargs, args)
|
||
register int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
register Lisp_Object len, val;
|
||
register int index;
|
||
register struct Lisp_Vector *p;
|
||
|
||
XSETFASTINT (len, nargs);
|
||
if (!NILP (Vpurify_flag))
|
||
val = make_pure_vector ((EMACS_INT) nargs);
|
||
else
|
||
val = Fmake_vector (len, Qnil);
|
||
|
||
if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
|
||
/* BYTECODE-STRING must have been produced by Emacs 20.2 or the
|
||
earlier because they produced a raw 8-bit string for byte-code
|
||
and now such a byte-code string is loaded as multibyte while
|
||
raw 8-bit characters converted to multibyte form. Thus, now we
|
||
must convert them back to the original unibyte form. */
|
||
args[1] = Fstring_as_unibyte (args[1]);
|
||
|
||
p = XVECTOR (val);
|
||
for (index = 0; index < nargs; index++)
|
||
{
|
||
if (!NILP (Vpurify_flag))
|
||
args[index] = Fpurecopy (args[index]);
|
||
p->contents[index] = args[index];
|
||
}
|
||
XSETPVECTYPE (p, PVEC_COMPILED);
|
||
XSETCOMPILED (val, p);
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Symbol Allocation
|
||
***********************************************************************/
|
||
|
||
/* Each symbol_block is just under 1020 bytes long, since malloc
|
||
really allocates in units of powers of two and uses 4 bytes for its
|
||
own overhead. */
|
||
|
||
#define SYMBOL_BLOCK_SIZE \
|
||
((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
|
||
|
||
struct symbol_block
|
||
{
|
||
/* Place `symbols' first, to preserve alignment. */
|
||
struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
|
||
struct symbol_block *next;
|
||
};
|
||
|
||
/* Current symbol block and index of first unused Lisp_Symbol
|
||
structure in it. */
|
||
|
||
static struct symbol_block *symbol_block;
|
||
static int symbol_block_index;
|
||
|
||
/* List of free symbols. */
|
||
|
||
static struct Lisp_Symbol *symbol_free_list;
|
||
|
||
/* Total number of symbol blocks now in use. */
|
||
|
||
static int n_symbol_blocks;
|
||
|
||
|
||
/* Initialize symbol allocation. */
|
||
|
||
static void
|
||
init_symbol ()
|
||
{
|
||
symbol_block = NULL;
|
||
symbol_block_index = SYMBOL_BLOCK_SIZE;
|
||
symbol_free_list = 0;
|
||
n_symbol_blocks = 0;
|
||
}
|
||
|
||
|
||
DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
|
||
doc: /* Return a newly allocated uninterned symbol whose name is NAME.
|
||
Its value and function definition are void, and its property list is nil. */)
|
||
(name)
|
||
Lisp_Object name;
|
||
{
|
||
register Lisp_Object val;
|
||
register struct Lisp_Symbol *p;
|
||
|
||
CHECK_STRING (name);
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (symbol_free_list)
|
||
{
|
||
XSETSYMBOL (val, symbol_free_list);
|
||
symbol_free_list = symbol_free_list->next;
|
||
}
|
||
else
|
||
{
|
||
if (symbol_block_index == SYMBOL_BLOCK_SIZE)
|
||
{
|
||
struct symbol_block *new;
|
||
new = (struct symbol_block *) lisp_malloc (sizeof *new,
|
||
MEM_TYPE_SYMBOL);
|
||
new->next = symbol_block;
|
||
symbol_block = new;
|
||
symbol_block_index = 0;
|
||
n_symbol_blocks++;
|
||
}
|
||
XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
|
||
symbol_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
p = XSYMBOL (val);
|
||
p->xname = name;
|
||
p->plist = Qnil;
|
||
p->value = Qunbound;
|
||
p->function = Qunbound;
|
||
p->next = NULL;
|
||
p->gcmarkbit = 0;
|
||
p->interned = SYMBOL_UNINTERNED;
|
||
p->constant = 0;
|
||
p->indirect_variable = 0;
|
||
consing_since_gc += sizeof (struct Lisp_Symbol);
|
||
symbols_consed++;
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Marker (Misc) Allocation
|
||
***********************************************************************/
|
||
|
||
/* Allocation of markers and other objects that share that structure.
|
||
Works like allocation of conses. */
|
||
|
||
#define MARKER_BLOCK_SIZE \
|
||
((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
|
||
|
||
struct marker_block
|
||
{
|
||
/* Place `markers' first, to preserve alignment. */
|
||
union Lisp_Misc markers[MARKER_BLOCK_SIZE];
|
||
struct marker_block *next;
|
||
};
|
||
|
||
static struct marker_block *marker_block;
|
||
static int marker_block_index;
|
||
|
||
static union Lisp_Misc *marker_free_list;
|
||
|
||
/* Total number of marker blocks now in use. */
|
||
|
||
static int n_marker_blocks;
|
||
|
||
static void
|
||
init_marker ()
|
||
{
|
||
marker_block = NULL;
|
||
marker_block_index = MARKER_BLOCK_SIZE;
|
||
marker_free_list = 0;
|
||
n_marker_blocks = 0;
|
||
}
|
||
|
||
/* Return a newly allocated Lisp_Misc object, with no substructure. */
|
||
|
||
Lisp_Object
|
||
allocate_misc ()
|
||
{
|
||
Lisp_Object val;
|
||
|
||
/* eassert (!handling_signal); */
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (marker_free_list)
|
||
{
|
||
XSETMISC (val, marker_free_list);
|
||
marker_free_list = marker_free_list->u_free.chain;
|
||
}
|
||
else
|
||
{
|
||
if (marker_block_index == MARKER_BLOCK_SIZE)
|
||
{
|
||
struct marker_block *new;
|
||
new = (struct marker_block *) lisp_malloc (sizeof *new,
|
||
MEM_TYPE_MISC);
|
||
new->next = marker_block;
|
||
marker_block = new;
|
||
marker_block_index = 0;
|
||
n_marker_blocks++;
|
||
total_free_markers += MARKER_BLOCK_SIZE;
|
||
}
|
||
XSETMISC (val, &marker_block->markers[marker_block_index]);
|
||
marker_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
--total_free_markers;
|
||
consing_since_gc += sizeof (union Lisp_Misc);
|
||
misc_objects_consed++;
|
||
XMISCANY (val)->gcmarkbit = 0;
|
||
return val;
|
||
}
|
||
|
||
/* Free a Lisp_Misc object */
|
||
|
||
void
|
||
free_misc (misc)
|
||
Lisp_Object misc;
|
||
{
|
||
XMISCTYPE (misc) = Lisp_Misc_Free;
|
||
XMISC (misc)->u_free.chain = marker_free_list;
|
||
marker_free_list = XMISC (misc);
|
||
|
||
total_free_markers++;
|
||
}
|
||
|
||
/* Return a Lisp_Misc_Save_Value object containing POINTER and
|
||
INTEGER. This is used to package C values to call record_unwind_protect.
|
||
The unwind function can get the C values back using XSAVE_VALUE. */
|
||
|
||
Lisp_Object
|
||
make_save_value (pointer, integer)
|
||
void *pointer;
|
||
int integer;
|
||
{
|
||
register Lisp_Object val;
|
||
register struct Lisp_Save_Value *p;
|
||
|
||
val = allocate_misc ();
|
||
XMISCTYPE (val) = Lisp_Misc_Save_Value;
|
||
p = XSAVE_VALUE (val);
|
||
p->pointer = pointer;
|
||
p->integer = integer;
|
||
p->dogc = 0;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
|
||
doc: /* Return a newly allocated marker which does not point at any place. */)
|
||
()
|
||
{
|
||
register Lisp_Object val;
|
||
register struct Lisp_Marker *p;
|
||
|
||
val = allocate_misc ();
|
||
XMISCTYPE (val) = Lisp_Misc_Marker;
|
||
p = XMARKER (val);
|
||
p->buffer = 0;
|
||
p->bytepos = 0;
|
||
p->charpos = 0;
|
||
p->next = NULL;
|
||
p->insertion_type = 0;
|
||
return val;
|
||
}
|
||
|
||
/* Put MARKER back on the free list after using it temporarily. */
|
||
|
||
void
|
||
free_marker (marker)
|
||
Lisp_Object marker;
|
||
{
|
||
unchain_marker (XMARKER (marker));
|
||
free_misc (marker);
|
||
}
|
||
|
||
|
||
/* Return a newly created vector or string with specified arguments as
|
||
elements. If all the arguments are characters that can fit
|
||
in a string of events, make a string; otherwise, make a vector.
|
||
|
||
Any number of arguments, even zero arguments, are allowed. */
|
||
|
||
Lisp_Object
|
||
make_event_array (nargs, args)
|
||
register int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
/* The things that fit in a string
|
||
are characters that are in 0...127,
|
||
after discarding the meta bit and all the bits above it. */
|
||
if (!INTEGERP (args[i])
|
||
|| (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
|
||
return Fvector (nargs, args);
|
||
|
||
/* Since the loop exited, we know that all the things in it are
|
||
characters, so we can make a string. */
|
||
{
|
||
Lisp_Object result;
|
||
|
||
result = Fmake_string (make_number (nargs), make_number (0));
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
SSET (result, i, XINT (args[i]));
|
||
/* Move the meta bit to the right place for a string char. */
|
||
if (XINT (args[i]) & CHAR_META)
|
||
SSET (result, i, SREF (result, i) | 0x80);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/************************************************************************
|
||
Memory Full Handling
|
||
************************************************************************/
|
||
|
||
|
||
/* Called if malloc returns zero. */
|
||
|
||
void
|
||
memory_full ()
|
||
{
|
||
int i;
|
||
|
||
Vmemory_full = Qt;
|
||
|
||
memory_full_cons_threshold = sizeof (struct cons_block);
|
||
|
||
/* The first time we get here, free the spare memory. */
|
||
for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
|
||
if (spare_memory[i])
|
||
{
|
||
if (i == 0)
|
||
free (spare_memory[i]);
|
||
else if (i >= 1 && i <= 4)
|
||
lisp_align_free (spare_memory[i]);
|
||
else
|
||
lisp_free (spare_memory[i]);
|
||
spare_memory[i] = 0;
|
||
}
|
||
|
||
/* Record the space now used. When it decreases substantially,
|
||
we can refill the memory reserve. */
|
||
#ifndef SYSTEM_MALLOC
|
||
bytes_used_when_full = BYTES_USED;
|
||
#endif
|
||
|
||
/* This used to call error, but if we've run out of memory, we could
|
||
get infinite recursion trying to build the string. */
|
||
xsignal (Qnil, Vmemory_signal_data);
|
||
}
|
||
|
||
/* If we released our reserve (due to running out of memory),
|
||
and we have a fair amount free once again,
|
||
try to set aside another reserve in case we run out once more.
|
||
|
||
This is called when a relocatable block is freed in ralloc.c,
|
||
and also directly from this file, in case we're not using ralloc.c. */
|
||
|
||
void
|
||
refill_memory_reserve ()
|
||
{
|
||
#ifndef SYSTEM_MALLOC
|
||
if (spare_memory[0] == 0)
|
||
spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
|
||
if (spare_memory[1] == 0)
|
||
spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_CONS);
|
||
if (spare_memory[2] == 0)
|
||
spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_CONS);
|
||
if (spare_memory[3] == 0)
|
||
spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_CONS);
|
||
if (spare_memory[4] == 0)
|
||
spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_CONS);
|
||
if (spare_memory[5] == 0)
|
||
spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
|
||
MEM_TYPE_STRING);
|
||
if (spare_memory[6] == 0)
|
||
spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
|
||
MEM_TYPE_STRING);
|
||
if (spare_memory[0] && spare_memory[1] && spare_memory[5])
|
||
Vmemory_full = Qnil;
|
||
#endif
|
||
}
|
||
|
||
/************************************************************************
|
||
C Stack Marking
|
||
************************************************************************/
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
|
||
/* Conservative C stack marking requires a method to identify possibly
|
||
live Lisp objects given a pointer value. We do this by keeping
|
||
track of blocks of Lisp data that are allocated in a red-black tree
|
||
(see also the comment of mem_node which is the type of nodes in
|
||
that tree). Function lisp_malloc adds information for an allocated
|
||
block to the red-black tree with calls to mem_insert, and function
|
||
lisp_free removes it with mem_delete. Functions live_string_p etc
|
||
call mem_find to lookup information about a given pointer in the
|
||
tree, and use that to determine if the pointer points to a Lisp
|
||
object or not. */
|
||
|
||
/* Initialize this part of alloc.c. */
|
||
|
||
static void
|
||
mem_init ()
|
||
{
|
||
mem_z.left = mem_z.right = MEM_NIL;
|
||
mem_z.parent = NULL;
|
||
mem_z.color = MEM_BLACK;
|
||
mem_z.start = mem_z.end = NULL;
|
||
mem_root = MEM_NIL;
|
||
}
|
||
|
||
|
||
/* Value is a pointer to the mem_node containing START. Value is
|
||
MEM_NIL if there is no node in the tree containing START. */
|
||
|
||
static INLINE struct mem_node *
|
||
mem_find (start)
|
||
void *start;
|
||
{
|
||
struct mem_node *p;
|
||
|
||
if (start < min_heap_address || start > max_heap_address)
|
||
return MEM_NIL;
|
||
|
||
/* Make the search always successful to speed up the loop below. */
|
||
mem_z.start = start;
|
||
mem_z.end = (char *) start + 1;
|
||
|
||
p = mem_root;
|
||
while (start < p->start || start >= p->end)
|
||
p = start < p->start ? p->left : p->right;
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Insert a new node into the tree for a block of memory with start
|
||
address START, end address END, and type TYPE. Value is a
|
||
pointer to the node that was inserted. */
|
||
|
||
static struct mem_node *
|
||
mem_insert (start, end, type)
|
||
void *start, *end;
|
||
enum mem_type type;
|
||
{
|
||
struct mem_node *c, *parent, *x;
|
||
|
||
if (min_heap_address == NULL || start < min_heap_address)
|
||
min_heap_address = start;
|
||
if (max_heap_address == NULL || end > max_heap_address)
|
||
max_heap_address = end;
|
||
|
||
/* See where in the tree a node for START belongs. In this
|
||
particular application, it shouldn't happen that a node is already
|
||
present. For debugging purposes, let's check that. */
|
||
c = mem_root;
|
||
parent = NULL;
|
||
|
||
#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
|
||
|
||
while (c != MEM_NIL)
|
||
{
|
||
if (start >= c->start && start < c->end)
|
||
abort ();
|
||
parent = c;
|
||
c = start < c->start ? c->left : c->right;
|
||
}
|
||
|
||
#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
|
||
|
||
while (c != MEM_NIL)
|
||
{
|
||
parent = c;
|
||
c = start < c->start ? c->left : c->right;
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
|
||
|
||
/* Create a new node. */
|
||
#ifdef GC_MALLOC_CHECK
|
||
x = (struct mem_node *) _malloc_internal (sizeof *x);
|
||
if (x == NULL)
|
||
abort ();
|
||
#else
|
||
x = (struct mem_node *) xmalloc (sizeof *x);
|
||
#endif
|
||
x->start = start;
|
||
x->end = end;
|
||
x->type = type;
|
||
x->parent = parent;
|
||
x->left = x->right = MEM_NIL;
|
||
x->color = MEM_RED;
|
||
|
||
/* Insert it as child of PARENT or install it as root. */
|
||
if (parent)
|
||
{
|
||
if (start < parent->start)
|
||
parent->left = x;
|
||
else
|
||
parent->right = x;
|
||
}
|
||
else
|
||
mem_root = x;
|
||
|
||
/* Re-establish red-black tree properties. */
|
||
mem_insert_fixup (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
|
||
/* Re-establish the red-black properties of the tree, and thereby
|
||
balance the tree, after node X has been inserted; X is always red. */
|
||
|
||
static void
|
||
mem_insert_fixup (x)
|
||
struct mem_node *x;
|
||
{
|
||
while (x != mem_root && x->parent->color == MEM_RED)
|
||
{
|
||
/* X is red and its parent is red. This is a violation of
|
||
red-black tree property #3. */
|
||
|
||
if (x->parent == x->parent->parent->left)
|
||
{
|
||
/* We're on the left side of our grandparent, and Y is our
|
||
"uncle". */
|
||
struct mem_node *y = x->parent->parent->right;
|
||
|
||
if (y->color == MEM_RED)
|
||
{
|
||
/* Uncle and parent are red but should be black because
|
||
X is red. Change the colors accordingly and proceed
|
||
with the grandparent. */
|
||
x->parent->color = MEM_BLACK;
|
||
y->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
x = x->parent->parent;
|
||
}
|
||
else
|
||
{
|
||
/* Parent and uncle have different colors; parent is
|
||
red, uncle is black. */
|
||
if (x == x->parent->right)
|
||
{
|
||
x = x->parent;
|
||
mem_rotate_left (x);
|
||
}
|
||
|
||
x->parent->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
mem_rotate_right (x->parent->parent);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is the symmetrical case of above. */
|
||
struct mem_node *y = x->parent->parent->left;
|
||
|
||
if (y->color == MEM_RED)
|
||
{
|
||
x->parent->color = MEM_BLACK;
|
||
y->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
x = x->parent->parent;
|
||
}
|
||
else
|
||
{
|
||
if (x == x->parent->left)
|
||
{
|
||
x = x->parent;
|
||
mem_rotate_right (x);
|
||
}
|
||
|
||
x->parent->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
mem_rotate_left (x->parent->parent);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The root may have been changed to red due to the algorithm. Set
|
||
it to black so that property #5 is satisfied. */
|
||
mem_root->color = MEM_BLACK;
|
||
}
|
||
|
||
|
||
/* (x) (y)
|
||
/ \ / \
|
||
a (y) ===> (x) c
|
||
/ \ / \
|
||
b c a b */
|
||
|
||
static void
|
||
mem_rotate_left (x)
|
||
struct mem_node *x;
|
||
{
|
||
struct mem_node *y;
|
||
|
||
/* Turn y's left sub-tree into x's right sub-tree. */
|
||
y = x->right;
|
||
x->right = y->left;
|
||
if (y->left != MEM_NIL)
|
||
y->left->parent = x;
|
||
|
||
/* Y's parent was x's parent. */
|
||
if (y != MEM_NIL)
|
||
y->parent = x->parent;
|
||
|
||
/* Get the parent to point to y instead of x. */
|
||
if (x->parent)
|
||
{
|
||
if (x == x->parent->left)
|
||
x->parent->left = y;
|
||
else
|
||
x->parent->right = y;
|
||
}
|
||
else
|
||
mem_root = y;
|
||
|
||
/* Put x on y's left. */
|
||
y->left = x;
|
||
if (x != MEM_NIL)
|
||
x->parent = y;
|
||
}
|
||
|
||
|
||
/* (x) (Y)
|
||
/ \ / \
|
||
(y) c ===> a (x)
|
||
/ \ / \
|
||
a b b c */
|
||
|
||
static void
|
||
mem_rotate_right (x)
|
||
struct mem_node *x;
|
||
{
|
||
struct mem_node *y = x->left;
|
||
|
||
x->left = y->right;
|
||
if (y->right != MEM_NIL)
|
||
y->right->parent = x;
|
||
|
||
if (y != MEM_NIL)
|
||
y->parent = x->parent;
|
||
if (x->parent)
|
||
{
|
||
if (x == x->parent->right)
|
||
x->parent->right = y;
|
||
else
|
||
x->parent->left = y;
|
||
}
|
||
else
|
||
mem_root = y;
|
||
|
||
y->right = x;
|
||
if (x != MEM_NIL)
|
||
x->parent = y;
|
||
}
|
||
|
||
|
||
/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
|
||
|
||
static void
|
||
mem_delete (z)
|
||
struct mem_node *z;
|
||
{
|
||
struct mem_node *x, *y;
|
||
|
||
if (!z || z == MEM_NIL)
|
||
return;
|
||
|
||
if (z->left == MEM_NIL || z->right == MEM_NIL)
|
||
y = z;
|
||
else
|
||
{
|
||
y = z->right;
|
||
while (y->left != MEM_NIL)
|
||
y = y->left;
|
||
}
|
||
|
||
if (y->left != MEM_NIL)
|
||
x = y->left;
|
||
else
|
||
x = y->right;
|
||
|
||
x->parent = y->parent;
|
||
if (y->parent)
|
||
{
|
||
if (y == y->parent->left)
|
||
y->parent->left = x;
|
||
else
|
||
y->parent->right = x;
|
||
}
|
||
else
|
||
mem_root = x;
|
||
|
||
if (y != z)
|
||
{
|
||
z->start = y->start;
|
||
z->end = y->end;
|
||
z->type = y->type;
|
||
}
|
||
|
||
if (y->color == MEM_BLACK)
|
||
mem_delete_fixup (x);
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
_free_internal (y);
|
||
#else
|
||
xfree (y);
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Re-establish the red-black properties of the tree, after a
|
||
deletion. */
|
||
|
||
static void
|
||
mem_delete_fixup (x)
|
||
struct mem_node *x;
|
||
{
|
||
while (x != mem_root && x->color == MEM_BLACK)
|
||
{
|
||
if (x == x->parent->left)
|
||
{
|
||
struct mem_node *w = x->parent->right;
|
||
|
||
if (w->color == MEM_RED)
|
||
{
|
||
w->color = MEM_BLACK;
|
||
x->parent->color = MEM_RED;
|
||
mem_rotate_left (x->parent);
|
||
w = x->parent->right;
|
||
}
|
||
|
||
if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
|
||
{
|
||
w->color = MEM_RED;
|
||
x = x->parent;
|
||
}
|
||
else
|
||
{
|
||
if (w->right->color == MEM_BLACK)
|
||
{
|
||
w->left->color = MEM_BLACK;
|
||
w->color = MEM_RED;
|
||
mem_rotate_right (w);
|
||
w = x->parent->right;
|
||
}
|
||
w->color = x->parent->color;
|
||
x->parent->color = MEM_BLACK;
|
||
w->right->color = MEM_BLACK;
|
||
mem_rotate_left (x->parent);
|
||
x = mem_root;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct mem_node *w = x->parent->left;
|
||
|
||
if (w->color == MEM_RED)
|
||
{
|
||
w->color = MEM_BLACK;
|
||
x->parent->color = MEM_RED;
|
||
mem_rotate_right (x->parent);
|
||
w = x->parent->left;
|
||
}
|
||
|
||
if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
|
||
{
|
||
w->color = MEM_RED;
|
||
x = x->parent;
|
||
}
|
||
else
|
||
{
|
||
if (w->left->color == MEM_BLACK)
|
||
{
|
||
w->right->color = MEM_BLACK;
|
||
w->color = MEM_RED;
|
||
mem_rotate_left (w);
|
||
w = x->parent->left;
|
||
}
|
||
|
||
w->color = x->parent->color;
|
||
x->parent->color = MEM_BLACK;
|
||
w->left->color = MEM_BLACK;
|
||
mem_rotate_right (x->parent);
|
||
x = mem_root;
|
||
}
|
||
}
|
||
}
|
||
|
||
x->color = MEM_BLACK;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp string on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_string_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
if (m->type == MEM_TYPE_STRING)
|
||
{
|
||
struct string_block *b = (struct string_block *) m->start;
|
||
int offset = (char *) p - (char *) &b->strings[0];
|
||
|
||
/* P must point to the start of a Lisp_String structure, and it
|
||
must not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->strings[0] == 0
|
||
&& offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
|
||
&& ((struct Lisp_String *) p)->data != NULL);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp cons on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_cons_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
if (m->type == MEM_TYPE_CONS)
|
||
{
|
||
struct cons_block *b = (struct cons_block *) m->start;
|
||
int offset = (char *) p - (char *) &b->conses[0];
|
||
|
||
/* P must point to the start of a Lisp_Cons, not be
|
||
one of the unused cells in the current cons block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->conses[0] == 0
|
||
&& offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
|
||
&& (b != cons_block
|
||
|| offset / sizeof b->conses[0] < cons_block_index)
|
||
&& !EQ (((struct Lisp_Cons *) p)->car, Vdead));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp symbol on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_symbol_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
if (m->type == MEM_TYPE_SYMBOL)
|
||
{
|
||
struct symbol_block *b = (struct symbol_block *) m->start;
|
||
int offset = (char *) p - (char *) &b->symbols[0];
|
||
|
||
/* P must point to the start of a Lisp_Symbol, not be
|
||
one of the unused cells in the current symbol block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->symbols[0] == 0
|
||
&& offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
|
||
&& (b != symbol_block
|
||
|| offset / sizeof b->symbols[0] < symbol_block_index)
|
||
&& !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp float on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_float_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
if (m->type == MEM_TYPE_FLOAT)
|
||
{
|
||
struct float_block *b = (struct float_block *) m->start;
|
||
int offset = (char *) p - (char *) &b->floats[0];
|
||
|
||
/* P must point to the start of a Lisp_Float and not be
|
||
one of the unused cells in the current float block. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->floats[0] == 0
|
||
&& offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
|
||
&& (b != float_block
|
||
|| offset / sizeof b->floats[0] < float_block_index));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp Misc on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_misc_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
if (m->type == MEM_TYPE_MISC)
|
||
{
|
||
struct marker_block *b = (struct marker_block *) m->start;
|
||
int offset = (char *) p - (char *) &b->markers[0];
|
||
|
||
/* P must point to the start of a Lisp_Misc, not be
|
||
one of the unused cells in the current misc block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->markers[0] == 0
|
||
&& offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
|
||
&& (b != marker_block
|
||
|| offset / sizeof b->markers[0] < marker_block_index)
|
||
&& ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live vector-like object.
|
||
M is a pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_vector_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live buffer. M is a
|
||
pointer to the mem_block for P. */
|
||
|
||
static INLINE int
|
||
live_buffer_p (m, p)
|
||
struct mem_node *m;
|
||
void *p;
|
||
{
|
||
/* P must point to the start of the block, and the buffer
|
||
must not have been killed. */
|
||
return (m->type == MEM_TYPE_BUFFER
|
||
&& p == m->start
|
||
&& !NILP (((struct buffer *) p)->name));
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
|
||
|
||
#if GC_MARK_STACK
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
|
||
/* Array of objects that are kept alive because the C stack contains
|
||
a pattern that looks like a reference to them . */
|
||
|
||
#define MAX_ZOMBIES 10
|
||
static Lisp_Object zombies[MAX_ZOMBIES];
|
||
|
||
/* Number of zombie objects. */
|
||
|
||
static int nzombies;
|
||
|
||
/* Number of garbage collections. */
|
||
|
||
static int ngcs;
|
||
|
||
/* Average percentage of zombies per collection. */
|
||
|
||
static double avg_zombies;
|
||
|
||
/* Max. number of live and zombie objects. */
|
||
|
||
static int max_live, max_zombies;
|
||
|
||
/* Average number of live objects per GC. */
|
||
|
||
static double avg_live;
|
||
|
||
DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
|
||
doc: /* Show information about live and zombie objects. */)
|
||
()
|
||
{
|
||
Lisp_Object args[8], zombie_list = Qnil;
|
||
int i;
|
||
for (i = 0; i < nzombies; i++)
|
||
zombie_list = Fcons (zombies[i], zombie_list);
|
||
args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
|
||
args[1] = make_number (ngcs);
|
||
args[2] = make_float (avg_live);
|
||
args[3] = make_float (avg_zombies);
|
||
args[4] = make_float (avg_zombies / avg_live / 100);
|
||
args[5] = make_number (max_live);
|
||
args[6] = make_number (max_zombies);
|
||
args[7] = zombie_list;
|
||
return Fmessage (8, args);
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
|
||
|
||
|
||
/* Mark OBJ if we can prove it's a Lisp_Object. */
|
||
|
||
static INLINE void
|
||
mark_maybe_object (obj)
|
||
Lisp_Object obj;
|
||
{
|
||
void *po = (void *) XPNTR (obj);
|
||
struct mem_node *m = mem_find (po);
|
||
|
||
if (m != MEM_NIL)
|
||
{
|
||
int mark_p = 0;
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case Lisp_String:
|
||
mark_p = (live_string_p (m, po)
|
||
&& !STRING_MARKED_P ((struct Lisp_String *) po));
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
|
||
break;
|
||
|
||
case Lisp_Float:
|
||
mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
/* Note: can't check BUFFERP before we know it's a
|
||
buffer because checking that dereferences the pointer
|
||
PO which might point anywhere. */
|
||
if (live_vector_p (m, po))
|
||
mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
|
||
else if (live_buffer_p (m, po))
|
||
mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
|
||
break;
|
||
|
||
case Lisp_Int:
|
||
case Lisp_Type_Limit:
|
||
break;
|
||
}
|
||
|
||
if (mark_p)
|
||
{
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
if (nzombies < MAX_ZOMBIES)
|
||
zombies[nzombies] = obj;
|
||
++nzombies;
|
||
#endif
|
||
mark_object (obj);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* If P points to Lisp data, mark that as live if it isn't already
|
||
marked. */
|
||
|
||
static INLINE void
|
||
mark_maybe_pointer (p)
|
||
void *p;
|
||
{
|
||
struct mem_node *m;
|
||
|
||
/* Quickly rule out some values which can't point to Lisp data. */
|
||
if ((EMACS_INT) p %
|
||
#ifdef USE_LSB_TAG
|
||
8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
|
||
#else
|
||
2 /* We assume that Lisp data is aligned on even addresses. */
|
||
#endif
|
||
)
|
||
return;
|
||
|
||
m = mem_find (p);
|
||
if (m != MEM_NIL)
|
||
{
|
||
Lisp_Object obj = Qnil;
|
||
|
||
switch (m->type)
|
||
{
|
||
case MEM_TYPE_NON_LISP:
|
||
/* Nothing to do; not a pointer to Lisp memory. */
|
||
break;
|
||
|
||
case MEM_TYPE_BUFFER:
|
||
if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
|
||
XSETVECTOR (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_CONS:
|
||
if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
|
||
XSETCONS (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_STRING:
|
||
if (live_string_p (m, p)
|
||
&& !STRING_MARKED_P ((struct Lisp_String *) p))
|
||
XSETSTRING (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_MISC:
|
||
if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
|
||
XSETMISC (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_SYMBOL:
|
||
if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
|
||
XSETSYMBOL (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_FLOAT:
|
||
if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
|
||
XSETFLOAT (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_VECTORLIKE:
|
||
if (live_vector_p (m, p))
|
||
{
|
||
Lisp_Object tem;
|
||
XSETVECTOR (tem, p);
|
||
if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
|
||
obj = tem;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (!NILP (obj))
|
||
mark_object (obj);
|
||
}
|
||
}
|
||
|
||
|
||
/* Mark Lisp objects referenced from the address range START+OFFSET..END
|
||
or END+OFFSET..START. */
|
||
|
||
static void
|
||
mark_memory (start, end, offset)
|
||
void *start, *end;
|
||
int offset;
|
||
{
|
||
Lisp_Object *p;
|
||
void **pp;
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
nzombies = 0;
|
||
#endif
|
||
|
||
/* Make START the pointer to the start of the memory region,
|
||
if it isn't already. */
|
||
if (end < start)
|
||
{
|
||
void *tem = start;
|
||
start = end;
|
||
end = tem;
|
||
}
|
||
|
||
/* Mark Lisp_Objects. */
|
||
for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
|
||
mark_maybe_object (*p);
|
||
|
||
/* Mark Lisp data pointed to. This is necessary because, in some
|
||
situations, the C compiler optimizes Lisp objects away, so that
|
||
only a pointer to them remains. Example:
|
||
|
||
DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
|
||
()
|
||
{
|
||
Lisp_Object obj = build_string ("test");
|
||
struct Lisp_String *s = XSTRING (obj);
|
||
Fgarbage_collect ();
|
||
fprintf (stderr, "test `%s'\n", s->data);
|
||
return Qnil;
|
||
}
|
||
|
||
Here, `obj' isn't really used, and the compiler optimizes it
|
||
away. The only reference to the life string is through the
|
||
pointer `s'. */
|
||
|
||
for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
|
||
mark_maybe_pointer (*pp);
|
||
}
|
||
|
||
/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
|
||
the GCC system configuration. In gcc 3.2, the only systems for
|
||
which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
|
||
by others?) and ns32k-pc532-min. */
|
||
|
||
#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
|
||
|
||
static int setjmp_tested_p, longjmps_done;
|
||
|
||
#define SETJMP_WILL_LIKELY_WORK "\
|
||
\n\
|
||
Emacs garbage collector has been changed to use conservative stack\n\
|
||
marking. Emacs has determined that the method it uses to do the\n\
|
||
marking will likely work on your system, but this isn't sure.\n\
|
||
\n\
|
||
If you are a system-programmer, or can get the help of a local wizard\n\
|
||
who is, please take a look at the function mark_stack in alloc.c, and\n\
|
||
verify that the methods used are appropriate for your system.\n\
|
||
\n\
|
||
Please mail the result to <emacs-devel@gnu.org>.\n\
|
||
"
|
||
|
||
#define SETJMP_WILL_NOT_WORK "\
|
||
\n\
|
||
Emacs garbage collector has been changed to use conservative stack\n\
|
||
marking. Emacs has determined that the default method it uses to do the\n\
|
||
marking will not work on your system. We will need a system-dependent\n\
|
||
solution for your system.\n\
|
||
\n\
|
||
Please take a look at the function mark_stack in alloc.c, and\n\
|
||
try to find a way to make it work on your system.\n\
|
||
\n\
|
||
Note that you may get false negatives, depending on the compiler.\n\
|
||
In particular, you need to use -O with GCC for this test.\n\
|
||
\n\
|
||
Please mail the result to <emacs-devel@gnu.org>.\n\
|
||
"
|
||
|
||
|
||
/* Perform a quick check if it looks like setjmp saves registers in a
|
||
jmp_buf. Print a message to stderr saying so. When this test
|
||
succeeds, this is _not_ a proof that setjmp is sufficient for
|
||
conservative stack marking. Only the sources or a disassembly
|
||
can prove that. */
|
||
|
||
static void
|
||
test_setjmp ()
|
||
{
|
||
char buf[10];
|
||
register int x;
|
||
jmp_buf jbuf;
|
||
int result = 0;
|
||
|
||
/* Arrange for X to be put in a register. */
|
||
sprintf (buf, "1");
|
||
x = strlen (buf);
|
||
x = 2 * x - 1;
|
||
|
||
setjmp (jbuf);
|
||
if (longjmps_done == 1)
|
||
{
|
||
/* Came here after the longjmp at the end of the function.
|
||
|
||
If x == 1, the longjmp has restored the register to its
|
||
value before the setjmp, and we can hope that setjmp
|
||
saves all such registers in the jmp_buf, although that
|
||
isn't sure.
|
||
|
||
For other values of X, either something really strange is
|
||
taking place, or the setjmp just didn't save the register. */
|
||
|
||
if (x == 1)
|
||
fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
|
||
else
|
||
{
|
||
fprintf (stderr, SETJMP_WILL_NOT_WORK);
|
||
exit (1);
|
||
}
|
||
}
|
||
|
||
++longjmps_done;
|
||
x = 2;
|
||
if (longjmps_done == 1)
|
||
longjmp (jbuf, 1);
|
||
}
|
||
|
||
#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
|
||
|
||
|
||
#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
|
||
|
||
/* Abort if anything GCPRO'd doesn't survive the GC. */
|
||
|
||
static void
|
||
check_gcpros ()
|
||
{
|
||
struct gcpro *p;
|
||
int i;
|
||
|
||
for (p = gcprolist; p; p = p->next)
|
||
for (i = 0; i < p->nvars; ++i)
|
||
if (!survives_gc_p (p->var[i]))
|
||
/* FIXME: It's not necessarily a bug. It might just be that the
|
||
GCPRO is unnecessary or should release the object sooner. */
|
||
abort ();
|
||
}
|
||
|
||
#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
|
||
static void
|
||
dump_zombies ()
|
||
{
|
||
int i;
|
||
|
||
fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
|
||
for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
|
||
{
|
||
fprintf (stderr, " %d = ", i);
|
||
debug_print (zombies[i]);
|
||
}
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
|
||
|
||
|
||
/* Mark live Lisp objects on the C stack.
|
||
|
||
There are several system-dependent problems to consider when
|
||
porting this to new architectures:
|
||
|
||
Processor Registers
|
||
|
||
We have to mark Lisp objects in CPU registers that can hold local
|
||
variables or are used to pass parameters.
|
||
|
||
If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
|
||
something that either saves relevant registers on the stack, or
|
||
calls mark_maybe_object passing it each register's contents.
|
||
|
||
If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
|
||
implementation assumes that calling setjmp saves registers we need
|
||
to see in a jmp_buf which itself lies on the stack. This doesn't
|
||
have to be true! It must be verified for each system, possibly
|
||
by taking a look at the source code of setjmp.
|
||
|
||
Stack Layout
|
||
|
||
Architectures differ in the way their processor stack is organized.
|
||
For example, the stack might look like this
|
||
|
||
+----------------+
|
||
| Lisp_Object | size = 4
|
||
+----------------+
|
||
| something else | size = 2
|
||
+----------------+
|
||
| Lisp_Object | size = 4
|
||
+----------------+
|
||
| ... |
|
||
|
||
In such a case, not every Lisp_Object will be aligned equally. To
|
||
find all Lisp_Object on the stack it won't be sufficient to walk
|
||
the stack in steps of 4 bytes. Instead, two passes will be
|
||
necessary, one starting at the start of the stack, and a second
|
||
pass starting at the start of the stack + 2. Likewise, if the
|
||
minimal alignment of Lisp_Objects on the stack is 1, four passes
|
||
would be necessary, each one starting with one byte more offset
|
||
from the stack start.
|
||
|
||
The current code assumes by default that Lisp_Objects are aligned
|
||
equally on the stack. */
|
||
|
||
static void
|
||
mark_stack ()
|
||
{
|
||
int i;
|
||
/* jmp_buf may not be aligned enough on darwin-ppc64 */
|
||
union aligned_jmpbuf {
|
||
Lisp_Object o;
|
||
jmp_buf j;
|
||
} j;
|
||
volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
|
||
void *end;
|
||
|
||
/* This trick flushes the register windows so that all the state of
|
||
the process is contained in the stack. */
|
||
/* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
|
||
needed on ia64 too. See mach_dep.c, where it also says inline
|
||
assembler doesn't work with relevant proprietary compilers. */
|
||
#ifdef sparc
|
||
asm ("ta 3");
|
||
#endif
|
||
|
||
/* Save registers that we need to see on the stack. We need to see
|
||
registers used to hold register variables and registers used to
|
||
pass parameters. */
|
||
#ifdef GC_SAVE_REGISTERS_ON_STACK
|
||
GC_SAVE_REGISTERS_ON_STACK (end);
|
||
#else /* not GC_SAVE_REGISTERS_ON_STACK */
|
||
|
||
#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
|
||
setjmp will definitely work, test it
|
||
and print a message with the result
|
||
of the test. */
|
||
if (!setjmp_tested_p)
|
||
{
|
||
setjmp_tested_p = 1;
|
||
test_setjmp ();
|
||
}
|
||
#endif /* GC_SETJMP_WORKS */
|
||
|
||
setjmp (j.j);
|
||
end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
|
||
#endif /* not GC_SAVE_REGISTERS_ON_STACK */
|
||
|
||
/* This assumes that the stack is a contiguous region in memory. If
|
||
that's not the case, something has to be done here to iterate
|
||
over the stack segments. */
|
||
#ifndef GC_LISP_OBJECT_ALIGNMENT
|
||
#ifdef __GNUC__
|
||
#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
|
||
#else
|
||
#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
|
||
#endif
|
||
#endif
|
||
for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
|
||
mark_memory (stack_base, end, i);
|
||
/* Allow for marking a secondary stack, like the register stack on the
|
||
ia64. */
|
||
#ifdef GC_MARK_SECONDARY_STACK
|
||
GC_MARK_SECONDARY_STACK ();
|
||
#endif
|
||
|
||
#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
|
||
check_gcpros ();
|
||
#endif
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK != 0 */
|
||
|
||
|
||
/* Determine whether it is safe to access memory at address P. */
|
||
static int
|
||
valid_pointer_p (p)
|
||
void *p;
|
||
{
|
||
#ifdef WINDOWSNT
|
||
return w32_valid_pointer_p (p, 16);
|
||
#else
|
||
int fd;
|
||
|
||
/* Obviously, we cannot just access it (we would SEGV trying), so we
|
||
trick the o/s to tell us whether p is a valid pointer.
|
||
Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
|
||
not validate p in that case. */
|
||
|
||
if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
|
||
{
|
||
int valid = (emacs_write (fd, (char *)p, 16) == 16);
|
||
emacs_close (fd);
|
||
unlink ("__Valid__Lisp__Object__");
|
||
return valid;
|
||
}
|
||
|
||
return -1;
|
||
#endif
|
||
}
|
||
|
||
/* Return 1 if OBJ is a valid lisp object.
|
||
Return 0 if OBJ is NOT a valid lisp object.
|
||
Return -1 if we cannot validate OBJ.
|
||
This function can be quite slow,
|
||
so it should only be used in code for manual debugging. */
|
||
|
||
int
|
||
valid_lisp_object_p (obj)
|
||
Lisp_Object obj;
|
||
{
|
||
void *p;
|
||
#if GC_MARK_STACK
|
||
struct mem_node *m;
|
||
#endif
|
||
|
||
if (INTEGERP (obj))
|
||
return 1;
|
||
|
||
p = (void *) XPNTR (obj);
|
||
if (PURE_POINTER_P (p))
|
||
return 1;
|
||
|
||
#if !GC_MARK_STACK
|
||
return valid_pointer_p (p);
|
||
#else
|
||
|
||
m = mem_find (p);
|
||
|
||
if (m == MEM_NIL)
|
||
{
|
||
int valid = valid_pointer_p (p);
|
||
if (valid <= 0)
|
||
return valid;
|
||
|
||
if (SUBRP (obj))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
switch (m->type)
|
||
{
|
||
case MEM_TYPE_NON_LISP:
|
||
return 0;
|
||
|
||
case MEM_TYPE_BUFFER:
|
||
return live_buffer_p (m, p);
|
||
|
||
case MEM_TYPE_CONS:
|
||
return live_cons_p (m, p);
|
||
|
||
case MEM_TYPE_STRING:
|
||
return live_string_p (m, p);
|
||
|
||
case MEM_TYPE_MISC:
|
||
return live_misc_p (m, p);
|
||
|
||
case MEM_TYPE_SYMBOL:
|
||
return live_symbol_p (m, p);
|
||
|
||
case MEM_TYPE_FLOAT:
|
||
return live_float_p (m, p);
|
||
|
||
case MEM_TYPE_VECTORLIKE:
|
||
return live_vector_p (m, p);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Pure Storage Management
|
||
***********************************************************************/
|
||
|
||
/* Allocate room for SIZE bytes from pure Lisp storage and return a
|
||
pointer to it. TYPE is the Lisp type for which the memory is
|
||
allocated. TYPE < 0 means it's not used for a Lisp object. */
|
||
|
||
static POINTER_TYPE *
|
||
pure_alloc (size, type)
|
||
size_t size;
|
||
int type;
|
||
{
|
||
POINTER_TYPE *result;
|
||
#ifdef USE_LSB_TAG
|
||
size_t alignment = (1 << GCTYPEBITS);
|
||
#else
|
||
size_t alignment = sizeof (EMACS_INT);
|
||
|
||
/* Give Lisp_Floats an extra alignment. */
|
||
if (type == Lisp_Float)
|
||
{
|
||
#if defined __GNUC__ && __GNUC__ >= 2
|
||
alignment = __alignof (struct Lisp_Float);
|
||
#else
|
||
alignment = sizeof (struct Lisp_Float);
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
again:
|
||
if (type >= 0)
|
||
{
|
||
/* Allocate space for a Lisp object from the beginning of the free
|
||
space with taking account of alignment. */
|
||
result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
|
||
pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
|
||
}
|
||
else
|
||
{
|
||
/* Allocate space for a non-Lisp object from the end of the free
|
||
space. */
|
||
pure_bytes_used_non_lisp += size;
|
||
result = purebeg + pure_size - pure_bytes_used_non_lisp;
|
||
}
|
||
pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
|
||
|
||
if (pure_bytes_used <= pure_size)
|
||
return result;
|
||
|
||
/* Don't allocate a large amount here,
|
||
because it might get mmap'd and then its address
|
||
might not be usable. */
|
||
purebeg = (char *) xmalloc (10000);
|
||
pure_size = 10000;
|
||
pure_bytes_used_before_overflow += pure_bytes_used - size;
|
||
pure_bytes_used = 0;
|
||
pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
|
||
goto again;
|
||
}
|
||
|
||
|
||
/* Print a warning if PURESIZE is too small. */
|
||
|
||
void
|
||
check_pure_size ()
|
||
{
|
||
if (pure_bytes_used_before_overflow)
|
||
message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
|
||
(int) (pure_bytes_used + pure_bytes_used_before_overflow));
|
||
}
|
||
|
||
|
||
/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
|
||
the non-Lisp data pool of the pure storage, and return its start
|
||
address. Return NULL if not found. */
|
||
|
||
static char *
|
||
find_string_data_in_pure (data, nbytes)
|
||
char *data;
|
||
int nbytes;
|
||
{
|
||
int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
|
||
unsigned char *p;
|
||
char *non_lisp_beg;
|
||
|
||
if (pure_bytes_used_non_lisp < nbytes + 1)
|
||
return NULL;
|
||
|
||
/* Set up the Boyer-Moore table. */
|
||
skip = nbytes + 1;
|
||
for (i = 0; i < 256; i++)
|
||
bm_skip[i] = skip;
|
||
|
||
p = (unsigned char *) data;
|
||
while (--skip > 0)
|
||
bm_skip[*p++] = skip;
|
||
|
||
last_char_skip = bm_skip['\0'];
|
||
|
||
non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
|
||
start_max = pure_bytes_used_non_lisp - (nbytes + 1);
|
||
|
||
/* See the comments in the function `boyer_moore' (search.c) for the
|
||
use of `infinity'. */
|
||
infinity = pure_bytes_used_non_lisp + 1;
|
||
bm_skip['\0'] = infinity;
|
||
|
||
p = (unsigned char *) non_lisp_beg + nbytes;
|
||
start = 0;
|
||
do
|
||
{
|
||
/* Check the last character (== '\0'). */
|
||
do
|
||
{
|
||
start += bm_skip[*(p + start)];
|
||
}
|
||
while (start <= start_max);
|
||
|
||
if (start < infinity)
|
||
/* Couldn't find the last character. */
|
||
return NULL;
|
||
|
||
/* No less than `infinity' means we could find the last
|
||
character at `p[start - infinity]'. */
|
||
start -= infinity;
|
||
|
||
/* Check the remaining characters. */
|
||
if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
|
||
/* Found. */
|
||
return non_lisp_beg + start;
|
||
|
||
start += last_char_skip;
|
||
}
|
||
while (start <= start_max);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Return a string allocated in pure space. DATA is a buffer holding
|
||
NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
|
||
non-zero means make the result string multibyte.
|
||
|
||
Must get an error if pure storage is full, since if it cannot hold
|
||
a large string it may be able to hold conses that point to that
|
||
string; then the string is not protected from gc. */
|
||
|
||
Lisp_Object
|
||
make_pure_string (data, nchars, nbytes, multibyte)
|
||
char *data;
|
||
int nchars, nbytes;
|
||
int multibyte;
|
||
{
|
||
Lisp_Object string;
|
||
struct Lisp_String *s;
|
||
|
||
s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
|
||
s->data = find_string_data_in_pure (data, nbytes);
|
||
if (s->data == NULL)
|
||
{
|
||
s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
|
||
bcopy (data, s->data, nbytes);
|
||
s->data[nbytes] = '\0';
|
||
}
|
||
s->size = nchars;
|
||
s->size_byte = multibyte ? nbytes : -1;
|
||
s->intervals = NULL_INTERVAL;
|
||
XSETSTRING (string, s);
|
||
return string;
|
||
}
|
||
|
||
|
||
/* Return a cons allocated from pure space. Give it pure copies
|
||
of CAR as car and CDR as cdr. */
|
||
|
||
Lisp_Object
|
||
pure_cons (car, cdr)
|
||
Lisp_Object car, cdr;
|
||
{
|
||
register Lisp_Object new;
|
||
struct Lisp_Cons *p;
|
||
|
||
p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
|
||
XSETCONS (new, p);
|
||
XSETCAR (new, Fpurecopy (car));
|
||
XSETCDR (new, Fpurecopy (cdr));
|
||
return new;
|
||
}
|
||
|
||
|
||
/* Value is a float object with value NUM allocated from pure space. */
|
||
|
||
static Lisp_Object
|
||
make_pure_float (num)
|
||
double num;
|
||
{
|
||
register Lisp_Object new;
|
||
struct Lisp_Float *p;
|
||
|
||
p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
|
||
XSETFLOAT (new, p);
|
||
XFLOAT_DATA (new) = num;
|
||
return new;
|
||
}
|
||
|
||
|
||
/* Return a vector with room for LEN Lisp_Objects allocated from
|
||
pure space. */
|
||
|
||
Lisp_Object
|
||
make_pure_vector (len)
|
||
EMACS_INT len;
|
||
{
|
||
Lisp_Object new;
|
||
struct Lisp_Vector *p;
|
||
size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
|
||
|
||
p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
|
||
XSETVECTOR (new, p);
|
||
XVECTOR (new)->size = len;
|
||
return new;
|
||
}
|
||
|
||
|
||
DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
|
||
doc: /* Make a copy of object OBJ in pure storage.
|
||
Recursively copies contents of vectors and cons cells.
|
||
Does not copy symbols. Copies strings without text properties. */)
|
||
(obj)
|
||
register Lisp_Object obj;
|
||
{
|
||
if (NILP (Vpurify_flag))
|
||
return obj;
|
||
|
||
if (PURE_POINTER_P (XPNTR (obj)))
|
||
return obj;
|
||
|
||
if (CONSP (obj))
|
||
return pure_cons (XCAR (obj), XCDR (obj));
|
||
else if (FLOATP (obj))
|
||
return make_pure_float (XFLOAT_DATA (obj));
|
||
else if (STRINGP (obj))
|
||
return make_pure_string (SDATA (obj), SCHARS (obj),
|
||
SBYTES (obj),
|
||
STRING_MULTIBYTE (obj));
|
||
else if (COMPILEDP (obj) || VECTORP (obj))
|
||
{
|
||
register struct Lisp_Vector *vec;
|
||
register int i;
|
||
EMACS_INT size;
|
||
|
||
size = XVECTOR (obj)->size;
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
vec = XVECTOR (make_pure_vector (size));
|
||
for (i = 0; i < size; i++)
|
||
vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
|
||
if (COMPILEDP (obj))
|
||
{
|
||
XSETPVECTYPE (vec, PVEC_COMPILED);
|
||
XSETCOMPILED (obj, vec);
|
||
}
|
||
else
|
||
XSETVECTOR (obj, vec);
|
||
return obj;
|
||
}
|
||
else if (MARKERP (obj))
|
||
error ("Attempt to copy a marker to pure storage");
|
||
|
||
return obj;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Protection from GC
|
||
***********************************************************************/
|
||
|
||
/* Put an entry in staticvec, pointing at the variable with address
|
||
VARADDRESS. */
|
||
|
||
void
|
||
staticpro (varaddress)
|
||
Lisp_Object *varaddress;
|
||
{
|
||
staticvec[staticidx++] = varaddress;
|
||
if (staticidx >= NSTATICS)
|
||
abort ();
|
||
}
|
||
|
||
struct catchtag
|
||
{
|
||
Lisp_Object tag;
|
||
Lisp_Object val;
|
||
struct catchtag *next;
|
||
};
|
||
|
||
|
||
/***********************************************************************
|
||
Protection from GC
|
||
***********************************************************************/
|
||
|
||
/* Temporarily prevent garbage collection. */
|
||
|
||
int
|
||
inhibit_garbage_collection ()
|
||
{
|
||
int count = SPECPDL_INDEX ();
|
||
int nbits = min (VALBITS, BITS_PER_INT);
|
||
|
||
specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
|
||
return count;
|
||
}
|
||
|
||
|
||
DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
|
||
doc: /* Reclaim storage for Lisp objects no longer needed.
|
||
Garbage collection happens automatically if you cons more than
|
||
`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
||
`garbage-collect' normally returns a list with info on amount of space in use:
|
||
((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
||
(USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
||
(USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
|
||
(USED-STRINGS . FREE-STRINGS))
|
||
However, if there was overflow in pure space, `garbage-collect'
|
||
returns nil, because real GC can't be done. */)
|
||
()
|
||
{
|
||
register struct specbinding *bind;
|
||
struct catchtag *catch;
|
||
struct handler *handler;
|
||
char stack_top_variable;
|
||
register int i;
|
||
int message_p;
|
||
Lisp_Object total[8];
|
||
int count = SPECPDL_INDEX ();
|
||
EMACS_TIME t1, t2, t3;
|
||
|
||
if (abort_on_gc)
|
||
abort ();
|
||
|
||
/* Can't GC if pure storage overflowed because we can't determine
|
||
if something is a pure object or not. */
|
||
if (pure_bytes_used_before_overflow)
|
||
return Qnil;
|
||
|
||
CHECK_CONS_LIST ();
|
||
|
||
/* Don't keep undo information around forever.
|
||
Do this early on, so it is no problem if the user quits. */
|
||
{
|
||
register struct buffer *nextb = all_buffers;
|
||
|
||
while (nextb)
|
||
{
|
||
/* If a buffer's undo list is Qt, that means that undo is
|
||
turned off in that buffer. Calling truncate_undo_list on
|
||
Qt tends to return NULL, which effectively turns undo back on.
|
||
So don't call truncate_undo_list if undo_list is Qt. */
|
||
if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
|
||
truncate_undo_list (nextb);
|
||
|
||
/* Shrink buffer gaps, but skip indirect and dead buffers. */
|
||
if (nextb->base_buffer == 0 && !NILP (nextb->name)
|
||
&& ! nextb->text->inhibit_shrinking)
|
||
{
|
||
/* If a buffer's gap size is more than 10% of the buffer
|
||
size, or larger than 2000 bytes, then shrink it
|
||
accordingly. Keep a minimum size of 20 bytes. */
|
||
int size = min (2000, max (20, (nextb->text->z_byte / 10)));
|
||
|
||
if (nextb->text->gap_size > size)
|
||
{
|
||
struct buffer *save_current = current_buffer;
|
||
current_buffer = nextb;
|
||
make_gap (-(nextb->text->gap_size - size));
|
||
current_buffer = save_current;
|
||
}
|
||
}
|
||
|
||
nextb = nextb->next;
|
||
}
|
||
}
|
||
|
||
EMACS_GET_TIME (t1);
|
||
|
||
/* In case user calls debug_print during GC,
|
||
don't let that cause a recursive GC. */
|
||
consing_since_gc = 0;
|
||
|
||
/* Save what's currently displayed in the echo area. */
|
||
message_p = push_message ();
|
||
record_unwind_protect (pop_message_unwind, Qnil);
|
||
|
||
/* Save a copy of the contents of the stack, for debugging. */
|
||
#if MAX_SAVE_STACK > 0
|
||
if (NILP (Vpurify_flag))
|
||
{
|
||
i = &stack_top_variable - stack_bottom;
|
||
if (i < 0) i = -i;
|
||
if (i < MAX_SAVE_STACK)
|
||
{
|
||
if (stack_copy == 0)
|
||
stack_copy = (char *) xmalloc (stack_copy_size = i);
|
||
else if (stack_copy_size < i)
|
||
stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
|
||
if (stack_copy)
|
||
{
|
||
if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
|
||
bcopy (stack_bottom, stack_copy, i);
|
||
else
|
||
bcopy (&stack_top_variable, stack_copy, i);
|
||
}
|
||
}
|
||
}
|
||
#endif /* MAX_SAVE_STACK > 0 */
|
||
|
||
if (garbage_collection_messages)
|
||
message1_nolog ("Garbage collecting...");
|
||
|
||
BLOCK_INPUT;
|
||
|
||
shrink_regexp_cache ();
|
||
|
||
gc_in_progress = 1;
|
||
|
||
/* clear_marks (); */
|
||
|
||
/* Mark all the special slots that serve as the roots of accessibility. */
|
||
|
||
for (i = 0; i < staticidx; i++)
|
||
mark_object (*staticvec[i]);
|
||
|
||
for (bind = specpdl; bind != specpdl_ptr; bind++)
|
||
{
|
||
mark_object (bind->symbol);
|
||
mark_object (bind->old_value);
|
||
}
|
||
mark_terminals ();
|
||
mark_kboards ();
|
||
mark_ttys ();
|
||
|
||
#ifdef USE_GTK
|
||
{
|
||
extern void xg_mark_data ();
|
||
xg_mark_data ();
|
||
}
|
||
#endif
|
||
|
||
#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
|
||
|| GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
|
||
mark_stack ();
|
||
#else
|
||
{
|
||
register struct gcpro *tail;
|
||
for (tail = gcprolist; tail; tail = tail->next)
|
||
for (i = 0; i < tail->nvars; i++)
|
||
mark_object (tail->var[i]);
|
||
}
|
||
#endif
|
||
|
||
mark_byte_stack ();
|
||
for (catch = catchlist; catch; catch = catch->next)
|
||
{
|
||
mark_object (catch->tag);
|
||
mark_object (catch->val);
|
||
}
|
||
for (handler = handlerlist; handler; handler = handler->next)
|
||
{
|
||
mark_object (handler->handler);
|
||
mark_object (handler->var);
|
||
}
|
||
mark_backtrace ();
|
||
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
mark_fringe_data ();
|
||
#endif
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
mark_stack ();
|
||
#endif
|
||
|
||
/* Everything is now marked, except for the things that require special
|
||
finalization, i.e. the undo_list.
|
||
Look thru every buffer's undo list
|
||
for elements that update markers that were not marked,
|
||
and delete them. */
|
||
{
|
||
register struct buffer *nextb = all_buffers;
|
||
|
||
while (nextb)
|
||
{
|
||
/* If a buffer's undo list is Qt, that means that undo is
|
||
turned off in that buffer. Calling truncate_undo_list on
|
||
Qt tends to return NULL, which effectively turns undo back on.
|
||
So don't call truncate_undo_list if undo_list is Qt. */
|
||
if (! EQ (nextb->undo_list, Qt))
|
||
{
|
||
Lisp_Object tail, prev;
|
||
tail = nextb->undo_list;
|
||
prev = Qnil;
|
||
while (CONSP (tail))
|
||
{
|
||
if (CONSP (XCAR (tail))
|
||
&& MARKERP (XCAR (XCAR (tail)))
|
||
&& !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
|
||
{
|
||
if (NILP (prev))
|
||
nextb->undo_list = tail = XCDR (tail);
|
||
else
|
||
{
|
||
tail = XCDR (tail);
|
||
XSETCDR (prev, tail);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prev = tail;
|
||
tail = XCDR (tail);
|
||
}
|
||
}
|
||
}
|
||
/* Now that we have stripped the elements that need not be in the
|
||
undo_list any more, we can finally mark the list. */
|
||
mark_object (nextb->undo_list);
|
||
|
||
nextb = nextb->next;
|
||
}
|
||
}
|
||
|
||
gc_sweep ();
|
||
|
||
/* Clear the mark bits that we set in certain root slots. */
|
||
|
||
unmark_byte_stack ();
|
||
VECTOR_UNMARK (&buffer_defaults);
|
||
VECTOR_UNMARK (&buffer_local_symbols);
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
|
||
dump_zombies ();
|
||
#endif
|
||
|
||
UNBLOCK_INPUT;
|
||
|
||
CHECK_CONS_LIST ();
|
||
|
||
/* clear_marks (); */
|
||
gc_in_progress = 0;
|
||
|
||
consing_since_gc = 0;
|
||
if (gc_cons_threshold < 10000)
|
||
gc_cons_threshold = 10000;
|
||
|
||
if (FLOATP (Vgc_cons_percentage))
|
||
{ /* Set gc_cons_combined_threshold. */
|
||
EMACS_INT total = 0;
|
||
|
||
total += total_conses * sizeof (struct Lisp_Cons);
|
||
total += total_symbols * sizeof (struct Lisp_Symbol);
|
||
total += total_markers * sizeof (union Lisp_Misc);
|
||
total += total_string_size;
|
||
total += total_vector_size * sizeof (Lisp_Object);
|
||
total += total_floats * sizeof (struct Lisp_Float);
|
||
total += total_intervals * sizeof (struct interval);
|
||
total += total_strings * sizeof (struct Lisp_String);
|
||
|
||
gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
|
||
}
|
||
else
|
||
gc_relative_threshold = 0;
|
||
|
||
if (garbage_collection_messages)
|
||
{
|
||
if (message_p || minibuf_level > 0)
|
||
restore_message ();
|
||
else
|
||
message1_nolog ("Garbage collecting...done");
|
||
}
|
||
|
||
unbind_to (count, Qnil);
|
||
|
||
total[0] = Fcons (make_number (total_conses),
|
||
make_number (total_free_conses));
|
||
total[1] = Fcons (make_number (total_symbols),
|
||
make_number (total_free_symbols));
|
||
total[2] = Fcons (make_number (total_markers),
|
||
make_number (total_free_markers));
|
||
total[3] = make_number (total_string_size);
|
||
total[4] = make_number (total_vector_size);
|
||
total[5] = Fcons (make_number (total_floats),
|
||
make_number (total_free_floats));
|
||
total[6] = Fcons (make_number (total_intervals),
|
||
make_number (total_free_intervals));
|
||
total[7] = Fcons (make_number (total_strings),
|
||
make_number (total_free_strings));
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
{
|
||
/* Compute average percentage of zombies. */
|
||
double nlive = 0;
|
||
|
||
for (i = 0; i < 7; ++i)
|
||
if (CONSP (total[i]))
|
||
nlive += XFASTINT (XCAR (total[i]));
|
||
|
||
avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
|
||
max_live = max (nlive, max_live);
|
||
avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
|
||
max_zombies = max (nzombies, max_zombies);
|
||
++ngcs;
|
||
}
|
||
#endif
|
||
|
||
if (!NILP (Vpost_gc_hook))
|
||
{
|
||
int count = inhibit_garbage_collection ();
|
||
safe_run_hooks (Qpost_gc_hook);
|
||
unbind_to (count, Qnil);
|
||
}
|
||
|
||
/* Accumulate statistics. */
|
||
EMACS_GET_TIME (t2);
|
||
EMACS_SUB_TIME (t3, t2, t1);
|
||
if (FLOATP (Vgc_elapsed))
|
||
Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
|
||
EMACS_SECS (t3) +
|
||
EMACS_USECS (t3) * 1.0e-6);
|
||
gcs_done++;
|
||
|
||
return Flist (sizeof total / sizeof *total, total);
|
||
}
|
||
|
||
|
||
/* Mark Lisp objects in glyph matrix MATRIX. Currently the
|
||
only interesting objects referenced from glyphs are strings. */
|
||
|
||
static void
|
||
mark_glyph_matrix (matrix)
|
||
struct glyph_matrix *matrix;
|
||
{
|
||
struct glyph_row *row = matrix->rows;
|
||
struct glyph_row *end = row + matrix->nrows;
|
||
|
||
for (; row < end; ++row)
|
||
if (row->enabled_p)
|
||
{
|
||
int area;
|
||
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
|
||
{
|
||
struct glyph *glyph = row->glyphs[area];
|
||
struct glyph *end_glyph = glyph + row->used[area];
|
||
|
||
for (; glyph < end_glyph; ++glyph)
|
||
if (STRINGP (glyph->object)
|
||
&& !STRING_MARKED_P (XSTRING (glyph->object)))
|
||
mark_object (glyph->object);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Mark Lisp faces in the face cache C. */
|
||
|
||
static void
|
||
mark_face_cache (c)
|
||
struct face_cache *c;
|
||
{
|
||
if (c)
|
||
{
|
||
int i, j;
|
||
for (i = 0; i < c->used; ++i)
|
||
{
|
||
struct face *face = FACE_FROM_ID (c->f, i);
|
||
|
||
if (face)
|
||
{
|
||
for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
|
||
mark_object (face->lface[j]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Mark reference to a Lisp_Object.
|
||
If the object referred to has not been seen yet, recursively mark
|
||
all the references contained in it. */
|
||
|
||
#define LAST_MARKED_SIZE 500
|
||
static Lisp_Object last_marked[LAST_MARKED_SIZE];
|
||
int last_marked_index;
|
||
|
||
/* For debugging--call abort when we cdr down this many
|
||
links of a list, in mark_object. In debugging,
|
||
the call to abort will hit a breakpoint.
|
||
Normally this is zero and the check never goes off. */
|
||
static int mark_object_loop_halt;
|
||
|
||
/* Return non-zero if the object was not yet marked. */
|
||
static int
|
||
mark_vectorlike (ptr)
|
||
struct Lisp_Vector *ptr;
|
||
{
|
||
register EMACS_INT size = ptr->size;
|
||
register int i;
|
||
|
||
if (VECTOR_MARKED_P (ptr))
|
||
return 0; /* Already marked */
|
||
VECTOR_MARK (ptr); /* Else mark it */
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
|
||
/* Note that this size is not the memory-footprint size, but only
|
||
the number of Lisp_Object fields that we should trace.
|
||
The distinction is used e.g. by Lisp_Process which places extra
|
||
non-Lisp_Object fields at the end of the structure. */
|
||
for (i = 0; i < size; i++) /* and then mark its elements */
|
||
mark_object (ptr->contents[i]);
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
mark_object (arg)
|
||
Lisp_Object arg;
|
||
{
|
||
register Lisp_Object obj = arg;
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
void *po;
|
||
struct mem_node *m;
|
||
#endif
|
||
int cdr_count = 0;
|
||
|
||
loop:
|
||
|
||
if (PURE_POINTER_P (XPNTR (obj)))
|
||
return;
|
||
|
||
last_marked[last_marked_index++] = obj;
|
||
if (last_marked_index == LAST_MARKED_SIZE)
|
||
last_marked_index = 0;
|
||
|
||
/* Perform some sanity checks on the objects marked here. Abort if
|
||
we encounter an object we know is bogus. This increases GC time
|
||
by ~80%, and requires compilation with GC_MARK_STACK != 0. */
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
|
||
po = (void *) XPNTR (obj);
|
||
|
||
/* Check that the object pointed to by PO is known to be a Lisp
|
||
structure allocated from the heap. */
|
||
#define CHECK_ALLOCATED() \
|
||
do { \
|
||
m = mem_find (po); \
|
||
if (m == MEM_NIL) \
|
||
abort (); \
|
||
} while (0)
|
||
|
||
/* Check that the object pointed to by PO is live, using predicate
|
||
function LIVEP. */
|
||
#define CHECK_LIVE(LIVEP) \
|
||
do { \
|
||
if (!LIVEP (m, po)) \
|
||
abort (); \
|
||
} while (0)
|
||
|
||
/* Check both of the above conditions. */
|
||
#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
|
||
do { \
|
||
CHECK_ALLOCATED (); \
|
||
CHECK_LIVE (LIVEP); \
|
||
} while (0) \
|
||
|
||
#else /* not GC_CHECK_MARKED_OBJECTS */
|
||
|
||
#define CHECK_ALLOCATED() (void) 0
|
||
#define CHECK_LIVE(LIVEP) (void) 0
|
||
#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
|
||
|
||
#endif /* not GC_CHECK_MARKED_OBJECTS */
|
||
|
||
switch (SWITCH_ENUM_CAST (XTYPE (obj)))
|
||
{
|
||
case Lisp_String:
|
||
{
|
||
register struct Lisp_String *ptr = XSTRING (obj);
|
||
CHECK_ALLOCATED_AND_LIVE (live_string_p);
|
||
MARK_INTERVAL_TREE (ptr->intervals);
|
||
MARK_STRING (ptr);
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
CHECK_STRING_BYTES (ptr);
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
}
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
m = mem_find (po);
|
||
if (m == MEM_NIL && !SUBRP (obj)
|
||
&& po != &buffer_defaults
|
||
&& po != &buffer_local_symbols)
|
||
abort ();
|
||
#endif /* GC_CHECK_MARKED_OBJECTS */
|
||
|
||
if (BUFFERP (obj))
|
||
{
|
||
if (!VECTOR_MARKED_P (XBUFFER (obj)))
|
||
{
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
if (po != &buffer_defaults && po != &buffer_local_symbols)
|
||
{
|
||
struct buffer *b;
|
||
for (b = all_buffers; b && b != po; b = b->next)
|
||
;
|
||
if (b == NULL)
|
||
abort ();
|
||
}
|
||
#endif /* GC_CHECK_MARKED_OBJECTS */
|
||
mark_buffer (obj);
|
||
}
|
||
}
|
||
else if (SUBRP (obj))
|
||
break;
|
||
else if (COMPILEDP (obj))
|
||
/* We could treat this just like a vector, but it is better to
|
||
save the COMPILED_CONSTANTS element for last and avoid
|
||
recursion there. */
|
||
{
|
||
register struct Lisp_Vector *ptr = XVECTOR (obj);
|
||
register EMACS_INT size = ptr->size;
|
||
register int i;
|
||
|
||
if (VECTOR_MARKED_P (ptr))
|
||
break; /* Already marked */
|
||
|
||
CHECK_LIVE (live_vector_p);
|
||
VECTOR_MARK (ptr); /* Else mark it */
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
for (i = 0; i < size; i++) /* and then mark its elements */
|
||
{
|
||
if (i != COMPILED_CONSTANTS)
|
||
mark_object (ptr->contents[i]);
|
||
}
|
||
obj = ptr->contents[COMPILED_CONSTANTS];
|
||
goto loop;
|
||
}
|
||
else if (FRAMEP (obj))
|
||
{
|
||
register struct frame *ptr = XFRAME (obj);
|
||
if (mark_vectorlike (XVECTOR (obj)))
|
||
mark_face_cache (ptr->face_cache);
|
||
}
|
||
else if (WINDOWP (obj))
|
||
{
|
||
register struct Lisp_Vector *ptr = XVECTOR (obj);
|
||
struct window *w = XWINDOW (obj);
|
||
if (mark_vectorlike (ptr))
|
||
{
|
||
/* Mark glyphs for leaf windows. Marking window matrices is
|
||
sufficient because frame matrices use the same glyph
|
||
memory. */
|
||
if (NILP (w->hchild)
|
||
&& NILP (w->vchild)
|
||
&& w->current_matrix)
|
||
{
|
||
mark_glyph_matrix (w->current_matrix);
|
||
mark_glyph_matrix (w->desired_matrix);
|
||
}
|
||
}
|
||
}
|
||
else if (HASH_TABLE_P (obj))
|
||
{
|
||
struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
|
||
if (mark_vectorlike ((struct Lisp_Vector *)h))
|
||
{ /* If hash table is not weak, mark all keys and values.
|
||
For weak tables, mark only the vector. */
|
||
if (NILP (h->weak))
|
||
mark_object (h->key_and_value);
|
||
else
|
||
VECTOR_MARK (XVECTOR (h->key_and_value));
|
||
}
|
||
}
|
||
else
|
||
mark_vectorlike (XVECTOR (obj));
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
{
|
||
register struct Lisp_Symbol *ptr = XSYMBOL (obj);
|
||
struct Lisp_Symbol *ptrx;
|
||
|
||
if (ptr->gcmarkbit) break;
|
||
CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
|
||
ptr->gcmarkbit = 1;
|
||
mark_object (ptr->value);
|
||
mark_object (ptr->function);
|
||
mark_object (ptr->plist);
|
||
|
||
if (!PURE_POINTER_P (XSTRING (ptr->xname)))
|
||
MARK_STRING (XSTRING (ptr->xname));
|
||
MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
|
||
|
||
/* Note that we do not mark the obarray of the symbol.
|
||
It is safe not to do so because nothing accesses that
|
||
slot except to check whether it is nil. */
|
||
ptr = ptr->next;
|
||
if (ptr)
|
||
{
|
||
ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
|
||
XSETSYMBOL (obj, ptrx);
|
||
goto loop;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
CHECK_ALLOCATED_AND_LIVE (live_misc_p);
|
||
if (XMISCANY (obj)->gcmarkbit)
|
||
break;
|
||
XMISCANY (obj)->gcmarkbit = 1;
|
||
|
||
switch (XMISCTYPE (obj))
|
||
{
|
||
case Lisp_Misc_Buffer_Local_Value:
|
||
{
|
||
register struct Lisp_Buffer_Local_Value *ptr
|
||
= XBUFFER_LOCAL_VALUE (obj);
|
||
/* If the cdr is nil, avoid recursion for the car. */
|
||
if (EQ (ptr->cdr, Qnil))
|
||
{
|
||
obj = ptr->realvalue;
|
||
goto loop;
|
||
}
|
||
mark_object (ptr->realvalue);
|
||
mark_object (ptr->buffer);
|
||
mark_object (ptr->frame);
|
||
obj = ptr->cdr;
|
||
goto loop;
|
||
}
|
||
|
||
case Lisp_Misc_Marker:
|
||
/* DO NOT mark thru the marker's chain.
|
||
The buffer's markers chain does not preserve markers from gc;
|
||
instead, markers are removed from the chain when freed by gc. */
|
||
break;
|
||
|
||
case Lisp_Misc_Intfwd:
|
||
case Lisp_Misc_Boolfwd:
|
||
case Lisp_Misc_Objfwd:
|
||
case Lisp_Misc_Buffer_Objfwd:
|
||
case Lisp_Misc_Kboard_Objfwd:
|
||
/* Don't bother with Lisp_Buffer_Objfwd,
|
||
since all markable slots in current buffer marked anyway. */
|
||
/* Don't need to do Lisp_Objfwd, since the places they point
|
||
are protected with staticpro. */
|
||
break;
|
||
|
||
case Lisp_Misc_Save_Value:
|
||
#if GC_MARK_STACK
|
||
{
|
||
register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
|
||
/* If DOGC is set, POINTER is the address of a memory
|
||
area containing INTEGER potential Lisp_Objects. */
|
||
if (ptr->dogc)
|
||
{
|
||
Lisp_Object *p = (Lisp_Object *) ptr->pointer;
|
||
int nelt;
|
||
for (nelt = ptr->integer; nelt > 0; nelt--, p++)
|
||
mark_maybe_object (*p);
|
||
}
|
||
}
|
||
#endif
|
||
break;
|
||
|
||
case Lisp_Misc_Overlay:
|
||
{
|
||
struct Lisp_Overlay *ptr = XOVERLAY (obj);
|
||
mark_object (ptr->start);
|
||
mark_object (ptr->end);
|
||
mark_object (ptr->plist);
|
||
if (ptr->next)
|
||
{
|
||
XSETMISC (obj, ptr->next);
|
||
goto loop;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
{
|
||
register struct Lisp_Cons *ptr = XCONS (obj);
|
||
if (CONS_MARKED_P (ptr)) break;
|
||
CHECK_ALLOCATED_AND_LIVE (live_cons_p);
|
||
CONS_MARK (ptr);
|
||
/* If the cdr is nil, avoid recursion for the car. */
|
||
if (EQ (ptr->u.cdr, Qnil))
|
||
{
|
||
obj = ptr->car;
|
||
cdr_count = 0;
|
||
goto loop;
|
||
}
|
||
mark_object (ptr->car);
|
||
obj = ptr->u.cdr;
|
||
cdr_count++;
|
||
if (cdr_count == mark_object_loop_halt)
|
||
abort ();
|
||
goto loop;
|
||
}
|
||
|
||
case Lisp_Float:
|
||
CHECK_ALLOCATED_AND_LIVE (live_float_p);
|
||
FLOAT_MARK (XFLOAT (obj));
|
||
break;
|
||
|
||
case Lisp_Int:
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
#undef CHECK_LIVE
|
||
#undef CHECK_ALLOCATED
|
||
#undef CHECK_ALLOCATED_AND_LIVE
|
||
}
|
||
|
||
/* Mark the pointers in a buffer structure. */
|
||
|
||
static void
|
||
mark_buffer (buf)
|
||
Lisp_Object buf;
|
||
{
|
||
register struct buffer *buffer = XBUFFER (buf);
|
||
register Lisp_Object *ptr, tmp;
|
||
Lisp_Object base_buffer;
|
||
|
||
VECTOR_MARK (buffer);
|
||
|
||
MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
|
||
|
||
/* For now, we just don't mark the undo_list. It's done later in
|
||
a special way just before the sweep phase, and after stripping
|
||
some of its elements that are not needed any more. */
|
||
|
||
if (buffer->overlays_before)
|
||
{
|
||
XSETMISC (tmp, buffer->overlays_before);
|
||
mark_object (tmp);
|
||
}
|
||
if (buffer->overlays_after)
|
||
{
|
||
XSETMISC (tmp, buffer->overlays_after);
|
||
mark_object (tmp);
|
||
}
|
||
|
||
/* buffer-local Lisp variables start at `undo_list',
|
||
tho only the ones from `name' on are GC'd normally. */
|
||
for (ptr = &buffer->name;
|
||
(char *)ptr < (char *)buffer + sizeof (struct buffer);
|
||
ptr++)
|
||
mark_object (*ptr);
|
||
|
||
/* If this is an indirect buffer, mark its base buffer. */
|
||
if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
|
||
{
|
||
XSETBUFFER (base_buffer, buffer->base_buffer);
|
||
mark_buffer (base_buffer);
|
||
}
|
||
}
|
||
|
||
/* Mark the Lisp pointers in the terminal objects.
|
||
Called by the Fgarbage_collector. */
|
||
|
||
static void
|
||
mark_terminals (void)
|
||
{
|
||
struct terminal *t;
|
||
for (t = terminal_list; t; t = t->next_terminal)
|
||
{
|
||
eassert (t->name != NULL);
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
mark_image_cache (t->image_cache);
|
||
#endif /* HAVE_WINDOW_SYSTEM */
|
||
mark_vectorlike ((struct Lisp_Vector *)t);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Value is non-zero if OBJ will survive the current GC because it's
|
||
either marked or does not need to be marked to survive. */
|
||
|
||
int
|
||
survives_gc_p (obj)
|
||
Lisp_Object obj;
|
||
{
|
||
int survives_p;
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case Lisp_Int:
|
||
survives_p = 1;
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
survives_p = XSYMBOL (obj)->gcmarkbit;
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
survives_p = XMISCANY (obj)->gcmarkbit;
|
||
break;
|
||
|
||
case Lisp_String:
|
||
survives_p = STRING_MARKED_P (XSTRING (obj));
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
survives_p = CONS_MARKED_P (XCONS (obj));
|
||
break;
|
||
|
||
case Lisp_Float:
|
||
survives_p = FLOAT_MARKED_P (XFLOAT (obj));
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
|
||
}
|
||
|
||
|
||
|
||
/* Sweep: find all structures not marked, and free them. */
|
||
|
||
static void
|
||
gc_sweep ()
|
||
{
|
||
/* Remove or mark entries in weak hash tables.
|
||
This must be done before any object is unmarked. */
|
||
sweep_weak_hash_tables ();
|
||
|
||
sweep_strings ();
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (!noninteractive)
|
||
check_string_bytes (1);
|
||
#endif
|
||
|
||
/* Put all unmarked conses on free list */
|
||
{
|
||
register struct cons_block *cblk;
|
||
struct cons_block **cprev = &cons_block;
|
||
register int lim = cons_block_index;
|
||
register int num_free = 0, num_used = 0;
|
||
|
||
cons_free_list = 0;
|
||
|
||
for (cblk = cons_block; cblk; cblk = *cprev)
|
||
{
|
||
register int i = 0;
|
||
int this_free = 0;
|
||
int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
|
||
|
||
/* Scan the mark bits an int at a time. */
|
||
for (i = 0; i <= ilim; i++)
|
||
{
|
||
if (cblk->gcmarkbits[i] == -1)
|
||
{
|
||
/* Fast path - all cons cells for this int are marked. */
|
||
cblk->gcmarkbits[i] = 0;
|
||
num_used += BITS_PER_INT;
|
||
}
|
||
else
|
||
{
|
||
/* Some cons cells for this int are not marked.
|
||
Find which ones, and free them. */
|
||
int start, pos, stop;
|
||
|
||
start = i * BITS_PER_INT;
|
||
stop = lim - start;
|
||
if (stop > BITS_PER_INT)
|
||
stop = BITS_PER_INT;
|
||
stop += start;
|
||
|
||
for (pos = start; pos < stop; pos++)
|
||
{
|
||
if (!CONS_MARKED_P (&cblk->conses[pos]))
|
||
{
|
||
this_free++;
|
||
cblk->conses[pos].u.chain = cons_free_list;
|
||
cons_free_list = &cblk->conses[pos];
|
||
#if GC_MARK_STACK
|
||
cons_free_list->car = Vdead;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
CONS_UNMARK (&cblk->conses[pos]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
lim = CONS_BLOCK_SIZE;
|
||
/* If this block contains only free conses and we have already
|
||
seen more than two blocks worth of free conses then deallocate
|
||
this block. */
|
||
if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
|
||
{
|
||
*cprev = cblk->next;
|
||
/* Unhook from the free list. */
|
||
cons_free_list = cblk->conses[0].u.chain;
|
||
lisp_align_free (cblk);
|
||
n_cons_blocks--;
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
cprev = &cblk->next;
|
||
}
|
||
}
|
||
total_conses = num_used;
|
||
total_free_conses = num_free;
|
||
}
|
||
|
||
/* Put all unmarked floats on free list */
|
||
{
|
||
register struct float_block *fblk;
|
||
struct float_block **fprev = &float_block;
|
||
register int lim = float_block_index;
|
||
register int num_free = 0, num_used = 0;
|
||
|
||
float_free_list = 0;
|
||
|
||
for (fblk = float_block; fblk; fblk = *fprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
for (i = 0; i < lim; i++)
|
||
if (!FLOAT_MARKED_P (&fblk->floats[i]))
|
||
{
|
||
this_free++;
|
||
fblk->floats[i].u.chain = float_free_list;
|
||
float_free_list = &fblk->floats[i];
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
FLOAT_UNMARK (&fblk->floats[i]);
|
||
}
|
||
lim = FLOAT_BLOCK_SIZE;
|
||
/* If this block contains only free floats and we have already
|
||
seen more than two blocks worth of free floats then deallocate
|
||
this block. */
|
||
if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
|
||
{
|
||
*fprev = fblk->next;
|
||
/* Unhook from the free list. */
|
||
float_free_list = fblk->floats[0].u.chain;
|
||
lisp_align_free (fblk);
|
||
n_float_blocks--;
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
fprev = &fblk->next;
|
||
}
|
||
}
|
||
total_floats = num_used;
|
||
total_free_floats = num_free;
|
||
}
|
||
|
||
/* Put all unmarked intervals on free list */
|
||
{
|
||
register struct interval_block *iblk;
|
||
struct interval_block **iprev = &interval_block;
|
||
register int lim = interval_block_index;
|
||
register int num_free = 0, num_used = 0;
|
||
|
||
interval_free_list = 0;
|
||
|
||
for (iblk = interval_block; iblk; iblk = *iprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
|
||
for (i = 0; i < lim; i++)
|
||
{
|
||
if (!iblk->intervals[i].gcmarkbit)
|
||
{
|
||
SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
|
||
interval_free_list = &iblk->intervals[i];
|
||
this_free++;
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
iblk->intervals[i].gcmarkbit = 0;
|
||
}
|
||
}
|
||
lim = INTERVAL_BLOCK_SIZE;
|
||
/* If this block contains only free intervals and we have already
|
||
seen more than two blocks worth of free intervals then
|
||
deallocate this block. */
|
||
if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
|
||
{
|
||
*iprev = iblk->next;
|
||
/* Unhook from the free list. */
|
||
interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
|
||
lisp_free (iblk);
|
||
n_interval_blocks--;
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
iprev = &iblk->next;
|
||
}
|
||
}
|
||
total_intervals = num_used;
|
||
total_free_intervals = num_free;
|
||
}
|
||
|
||
/* Put all unmarked symbols on free list */
|
||
{
|
||
register struct symbol_block *sblk;
|
||
struct symbol_block **sprev = &symbol_block;
|
||
register int lim = symbol_block_index;
|
||
register int num_free = 0, num_used = 0;
|
||
|
||
symbol_free_list = NULL;
|
||
|
||
for (sblk = symbol_block; sblk; sblk = *sprev)
|
||
{
|
||
int this_free = 0;
|
||
struct Lisp_Symbol *sym = sblk->symbols;
|
||
struct Lisp_Symbol *end = sym + lim;
|
||
|
||
for (; sym < end; ++sym)
|
||
{
|
||
/* Check if the symbol was created during loadup. In such a case
|
||
it might be pointed to by pure bytecode which we don't trace,
|
||
so we conservatively assume that it is live. */
|
||
int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
|
||
|
||
if (!sym->gcmarkbit && !pure_p)
|
||
{
|
||
sym->next = symbol_free_list;
|
||
symbol_free_list = sym;
|
||
#if GC_MARK_STACK
|
||
symbol_free_list->function = Vdead;
|
||
#endif
|
||
++this_free;
|
||
}
|
||
else
|
||
{
|
||
++num_used;
|
||
if (!pure_p)
|
||
UNMARK_STRING (XSTRING (sym->xname));
|
||
sym->gcmarkbit = 0;
|
||
}
|
||
}
|
||
|
||
lim = SYMBOL_BLOCK_SIZE;
|
||
/* If this block contains only free symbols and we have already
|
||
seen more than two blocks worth of free symbols then deallocate
|
||
this block. */
|
||
if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
|
||
{
|
||
*sprev = sblk->next;
|
||
/* Unhook from the free list. */
|
||
symbol_free_list = sblk->symbols[0].next;
|
||
lisp_free (sblk);
|
||
n_symbol_blocks--;
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
sprev = &sblk->next;
|
||
}
|
||
}
|
||
total_symbols = num_used;
|
||
total_free_symbols = num_free;
|
||
}
|
||
|
||
/* Put all unmarked misc's on free list.
|
||
For a marker, first unchain it from the buffer it points into. */
|
||
{
|
||
register struct marker_block *mblk;
|
||
struct marker_block **mprev = &marker_block;
|
||
register int lim = marker_block_index;
|
||
register int num_free = 0, num_used = 0;
|
||
|
||
marker_free_list = 0;
|
||
|
||
for (mblk = marker_block; mblk; mblk = *mprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
|
||
for (i = 0; i < lim; i++)
|
||
{
|
||
if (!mblk->markers[i].u_any.gcmarkbit)
|
||
{
|
||
if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
|
||
unchain_marker (&mblk->markers[i].u_marker);
|
||
/* Set the type of the freed object to Lisp_Misc_Free.
|
||
We could leave the type alone, since nobody checks it,
|
||
but this might catch bugs faster. */
|
||
mblk->markers[i].u_marker.type = Lisp_Misc_Free;
|
||
mblk->markers[i].u_free.chain = marker_free_list;
|
||
marker_free_list = &mblk->markers[i];
|
||
this_free++;
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
mblk->markers[i].u_any.gcmarkbit = 0;
|
||
}
|
||
}
|
||
lim = MARKER_BLOCK_SIZE;
|
||
/* If this block contains only free markers and we have already
|
||
seen more than two blocks worth of free markers then deallocate
|
||
this block. */
|
||
if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
|
||
{
|
||
*mprev = mblk->next;
|
||
/* Unhook from the free list. */
|
||
marker_free_list = mblk->markers[0].u_free.chain;
|
||
lisp_free (mblk);
|
||
n_marker_blocks--;
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
mprev = &mblk->next;
|
||
}
|
||
}
|
||
|
||
total_markers = num_used;
|
||
total_free_markers = num_free;
|
||
}
|
||
|
||
/* Free all unmarked buffers */
|
||
{
|
||
register struct buffer *buffer = all_buffers, *prev = 0, *next;
|
||
|
||
while (buffer)
|
||
if (!VECTOR_MARKED_P (buffer))
|
||
{
|
||
if (prev)
|
||
prev->next = buffer->next;
|
||
else
|
||
all_buffers = buffer->next;
|
||
next = buffer->next;
|
||
lisp_free (buffer);
|
||
buffer = next;
|
||
}
|
||
else
|
||
{
|
||
VECTOR_UNMARK (buffer);
|
||
UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
|
||
prev = buffer, buffer = buffer->next;
|
||
}
|
||
}
|
||
|
||
/* Free all unmarked vectors */
|
||
{
|
||
register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
|
||
total_vector_size = 0;
|
||
|
||
while (vector)
|
||
if (!VECTOR_MARKED_P (vector))
|
||
{
|
||
if (prev)
|
||
prev->next = vector->next;
|
||
else
|
||
all_vectors = vector->next;
|
||
next = vector->next;
|
||
lisp_free (vector);
|
||
n_vectors--;
|
||
vector = next;
|
||
|
||
}
|
||
else
|
||
{
|
||
VECTOR_UNMARK (vector);
|
||
if (vector->size & PSEUDOVECTOR_FLAG)
|
||
total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
|
||
else
|
||
total_vector_size += vector->size;
|
||
prev = vector, vector = vector->next;
|
||
}
|
||
}
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (!noninteractive)
|
||
check_string_bytes (1);
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Debugging aids. */
|
||
|
||
DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
|
||
doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
|
||
This may be helpful in debugging Emacs's memory usage.
|
||
We divide the value by 1024 to make sure it fits in a Lisp integer. */)
|
||
()
|
||
{
|
||
Lisp_Object end;
|
||
|
||
XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
|
||
|
||
return end;
|
||
}
|
||
|
||
DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
|
||
doc: /* Return a list of counters that measure how much consing there has been.
|
||
Each of these counters increments for a certain kind of object.
|
||
The counters wrap around from the largest positive integer to zero.
|
||
Garbage collection does not decrease them.
|
||
The elements of the value are as follows:
|
||
(CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
|
||
All are in units of 1 = one object consed
|
||
except for VECTOR-CELLS and STRING-CHARS, which count the total length of
|
||
objects consed.
|
||
MISCS include overlays, markers, and some internal types.
|
||
Frames, windows, buffers, and subprocesses count as vectors
|
||
(but the contents of a buffer's text do not count here). */)
|
||
()
|
||
{
|
||
Lisp_Object consed[8];
|
||
|
||
consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
|
||
consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
|
||
consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
|
||
consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
|
||
consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
|
||
consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
|
||
consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
|
||
consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
|
||
|
||
return Flist (8, consed);
|
||
}
|
||
|
||
int suppress_checking;
|
||
|
||
void
|
||
die (msg, file, line)
|
||
const char *msg;
|
||
const char *file;
|
||
int line;
|
||
{
|
||
fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
|
||
file, line, msg);
|
||
abort ();
|
||
}
|
||
|
||
/* Initialization */
|
||
|
||
void
|
||
init_alloc_once ()
|
||
{
|
||
/* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
|
||
purebeg = PUREBEG;
|
||
pure_size = PURESIZE;
|
||
pure_bytes_used = 0;
|
||
pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
|
||
pure_bytes_used_before_overflow = 0;
|
||
|
||
/* Initialize the list of free aligned blocks. */
|
||
free_ablock = NULL;
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
mem_init ();
|
||
Vdead = make_pure_string ("DEAD", 4, 4, 0);
|
||
#endif
|
||
|
||
all_vectors = 0;
|
||
ignore_warnings = 1;
|
||
#ifdef DOUG_LEA_MALLOC
|
||
mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
||
mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
|
||
#endif
|
||
init_strings ();
|
||
init_cons ();
|
||
init_symbol ();
|
||
init_marker ();
|
||
init_float ();
|
||
init_intervals ();
|
||
init_weak_hash_tables ();
|
||
|
||
#ifdef REL_ALLOC
|
||
malloc_hysteresis = 32;
|
||
#else
|
||
malloc_hysteresis = 0;
|
||
#endif
|
||
|
||
refill_memory_reserve ();
|
||
|
||
ignore_warnings = 0;
|
||
gcprolist = 0;
|
||
byte_stack_list = 0;
|
||
staticidx = 0;
|
||
consing_since_gc = 0;
|
||
gc_cons_threshold = 100000 * sizeof (Lisp_Object);
|
||
gc_relative_threshold = 0;
|
||
|
||
#ifdef VIRT_ADDR_VARIES
|
||
malloc_sbrk_unused = 1<<22; /* A large number */
|
||
malloc_sbrk_used = 100000; /* as reasonable as any number */
|
||
#endif /* VIRT_ADDR_VARIES */
|
||
}
|
||
|
||
void
|
||
init_alloc ()
|
||
{
|
||
gcprolist = 0;
|
||
byte_stack_list = 0;
|
||
#if GC_MARK_STACK
|
||
#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
|
||
setjmp_tested_p = longjmps_done = 0;
|
||
#endif
|
||
#endif
|
||
Vgc_elapsed = make_float (0.0);
|
||
gcs_done = 0;
|
||
}
|
||
|
||
void
|
||
syms_of_alloc ()
|
||
{
|
||
DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
|
||
doc: /* *Number of bytes of consing between garbage collections.
|
||
Garbage collection can happen automatically once this many bytes have been
|
||
allocated since the last garbage collection. All data types count.
|
||
|
||
Garbage collection happens automatically only when `eval' is called.
|
||
|
||
By binding this temporarily to a large number, you can effectively
|
||
prevent garbage collection during a part of the program.
|
||
See also `gc-cons-percentage'. */);
|
||
|
||
DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
|
||
doc: /* *Portion of the heap used for allocation.
|
||
Garbage collection can happen automatically once this portion of the heap
|
||
has been allocated since the last garbage collection.
|
||
If this portion is smaller than `gc-cons-threshold', this is ignored. */);
|
||
Vgc_cons_percentage = make_float (0.1);
|
||
|
||
DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
|
||
doc: /* Number of bytes of sharable Lisp data allocated so far. */);
|
||
|
||
DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
|
||
doc: /* Number of cons cells that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("floats-consed", &floats_consed,
|
||
doc: /* Number of floats that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
|
||
doc: /* Number of vector cells that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("symbols-consed", &symbols_consed,
|
||
doc: /* Number of symbols that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("string-chars-consed", &string_chars_consed,
|
||
doc: /* Number of string characters that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
|
||
doc: /* Number of miscellaneous objects that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("intervals-consed", &intervals_consed,
|
||
doc: /* Number of intervals that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("strings-consed", &strings_consed,
|
||
doc: /* Number of strings that have been consed so far. */);
|
||
|
||
DEFVAR_LISP ("purify-flag", &Vpurify_flag,
|
||
doc: /* Non-nil means loading Lisp code in order to dump an executable.
|
||
This means that certain objects should be allocated in shared (pure) space. */);
|
||
|
||
DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
|
||
doc: /* Non-nil means display messages at start and end of garbage collection. */);
|
||
garbage_collection_messages = 0;
|
||
|
||
DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
|
||
doc: /* Hook run after garbage collection has finished. */);
|
||
Vpost_gc_hook = Qnil;
|
||
Qpost_gc_hook = intern ("post-gc-hook");
|
||
staticpro (&Qpost_gc_hook);
|
||
|
||
DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
|
||
doc: /* Precomputed `signal' argument for memory-full error. */);
|
||
/* We build this in advance because if we wait until we need it, we might
|
||
not be able to allocate the memory to hold it. */
|
||
Vmemory_signal_data
|
||
= list2 (Qerror,
|
||
build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
|
||
|
||
DEFVAR_LISP ("memory-full", &Vmemory_full,
|
||
doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
|
||
Vmemory_full = Qnil;
|
||
|
||
staticpro (&Qgc_cons_threshold);
|
||
Qgc_cons_threshold = intern ("gc-cons-threshold");
|
||
|
||
staticpro (&Qchar_table_extra_slots);
|
||
Qchar_table_extra_slots = intern ("char-table-extra-slots");
|
||
|
||
DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
|
||
doc: /* Accumulated time elapsed in garbage collections.
|
||
The time is in seconds as a floating point value. */);
|
||
DEFVAR_INT ("gcs-done", &gcs_done,
|
||
doc: /* Accumulated number of garbage collections done. */);
|
||
|
||
defsubr (&Scons);
|
||
defsubr (&Slist);
|
||
defsubr (&Svector);
|
||
defsubr (&Smake_byte_code);
|
||
defsubr (&Smake_list);
|
||
defsubr (&Smake_vector);
|
||
defsubr (&Smake_string);
|
||
defsubr (&Smake_bool_vector);
|
||
defsubr (&Smake_symbol);
|
||
defsubr (&Smake_marker);
|
||
defsubr (&Spurecopy);
|
||
defsubr (&Sgarbage_collect);
|
||
defsubr (&Smemory_limit);
|
||
defsubr (&Smemory_use_counts);
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
defsubr (&Sgc_status);
|
||
#endif
|
||
}
|
||
|
||
/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
|
||
(do not change this comment) */
|