1
Fork 0
mirror of git://git.sv.gnu.org/emacs.git synced 2026-01-22 04:21:24 -08:00
emacs/mps/code/segsmss.c
Peter Jackson 1d00afac81 Publish licence updates in code directory.
Publish minor changes to readme and configure files in main directory.
Main directory and code directory licence texts are now fully updated.

Copied from Perforce
 Change: 196994
2020-06-11 17:05:40 +01:00

880 lines
24 KiB
C

/* segsmss.c: Segment splitting and merging stress test
*
* $Id$
* Copyright (c) 2001-2020 Ravenbrook Limited. See end of file for license.
* Portions copyright (c) 2002 Global Graphics Software.
*
* .design: Adapted from amsss.c (because AMS already supports
* a protocol for subclassing AMS segments). Defines a new pool
* class, AMST. Segments are split and merged during BufferFill
* operations. Buffered segments are also split and merged between
* allocation requests.
*/
#include "mpm.h"
#include "poolams.h"
#include "fmtdy.h"
#include "fmtdytst.h"
#include "testlib.h"
#include "mpslib.h"
#include "locus.h"
#include "mpscams.h"
#include "mpsavm.h"
#include "mpstd.h"
#include "mps.h"
#include <stdio.h> /* fflush, printf, puts, stdout */
/* Start by defining the AMST pool (AMS Test pool) */
#define AMSTSig ((Sig)0x519A3529) /* SIGnature AMST */
/* AMSTStruct -- AMST pool instance structure */
typedef struct AMSTStruct {
AMSStruct amsStruct; /* generic AMS structure */
Bool failSegs; /* fail seg splits & merges when true */
Count splits; /* count of successful segment splits */
Count merges; /* count of successful segment merges */
Count badSplits; /* count of unsuccessful segment splits */
Count badMerges; /* count of unsuccessful segment merges */
Count bsplits; /* count of buffered segment splits */
Count bmerges; /* count of buffered segment merges */
Sig sig; /* <design/pool#.outer-structure.sig> */
} AMSTStruct;
typedef struct AMSTStruct *AMST;
#define PoolAMST(pool) PARENT(AMSTStruct, amsStruct, PARENT(AMSStruct, poolStruct, (pool)))
#define AMST2AMS(amst) (&(amst)->amsStruct)
typedef AMST AMSTPool;
#define AMSTPoolCheck AMSTCheck
DECLARE_CLASS(Pool, AMSTPool, AMSPool);
DECLARE_CLASS(Seg, AMSTSeg, AMSSeg);
/* AMSTCheck -- the check method for an AMST */
ATTRIBUTE_UNUSED
static Bool AMSTCheck(AMST amst)
{
CHECKS(AMST, amst);
CHECKD_NOSIG(AMS, AMST2AMS(amst)); /* <design/check#.hidden-type> */
return TRUE;
}
/* AMSTFailOperation -- should a split/merge operation fail?
*
* returns TRUE if so.
*/
static Bool AMSTFailOperation(AMST amst)
{
if (amst->failSegs) {
return rnd() % 2;
} else {
return FALSE;
}
}
/* AMSTSegStruct: AMST segment instances */
#define AMSTSegSig ((Sig)0x519A3525) /* SIGnature AMST Seg */
typedef struct AMSTSegStruct *AMSTSeg;
typedef struct AMSTSegStruct {
AMSSegStruct amsSegStruct; /* superclass fields must come first */
AMSTSeg next; /* mergeable next segment, or NULL */
AMSTSeg prev; /* mergeable prev segment, or NULL */
Sig sig; /* <design/pool#.outer-structure.sig> */
} AMSTSegStruct;
/* AMSTSegCheck -- check the AMST segment */
ATTRIBUTE_UNUSED
static Bool AMSTSegCheck(AMSTSeg amstseg)
{
CHECKS(AMSTSeg, amstseg);
CHECKD_NOSIG(AMSSeg, &amstseg->amsSegStruct); /* <design/check#.hidden-type> */
/* don't bother to do other checks - this is a stress test */
return TRUE;
}
#define Seg2AMSTSeg(seg) ((AMSTSeg)(seg))
#define AMSTSeg2Seg(amstseg) ((Seg)(amstseg))
/* amstSegInit -- initialise an amst segment */
static Res amstSegInit(Seg seg, Pool pool, Addr base, Size size, ArgList args)
{
AMSTSeg amstseg;
AMST amst;
Res res;
/* Initialize the superclass fields first via next-method call */
res = NextMethod(Seg, AMSTSeg, init)(seg, pool, base, size, args);
if (res != ResOK)
return res;
amstseg = CouldBeA(AMSTSeg, seg);
AVERT(Pool, pool);
amst = PoolAMST(pool);
AVERT(AMST, amst);
/* no useful checks for base and size */
amstseg->next = NULL;
amstseg->prev = NULL;
SetClassOfPoly(seg, CLASS(AMSTSeg));
amstseg->sig = AMSTSegSig;
AVERC(AMSTSeg, amstseg);
return ResOK;
}
/* amstSegFinish -- Finish method for AMST segments */
static void amstSegFinish(Inst inst)
{
Seg seg = MustBeA(Seg, inst);
AMSTSeg amstseg = MustBeA(AMSTSeg, seg);
AVERT(AMSTSeg, amstseg);
if (amstseg->next != NULL)
amstseg->next->prev = NULL;
if (amstseg->prev != NULL)
amstseg->prev->next = NULL;
amstseg->sig = SigInvalid;
/* finish the superclass fields last */
NextMethod(Inst, AMSTSeg, finish)(inst);
}
/* amstSegMerge -- AMSTSeg merge method
*
* .fail: Test proper handling of the most complex failure cases
* by deliberately detecting failure sometimes after calling the
* next method. We handle the error by calling the anti-method.
* This isn't strictly safe <design/poolams#.split-merge.fail>.
* But we assume here that we won't run out of memory when calling the
* anti-method.
*/
static Res amstSegMerge(Seg seg, Seg segHi,
Addr base, Addr mid, Addr limit)
{
AMST amst;
AMSTSeg amstseg, amstsegHi;
Res res;
AVERT(Seg, seg);
AVERT(Seg, segHi);
amstseg = Seg2AMSTSeg(seg);
amstsegHi = Seg2AMSTSeg(segHi);
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
amst = PoolAMST(SegPool(seg));
/* Merge the superclass fields via direct next-method call */
res = NextMethod(Seg, AMSTSeg, merge)(seg, segHi, base, mid, limit);
if (res != ResOK)
goto failSuper;
if (AMSTFailOperation(amst)) {
amst->badMerges++;
printf("D");
goto failDeliberate;
}
amstseg->next = amstsegHi->next;
amstsegHi->sig = SigInvalid;
AVERT(AMSTSeg, amstseg);
amst->merges++;
printf("M");
return ResOK;
failDeliberate:
/* Call the anti-method (see .fail) */
res = NextMethod(Seg, AMSTSeg, split)(seg, segHi, base, mid, limit);
AVER(res == ResOK);
res = ResFAIL;
failSuper:
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
return res;
}
/* amstSegSplit -- AMSTSeg split method */
static Res amstSegSplit(Seg seg, Seg segHi,
Addr base, Addr mid, Addr limit)
{
AMST amst;
AMSTSeg amstseg, amstsegHi;
Res res;
AVERT(Seg, seg);
AVER(segHi != NULL); /* can't check fully, it's not initialized */
amstseg = Seg2AMSTSeg(seg);
amstsegHi = Seg2AMSTSeg(segHi);
AVERT(AMSTSeg, amstseg);
amst = PoolAMST(SegPool(seg));
/* Split the superclass fields via direct next-method call */
res = NextMethod(Seg, AMSTSeg, split)(seg, segHi, base, mid, limit);
if (res != ResOK)
goto failSuper;
if (AMSTFailOperation(amst)) {
amst->badSplits++;
printf("B");
goto failDeliberate;
}
/* Full initialization for segHi. */
amstsegHi->next = amstseg->next;
amstsegHi->prev = amstseg;
amstsegHi->sig = AMSTSegSig;
amstseg->next = amstsegHi;
AVERT(AMSTSeg, amstseg);
AVERT(AMSTSeg, amstsegHi);
amst->splits++;
printf("S");
return ResOK;
failDeliberate:
/* Call the anti-method. (see .fail) */
res = NextMethod(Seg, AMSTSeg, merge)(seg, segHi, base, mid, limit);
AVER(res == ResOK);
res = ResFAIL;
failSuper:
AVERT(AMSTSeg, amstseg);
return res;
}
/* AMSTSegClass -- Class definition for AMST segments */
DEFINE_CLASS(Seg, AMSTSeg, klass)
{
INHERIT_CLASS(klass, AMSTSeg, AMSSeg);
klass->instClassStruct.finish = amstSegFinish;
klass->size = sizeof(AMSTSegStruct);
klass->init = amstSegInit;
klass->split = amstSegSplit;
klass->merge = amstSegMerge;
AVERT(SegClass, klass);
}
/* AMSTSegSizePolicy
*
* Picks double the default segment size.
*/
static Res AMSTSegSizePolicy(Size *sizeReturn,
Pool pool, Size size, RankSet rankSet)
{
Arena arena;
Size basic, want;
AVER(sizeReturn != NULL);
AVERT(Pool, pool);
AVER(size > 0);
AVERT(RankSet, rankSet);
arena = PoolArena(pool);
basic = SizeArenaGrains(size, arena);
if (basic == 0) {
/* overflow */
return ResMEMORY;
}
want = basic + basic;
if (want <= basic) {
/* overflow */
return ResMEMORY;
}
*sizeReturn = want;
return ResOK;
}
/* AMSTInit -- the pool class initialization method */
static Res AMSTInit(Pool pool, Arena arena, PoolClass klass, ArgList args)
{
AMST amst;
AMS ams;
Res res;
res = NextMethod(Pool, AMSTPool, init)(pool, arena, klass, args);
if (res != ResOK)
return res;
amst = CouldBeA(AMSTPool, pool);
ams = MustBeA(AMSPool, pool);
ams->segSize = AMSTSegSizePolicy;
ams->segClass = AMSTSegClassGet;
amst->failSegs = TRUE;
amst->splits = 0;
amst->merges = 0;
amst->badSplits = 0;
amst->badMerges = 0;
amst->bsplits = 0;
amst->bmerges = 0;
SetClassOfPoly(pool, CLASS(AMSTPool));
amst->sig = AMSTSig;
AVERC(AMSTPool, amst);
return ResOK;
}
/* AMSTFinish -- the pool class finish method */
static void AMSTFinish(Inst inst)
{
Pool pool = MustBeA(AbstractPool, inst);
AMST amst = MustBeA(AMSTPool, pool);
AVERT(AMST, amst);
amst->sig = SigInvalid;
printf("\nDestroying pool, having performed:\n");
printf(" %"PRIuLONGEST" splits (S)\n", (ulongest_t)amst->splits);
printf(" %"PRIuLONGEST" merges (M)\n", (ulongest_t)amst->merges);
printf(" %"PRIuLONGEST" aborted splits (B)\n", (ulongest_t)amst->badSplits);
printf(" %"PRIuLONGEST" aborted merges (D)\n", (ulongest_t)amst->badMerges);
printf(" which included:\n");
printf(" %"PRIuLONGEST" buffered splits (C)\n", (ulongest_t)amst->bsplits);
printf(" %"PRIuLONGEST" buffered merges (J)\n", (ulongest_t)amst->bmerges);
NextMethod(Inst, AMSTPool, finish)(inst);
}
/* AMSSegIsFree -- return TRUE if a seg is all unallocated */
static Bool AMSSegIsFree(Seg seg)
{
AMSSeg amsseg;
AVERT(Seg, seg);
amsseg = Seg2AMSSeg(seg);
return amsseg->freeGrains == amsseg->grains;
}
/* AMSSegRegionIsFree -- return TRUE if a region is all unallocated */
static Bool AMSSegRegionIsFree(Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg = MustBeA(AMSSeg, seg);
Index baseIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), base);
if (amsseg->allocTableInUse) {
Index limitIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), limit);
return BTIsResRange(amsseg->allocTable, baseIndex, limitIndex);
} else {
return amsseg->firstFree <= baseIndex;
}
}
/* AMSUnallocateRange -- set a range to be unallocated
*
* Used as a means of overriding the behaviour of AMSBufferFill.
* The code is similar to amsSegBufferEmpty.
*/
static void AMSUnallocateRange(AMS ams, Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg;
Index baseIndex, limitIndex;
Count unallocatedGrains;
/* parameters checked by caller */
amsseg = Seg2AMSSeg(seg);
baseIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), base);
limitIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), limit);
if (amsseg->allocTableInUse) {
/* check that it's allocated */
AVER(BTIsSetRange(amsseg->allocTable, baseIndex, limitIndex));
BTResRange(amsseg->allocTable, baseIndex, limitIndex);
} else {
/* check that it's allocated */
AVER(limitIndex <= amsseg->firstFree);
if (limitIndex == amsseg->firstFree) /* is it at the end? */ {
amsseg->firstFree = baseIndex;
} else { /* start using allocTable */
amsseg->allocTableInUse = TRUE;
BTSetRange(amsseg->allocTable, 0, amsseg->firstFree);
if (amsseg->firstFree < amsseg->grains)
BTResRange(amsseg->allocTable, amsseg->firstFree, amsseg->grains);
BTResRange(amsseg->allocTable, baseIndex, limitIndex);
}
}
unallocatedGrains = limitIndex - baseIndex;
AVER(amsseg->bufferedGrains >= unallocatedGrains);
amsseg->freeGrains += unallocatedGrains;
amsseg->bufferedGrains -= unallocatedGrains;
PoolGenAccountForEmpty(ams->pgen, 0,
PoolGrainsSize(AMSPool(ams), unallocatedGrains),
FALSE);
}
/* AMSAllocateRange -- set a range to be allocated
*
* Used as a means of overriding the behaviour of AMSBufferFill.
* The code is similar to AMSUnallocateRange.
*/
static void AMSAllocateRange(AMS ams, Seg seg, Addr base, Addr limit)
{
AMSSeg amsseg;
Index baseIndex, limitIndex;
Count allocatedGrains;
/* parameters checked by caller */
amsseg = Seg2AMSSeg(seg);
baseIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), base);
limitIndex = PoolIndexOfAddr(SegBase(seg), SegPool(seg), limit);
if (amsseg->allocTableInUse) {
/* check that it's not allocated */
AVER(BTIsResRange(amsseg->allocTable, baseIndex, limitIndex));
BTSetRange(amsseg->allocTable, baseIndex, limitIndex);
} else {
/* check that it's not allocated */
AVER(baseIndex >= amsseg->firstFree);
if (baseIndex == amsseg->firstFree) /* is it at the end? */ {
amsseg->firstFree = limitIndex;
} else { /* start using allocTable */
amsseg->allocTableInUse = TRUE;
BTSetRange(amsseg->allocTable, 0, amsseg->firstFree);
if (amsseg->firstFree < amsseg->grains)
BTResRange(amsseg->allocTable, amsseg->firstFree, amsseg->grains);
BTSetRange(amsseg->allocTable, baseIndex, limitIndex);
}
}
allocatedGrains = limitIndex - baseIndex;
AVER(amsseg->freeGrains >= allocatedGrains);
amsseg->freeGrains -= allocatedGrains;
amsseg->bufferedGrains += allocatedGrains;
PoolGenAccountForFill(ams->pgen, AddrOffset(base, limit));
}
/* AMSTBufferFill -- the pool class buffer fill method
*
* Calls next method - but possibly splits or merges the chosen
* segment.
*
* .merge: A merge is performed when the next method returns the
* entire segment, this segment had previously been split from the
* segment below, and the segment below is appropriately similar
* (i.e. not already attached to a buffer and similarly coloured)
*
* .split: If we're not merging, a split is performed if the next method
* returns the entire segment, and yet lower half of the segment would
* meet the request.
*/
static Res AMSTBufferFill(Addr *baseReturn, Addr *limitReturn,
Pool pool, Buffer buffer, Size size)
{
Addr base, limit;
Arena arena;
AMS ams;
AMST amst;
Bool b;
Seg seg;
AMSTSeg amstseg;
Res res;
AVERT(Pool, pool);
AVER(baseReturn != NULL);
AVER(limitReturn != NULL);
/* other parameters are checked by next method */
arena = PoolArena(pool);
ams = PoolAMS(pool);
amst = PoolAMST(pool);
/* call next method */
res = NextMethod(Pool, AMSTPool, bufferFill)(&base, &limit, pool, buffer, size);
if (res != ResOK)
return res;
b = SegOfAddr(&seg, arena, base);
AVER(b);
amstseg = Seg2AMSTSeg(seg);
if (SegLimit(seg) == limit && SegBase(seg) == base) {
if (amstseg->prev != NULL) {
Seg segLo = AMSTSeg2Seg(amstseg->prev);
if (!SegHasBuffer(segLo) &&
SegGrey(segLo) == SegGrey(seg) &&
SegWhite(segLo) == SegWhite(seg)) {
/* .merge */
Seg mergedSeg;
Res mres;
AMSUnallocateRange(ams, seg, base, limit);
mres = SegMerge(&mergedSeg, segLo, seg);
if (ResOK == mres) { /* successful merge */
AMSAllocateRange(ams, mergedSeg, base, limit);
/* leave range as-is */
} else { /* failed to merge */
AVER(amst->failSegs); /* deliberate fails only */
AMSAllocateRange(ams, seg, base, limit);
}
}
} else {
Size half = SegSize(seg) / 2;
if (half >= size && SizeIsArenaGrains(half, arena)) {
/* .split */
Addr mid = AddrAdd(base, half);
Seg segLo, segHi;
Res sres;
AMSUnallocateRange(ams, seg, mid, limit);
sres = SegSplit(&segLo, &segHi, seg, mid);
if (ResOK == sres) { /* successful split */
limit = mid; /* range is lower segment */
} else { /* failed to split */
AVER(amst->failSegs); /* deliberate fails only */
AMSAllocateRange(ams, seg, mid, limit);
}
}
}
}
*baseReturn = base;
*limitReturn = limit;
return ResOK;
}
/* AMSTStressBufferedSeg -- Stress test for a buffered seg
*
* Test splitting or merging a buffered seg.
*
* .bmerge: A merge is performed when the segment had previously
* been split and the segment above meets the constraints (i.e. empty,
* not already attached to a buffer and similar colour)
*
* .bsplit: Whether or not a merge happpened, a split is performed if
* the limit of the buffered region is also the limit of an arena
* grain, and yet does not correspond to the segment limit, provided
* that the part of the segment above the buffer is all free.
*/
static void AMSTStressBufferedSeg(Seg seg, Buffer buffer)
{
AMSTSeg amstseg;
AMST amst;
Arena arena;
Addr limit;
Buffer segBuf;
AVERT(Seg, seg);
AVERT(Buffer, buffer);
AVER(SegBuffer(&segBuf, seg) && segBuf == buffer);
amstseg = Seg2AMSTSeg(seg);
AVERT(AMSTSeg, amstseg);
limit = BufferLimit(buffer);
arena = PoolArena(SegPool(seg));
amst = PoolAMST(SegPool(seg));
AVERT(AMST, amst);
if (amstseg->next != NULL) {
Seg segHi = AMSTSeg2Seg(amstseg->next);
if (AMSSegIsFree(segHi) && SegGrey(segHi) == SegGrey(seg)) {
/* .bmerge */
Seg mergedSeg;
Res res;
res = SegMerge(&mergedSeg, seg, segHi);
if (ResOK == res) {
amst->bmerges++;
printf("J");
} else {
/* deliberate fails only */
AVER(amst->failSegs);
}
}
}
if (SegLimit(seg) != limit &&
AddrIsArenaGrain(limit, arena) &&
AMSSegRegionIsFree(seg, limit, SegLimit(seg))) {
/* .bsplit */
Seg segLo, segHi;
Res res;
res = SegSplit(&segLo, &segHi, seg, limit);
if (ResOK == res) {
amst->bsplits++;
printf("C");
} else {
/* deliberate fails only */
AVER(amst->failSegs);
}
}
}
/* AMSTPoolClass -- the pool class definition */
DEFINE_CLASS(Pool, AMSTPool, klass)
{
INHERIT_CLASS(klass, AMSTPool, AMSPool);
klass->instClassStruct.finish = AMSTFinish;
klass->size = sizeof(AMSTStruct);
klass->init = AMSTInit;
klass->bufferFill = AMSTBufferFill;
AVERT(PoolClass, klass);
}
/* mps_amst_ap_stress -- stress an active buffer
*
* Attempt to either split or merge a segment attached to an AP
*/
static void mps_amst_ap_stress(mps_ap_t ap)
{
Buffer buffer;
Seg seg;
buffer = BufferOfAP(ap);
AVERT(Buffer, buffer);
seg = BufferSeg(buffer);
AMSTStressBufferedSeg(seg, buffer);
}
/* mps_class_amst -- return the pool class descriptor to the client */
static mps_pool_class_t mps_class_amst(void)
{
return (mps_pool_class_t)CLASS(AMSTPool);
}
/* AMS collection parameters */
#define exactRootsCOUNT 50
#define ambigRootsCOUNT 100
#define sizeScale 4
/* This is enough for five GCs. */
#define totalSizeMAX sizeScale * 800 * (size_t)1024
#define totalSizeSTEP 200 * (size_t)1024
/* objNULL needs to be odd so that it's ignored in exactRoots. */
#define objNULL ((mps_addr_t)MPS_WORD_CONST(0xDECEA5ED))
#define testArenaSIZE ((size_t)16<<20)
#define initTestFREQ 6000
#define stressTestFREQ 40
/* static variables for the test */
static mps_pool_t pool;
static mps_ap_t ap;
static mps_addr_t exactRoots[exactRootsCOUNT];
static mps_addr_t ambigRoots[ambigRootsCOUNT];
static size_t totalSize = 0;
/* make -- object allocation and init */
static mps_addr_t make(void)
{
size_t length = rnd() % 20, size = (length+2) * sizeof(mps_word_t);
mps_addr_t p;
mps_res_t res;
do {
MPS_RESERVE_BLOCK(res, p, ap, size);
if (res)
die(res, "MPS_RESERVE_BLOCK");
res = dylan_init(p, size, exactRoots, exactRootsCOUNT);
if (res)
die(res, "dylan_init");
} while(!mps_commit(ap, p, size));
totalSize += size;
return p;
}
/* test -- the actual stress test */
static void *test(void *arg, size_t s)
{
mps_arena_t arena;
mps_fmt_t format;
mps_root_t exactRoot, ambigRoot;
size_t lastStep = 0, i, r;
unsigned long objs;
mps_ap_t busy_ap;
mps_addr_t busy_init;
const char *indent = " ";
mps_chain_t chain;
static mps_gen_param_s genParam = {1024, 0.2};
arena = (mps_arena_t)arg;
(void)s; /* unused */
die(mps_fmt_create_A(&format, arena, dylan_fmt_A()), "fmt_create");
die(mps_chain_create(&chain, arena, 1, &genParam), "chain_create");
MPS_ARGS_BEGIN(args) {
MPS_ARGS_ADD(args, MPS_KEY_FORMAT, format);
MPS_ARGS_ADD(args, MPS_KEY_CHAIN, chain);
MPS_ARGS_ADD(args, MPS_KEY_GEN, 0);
die(mps_pool_create_k(&pool, arena, mps_class_amst(), args),
"pool_create(amst)");
} MPS_ARGS_END(args);
die(mps_ap_create(&ap, pool, mps_rank_exact()), "BufferCreate");
die(mps_ap_create(&busy_ap, pool, mps_rank_exact()), "BufferCreate 2");
for(i = 0; i < exactRootsCOUNT; ++i)
exactRoots[i] = objNULL;
for(i = 0; i < ambigRootsCOUNT; ++i)
ambigRoots[i] = rnd_addr();
die(mps_root_create_table_masked(&exactRoot, arena,
mps_rank_exact(), (mps_rm_t)0,
&exactRoots[0], exactRootsCOUNT,
(mps_word_t)1),
"root_create_table(exact)");
die(mps_root_create_table(&ambigRoot, arena,
mps_rank_ambig(), (mps_rm_t)0,
&ambigRoots[0], ambigRootsCOUNT),
"root_create_table(ambig)");
puts(indent);
/* create an ap, and leave it busy */
die(mps_reserve(&busy_init, busy_ap, 64), "mps_reserve busy");
objs = 0;
while(totalSize < totalSizeMAX) {
if (totalSize > lastStep + totalSizeSTEP) {
lastStep = totalSize;
printf("\nSize %"PRIuLONGEST" bytes, %"PRIuLONGEST" objects.\n",
(ulongest_t)totalSize, (ulongest_t)objs);
printf("%s", indent);
(void)fflush(stdout);
for(i = 0; i < exactRootsCOUNT; ++i)
cdie(exactRoots[i] == objNULL || dylan_check(exactRoots[i]),
"all roots check");
}
r = (size_t)rnd();
if (r & 1) {
i = (r >> 1) % exactRootsCOUNT;
if (exactRoots[i] != objNULL)
cdie(dylan_check(exactRoots[i]), "dying root check");
exactRoots[i] = make();
if (exactRoots[(exactRootsCOUNT-1) - i] != objNULL)
dylan_write(exactRoots[(exactRootsCOUNT-1) - i],
exactRoots, exactRootsCOUNT);
} else {
i = (r >> 1) % ambigRootsCOUNT;
ambigRoots[(ambigRootsCOUNT-1) - i] = make();
/* Create random interior pointers */
ambigRoots[i] = (mps_addr_t)((char *)(ambigRoots[i/2]) + 1);
}
if (rnd() % stressTestFREQ == 0)
mps_amst_ap_stress(ap); /* stress active buffer */
if (rnd() % initTestFREQ == 0)
*(int*)busy_init = -1; /* check that the buffer is still there */
++objs;
if (objs % 256 == 0) {
printf(".");
(void)fflush(stdout);
}
}
(void)mps_commit(busy_ap, busy_init, 64);
mps_arena_park(arena);
mps_ap_destroy(busy_ap);
mps_ap_destroy(ap);
mps_root_destroy(exactRoot);
mps_root_destroy(ambigRoot);
mps_pool_destroy(pool);
mps_chain_destroy(chain);
mps_fmt_destroy(format);
return NULL;
}
int main(int argc, char *argv[])
{
mps_arena_t arena;
mps_thr_t thread;
void *r;
testlib_init(argc, argv);
die(mps_arena_create(&arena, mps_arena_class_vm(), testArenaSIZE),
"arena_create");
die(mps_thread_reg(&thread, arena), "thread_reg");
mps_tramp(&r, test, arena, 0);
mps_thread_dereg(thread);
mps_arena_destroy(arena);
printf("%s: Conclusion: Failed to find any defects.\n", argv[0]);
return 0;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (C) 2001-2020 Ravenbrook Limited <http://www.ravenbrook.com/>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/