mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-28 16:21:07 -08:00
Since the introduction of the 'calln' macro, the 'call1', 'call2', ..., 'call8' macros are just aliases for the former. This is slightly misleading and potentially unhelpful. The number of arguments N can also easily go out-of-synch with the used alias callN. There is no reason not to replace these aliases with using 'calln' directly. To reduce the risk for mistakes, the tool Coccinelle was used to make these changes. See <https://coccinelle.gitlabpages.inria.fr/website/>. * src/alloc.c, src/androidvfs.c, src/androidfns.c, src/buffer.c: * src/callint.c, src/callproc.c, src/casefiddle.c, src/charset.c: * src/chartab.c, src/cmds.c, src/coding.c, src/composite.c: * src/data.c, src/dbusbind.c, src/dired.c, src/doc.c: * src/emacs.c, src/eval.c, src/fileio.c, src/filelock.c: * src/fns.c, src/frame.c, src/gtkutil.c, src/haikufns.c: * src/haikumenu.c, src/image.c, src/insdel.c, src/intervals.c: * src/keyboard.c, src/keymap.c, src/lisp.h, src/lread.c: * src/minibuf.c, src/nsfns.m, src/nsselect.m, src/pgtkfns.c: * src/pgtkselect.c, src/print.c, src/process.c, src/sort.c: * src/syntax.c, src/textconv.c, src/textprop.c, src/undo.c: * src/w32fns.c, src/window.c, src/xfaces.c, src/xfns.c: * src/xmenu.c, src/xselect.c, src/xterm.c: Replace all uses of 'call1', 'call2', ..., 'call8' with 'calln'.
1178 lines
32 KiB
C
1178 lines
32 KiB
C
/* Timsort for sequences.
|
|
|
|
Copyright (C) 2022-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Emacs.
|
|
|
|
GNU Emacs is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Emacs is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* This is a version of the cpython code implementing the TIMSORT
|
|
sorting algorithm described in
|
|
https://github.com/python/cpython/blob/main/Objects/listsort.txt.
|
|
This algorithm identifies and pushes naturally ordered sublists of
|
|
the original list, or "runs", onto a stack, and merges them
|
|
periodically according to a merge strategy called "powersort".
|
|
State is maintained during the sort in a merge_state structure,
|
|
which is passed around as an argument to all the subroutines. A
|
|
"stretch" structure includes a pointer to the run BASE of length
|
|
LEN along with its POWER (a computed integer used by the powersort
|
|
merge strategy that depends on this run and the succeeding run.) */
|
|
|
|
|
|
#include <config.h>
|
|
#include "lisp.h"
|
|
|
|
|
|
/* Reverse a slice of a vector in place, from lo up to (exclusive) hi. */
|
|
static void
|
|
reverse_slice (Lisp_Object *lo, Lisp_Object *hi)
|
|
{
|
|
--hi;
|
|
while (lo < hi)
|
|
{
|
|
Lisp_Object t = *lo;
|
|
*lo = *hi;
|
|
*hi = t;
|
|
++lo;
|
|
--hi;
|
|
}
|
|
}
|
|
|
|
/* A sortslice contains a pointer to an array of keys and a pointer to
|
|
an array of corresponding values. In other words, keys[i]
|
|
corresponds with values[i]. If values == NULL, then the keys are
|
|
also the values.
|
|
|
|
Several convenience routines are provided here, so that keys and
|
|
values are always moved in sync. */
|
|
|
|
typedef struct
|
|
{
|
|
Lisp_Object *keys;
|
|
Lisp_Object *values;
|
|
} sortslice;
|
|
|
|
/* FIXME: Instead of values=NULL, can we set values=keys, so that they
|
|
are both moved in lockstep and we avoid a lot of branches?
|
|
We may do some useless work but it might be cheaper overall. */
|
|
|
|
static inline void
|
|
sortslice_copy (sortslice *s1, ptrdiff_t i, sortslice *s2, ptrdiff_t j)
|
|
{
|
|
s1->keys[i] = s2->keys[j];
|
|
if (s1->values != NULL)
|
|
s1->values[i] = s2->values[j];
|
|
}
|
|
|
|
static inline void
|
|
sortslice_copy_incr (sortslice *dst, sortslice *src)
|
|
{
|
|
*dst->keys++ = *src->keys++;
|
|
if (dst->values != NULL)
|
|
*dst->values++ = *src->values++;
|
|
}
|
|
|
|
static inline void
|
|
sortslice_copy_decr (sortslice *dst, sortslice *src)
|
|
{
|
|
*dst->keys-- = *src->keys--;
|
|
if (dst->values != NULL)
|
|
*dst->values-- = *src->values--;
|
|
}
|
|
|
|
|
|
static inline void
|
|
sortslice_memcpy (sortslice *s1, ptrdiff_t i, sortslice *s2, ptrdiff_t j,
|
|
ptrdiff_t n)
|
|
{
|
|
memcpy (&s1->keys[i], &s2->keys[j], sizeof s1->keys[0] * n);
|
|
if (s1->values != NULL)
|
|
memcpy (&s1->values[i], &s2->values[j], sizeof s1->values[0] * n);
|
|
}
|
|
|
|
static inline void
|
|
sortslice_memmove (sortslice *s1, ptrdiff_t i, sortslice *s2, ptrdiff_t j,
|
|
ptrdiff_t n)
|
|
{
|
|
memmove (&s1->keys[i], &s2->keys[j], sizeof s1->keys[0] * n);
|
|
if (s1->values != NULL)
|
|
memmove (&s1->values[i], &s2->values[j], sizeof s1->values[0] * n);
|
|
}
|
|
|
|
static inline void
|
|
sortslice_advance (sortslice *slice, ptrdiff_t n)
|
|
{
|
|
slice->keys += n;
|
|
if (slice->values != NULL)
|
|
slice->values += n;
|
|
}
|
|
|
|
/* MAX_MERGE_PENDING is the maximum number of entries in merge_state's
|
|
pending-stretch stack. For a list with n elements, this needs at most
|
|
floor(log2(n)) + 1 entries even if we didn't force runs to a
|
|
minimal length. So the number of bits in a ptrdiff_t is plenty large
|
|
enough for all cases. */
|
|
|
|
#define MAX_MERGE_PENDING PTRDIFF_WIDTH
|
|
|
|
/* Once we get into galloping mode, we stay there as long as both runs
|
|
win at least GALLOP_WIN_MIN consecutive times. */
|
|
|
|
#define GALLOP_WIN_MIN 7
|
|
|
|
/* A small temp array of size MERGESTATE_TEMP_SIZE is used to avoid
|
|
malloc when merging small lists. */
|
|
|
|
#define MERGESTATE_TEMP_SIZE 256
|
|
|
|
struct stretch
|
|
{
|
|
sortslice base;
|
|
ptrdiff_t len;
|
|
int power;
|
|
};
|
|
|
|
struct reloc
|
|
{
|
|
sortslice *src;
|
|
sortslice *dst;
|
|
ptrdiff_t *size;
|
|
int order; /* -1 while in merge_lo; +1 while in merg_hi; 0 otherwise. */
|
|
};
|
|
|
|
|
|
typedef struct merge_state
|
|
{
|
|
Lisp_Object *basekeys;
|
|
Lisp_Object *allocated_keys; /* heap-alloc'ed key array or NULL */
|
|
ptrdiff_t listlen;
|
|
|
|
/* PENDING is a stack of N pending stretches yet to be merged.
|
|
Stretch #i starts at address base[i] and extends for len[i]
|
|
elements. */
|
|
|
|
int n;
|
|
struct stretch pending[MAX_MERGE_PENDING];
|
|
|
|
/* The variable MIN_GALLOP, initialized to GALLOP_WIN_MIN, controls
|
|
when we get *into* galloping mode. merge_lo and merge_hi tend to
|
|
nudge it higher for random data, and lower for highly structured
|
|
data. */
|
|
|
|
ptrdiff_t min_gallop;
|
|
|
|
/* 'A' is temporary storage, able to hold ALLOCED elements, to help
|
|
with merges. 'A' initially points to TEMPARRAY, and subsequently
|
|
to newly allocated memory if needed. */
|
|
|
|
sortslice a;
|
|
ptrdiff_t alloced;
|
|
specpdl_ref count;
|
|
Lisp_Object temparray[MERGESTATE_TEMP_SIZE];
|
|
|
|
/* If an exception is thrown while merging we might have to relocate
|
|
some list elements from temporary storage back into the list.
|
|
RELOC keeps track of the information needed to do this. */
|
|
|
|
struct reloc reloc;
|
|
|
|
/* The C ordering (less-than) predicate. */
|
|
bool (*pred_fun) (struct merge_state *ms, Lisp_Object a, Lisp_Object b);
|
|
|
|
/* The Lisp ordering predicate; Qnil means value<. */
|
|
Lisp_Object predicate;
|
|
} merge_state;
|
|
|
|
|
|
static bool
|
|
order_pred_lisp (merge_state *ms, Lisp_Object a, Lisp_Object b)
|
|
{
|
|
return !NILP (calln (ms->predicate, a, b));
|
|
}
|
|
|
|
static bool
|
|
order_pred_valuelt (merge_state *ms, Lisp_Object a, Lisp_Object b)
|
|
{
|
|
return !NILP (Fvaluelt (a, b));
|
|
}
|
|
|
|
/* Return true iff A < B according to the order predicate. */
|
|
static inline bool
|
|
inorder (merge_state *ms, Lisp_Object a, Lisp_Object b)
|
|
{
|
|
return ms->pred_fun (ms, a, b);
|
|
}
|
|
|
|
/* Sort the list starting at LO and ending at HI using a stable binary
|
|
insertion sort algorithm. On entry the sublist [LO, START) (with
|
|
START between LO and HIGH) is known to be sorted (pass START == LO
|
|
if you are unsure). Even in case of error, the output will be some
|
|
permutation of the input (nothing is lost or duplicated). */
|
|
|
|
static void
|
|
binarysort (merge_state *ms, sortslice lo, const Lisp_Object *hi,
|
|
Lisp_Object *start)
|
|
{
|
|
eassume (lo.keys <= start && start <= hi);
|
|
if (lo.keys == start)
|
|
++start;
|
|
for (; start < hi; ++start)
|
|
{
|
|
Lisp_Object *l = lo.keys;
|
|
Lisp_Object *r = start;
|
|
Lisp_Object pivot = *r;
|
|
|
|
eassume (l < r);
|
|
do {
|
|
Lisp_Object *p = l + ((r - l) >> 1);
|
|
if (inorder (ms, pivot, *p))
|
|
r = p;
|
|
else
|
|
l = p + 1;
|
|
} while (l < r);
|
|
eassume (l == r);
|
|
for (Lisp_Object *p = start; p > l; --p)
|
|
p[0] = p[-1];
|
|
*l = pivot;
|
|
|
|
if (lo.values != NULL)
|
|
{
|
|
ptrdiff_t offset = lo.values - lo.keys;
|
|
Lisp_Object *p = start + offset;
|
|
pivot = *p;
|
|
l += offset;
|
|
for (Lisp_Object *p = start + offset; p > l; --p)
|
|
p[0] = p[-1];
|
|
*l = pivot;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Find and return the length of the "run" (the longest
|
|
non-decreasing sequence or the longest strictly decreasing
|
|
sequence, with the Boolean *DESCENDING set to 0 in the former
|
|
case, or to 1 in the latter) beginning at LO, in the slice [LO,
|
|
HI) with LO < HI. The strictness of the definition of
|
|
"descending" ensures there are no equal elements to get out of
|
|
order so the caller can safely reverse a descending sequence
|
|
without violating stability. */
|
|
|
|
static ptrdiff_t
|
|
count_run (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
|
|
bool *descending)
|
|
{
|
|
eassume (lo < hi);
|
|
*descending = 0;
|
|
++lo;
|
|
ptrdiff_t n = 1;
|
|
if (lo == hi)
|
|
return n;
|
|
|
|
n = 2;
|
|
if (inorder (ms, lo[0], lo[-1]))
|
|
{
|
|
*descending = 1;
|
|
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
|
{
|
|
if (!inorder (ms, lo[0], lo[-1]))
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
|
{
|
|
if (inorder (ms, lo[0], lo[-1]))
|
|
break;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
/* Locate and return the proper insertion position of KEY in a sorted
|
|
vector: if the vector contains an element equal to KEY, return the
|
|
position immediately to the left of the leftmost equal element.
|
|
[GALLOP_RIGHT does the same except it returns the position to the
|
|
right of the rightmost equal element (if any).]
|
|
|
|
'A' is a sorted vector of N elements. N must be > 0.
|
|
|
|
Elements preceding HINT, a non-negative index less than N, are
|
|
skipped. The closer HINT is to the final result, the faster this
|
|
runs.
|
|
|
|
The return value is the int k in [0, N] such that
|
|
|
|
A[k-1] < KEY <= a[k]
|
|
|
|
pretending that *(A-1) precedes all values and *(A+N) succeeds all
|
|
values. In other words, the first k elements of A should precede
|
|
KEY, and the last N-k should follow KEY. */
|
|
|
|
static ptrdiff_t
|
|
gallop_left (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
|
const ptrdiff_t n, const ptrdiff_t hint)
|
|
{
|
|
eassume (a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
ptrdiff_t lastofs = 0;
|
|
ptrdiff_t ofs = 1;
|
|
if (inorder (ms, *a, key))
|
|
{
|
|
/* When a[hint] < key, gallop right until
|
|
a[hint + lastofs] < key <= a[hint + ofs]. */
|
|
const ptrdiff_t maxofs = n - hint; /* This is one after the end of a. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (ms, a[ofs], key))
|
|
{
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else
|
|
break; /* Here key <= a[hint+ofs]. */
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
else
|
|
{
|
|
/* When key <= a[hint], gallop left, until
|
|
a[hint - ofs] < key <= a[hint - lastofs]. */
|
|
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (ms, a[-ofs], key))
|
|
break;
|
|
/* Here key <= a[hint - ofs]. */
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use positive offsets relative to &a[0]. */
|
|
ptrdiff_t k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
a -= hint;
|
|
|
|
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
|
|
right of lastofs but no farther right than ofs. Do a binary
|
|
search, with invariant a[lastofs-1] < key <= a[ofs]. */
|
|
++lastofs;
|
|
while (lastofs < ofs)
|
|
{
|
|
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
if (inorder (ms, a[m], key))
|
|
lastofs = m + 1; /* Here a[m] < key. */
|
|
else
|
|
ofs = m; /* Here key <= a[m]. */
|
|
}
|
|
eassume (lastofs == ofs); /* Then a[ofs-1] < key <= a[ofs]. */
|
|
return ofs;
|
|
}
|
|
|
|
|
|
/* Locate and return the proper position of KEY in a sorted vector
|
|
exactly like GALLOP_LEFT, except that if KEY already exists in
|
|
A[0:N] find the position immediately to the right of the rightmost
|
|
equal value.
|
|
|
|
The return value is the int k in [0, N] such that
|
|
|
|
A[k-1] <= KEY < A[k]. */
|
|
|
|
static ptrdiff_t
|
|
gallop_right (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
|
const ptrdiff_t n, const ptrdiff_t hint)
|
|
{
|
|
eassume (a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
ptrdiff_t lastofs = 0;
|
|
ptrdiff_t ofs = 1;
|
|
if (inorder (ms, key, *a))
|
|
{
|
|
/* When key < a[hint], gallop left until
|
|
a[hint - ofs] <= key < a[hint - lastofs]. */
|
|
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (ms, key, a[-ofs]))
|
|
{
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else /* Here a[hint - ofs] <= key. */
|
|
break;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use positive offsets relative to &a[0]. */
|
|
ptrdiff_t k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
else
|
|
{
|
|
/* When a[hint] <= key, gallop right, until
|
|
a[hint + lastofs] <= key < a[hint + ofs]. */
|
|
const ptrdiff_t maxofs = n - hint; /* Here &a[n-1] is highest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (ms, key, a[ofs]))
|
|
break;
|
|
/* Here a[hint + ofs] <= key. */
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
a -= hint;
|
|
|
|
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
|
|
right of lastofs but no farther right than ofs. Do a binary
|
|
search, with invariant a[lastofs-1] <= key < a[ofs]. */
|
|
++lastofs;
|
|
while (lastofs < ofs)
|
|
{
|
|
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
if (inorder (ms, key, a[m]))
|
|
ofs = m; /* Here key < a[m]. */
|
|
else
|
|
lastofs = m + 1; /* Here a[m] <= key. */
|
|
}
|
|
eassume (lastofs == ofs); /* Now a[ofs-1] <= key < a[ofs]. */
|
|
return ofs;
|
|
}
|
|
|
|
|
|
static void merge_register_cleanup (merge_state *ms);
|
|
|
|
static void
|
|
merge_init (merge_state *ms, const ptrdiff_t list_size,
|
|
Lisp_Object *allocated_keys, sortslice *lo, Lisp_Object predicate)
|
|
{
|
|
eassume (ms != NULL);
|
|
|
|
if (lo->values != NULL)
|
|
{
|
|
/* The temporary space for merging will need at most half the list
|
|
size rounded up. Use the minimum possible space so we can use the
|
|
rest of temparray for other things. In particular, if there is
|
|
enough extra space, if will be used to store the keys. */
|
|
ms->alloced = (list_size + 1) / 2;
|
|
|
|
/* ms->alloced describes how many keys will be stored at
|
|
ms->temparray, but we also need to store the values. Hence,
|
|
ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
|
|
if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
|
|
ms->alloced = MERGESTATE_TEMP_SIZE / 2;
|
|
ms->a.values = &ms->temparray[ms->alloced];
|
|
}
|
|
else
|
|
{
|
|
ms->alloced = MERGESTATE_TEMP_SIZE;
|
|
ms->a.values = NULL;
|
|
}
|
|
ms->a.keys = ms->temparray;
|
|
|
|
ms->n = 0;
|
|
ms->min_gallop = GALLOP_WIN_MIN;
|
|
ms->listlen = list_size;
|
|
ms->basekeys = lo->keys;
|
|
ms->allocated_keys = allocated_keys;
|
|
ms->pred_fun = NILP (predicate) ? order_pred_valuelt : order_pred_lisp;
|
|
ms->predicate = predicate;
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
ms->count = make_invalid_specpdl_ref ();
|
|
if (allocated_keys != NULL)
|
|
merge_register_cleanup (ms);
|
|
}
|
|
|
|
|
|
/* The dynamically allocated memory may hold lisp objects during
|
|
merging. MERGE_MARKMEM marks them so they aren't reaped during
|
|
GC. */
|
|
|
|
static void
|
|
merge_markmem (void *arg)
|
|
{
|
|
merge_state *ms = arg;
|
|
eassume (ms != NULL);
|
|
|
|
if (ms->allocated_keys != NULL)
|
|
mark_objects (ms->allocated_keys, ms->listlen);
|
|
|
|
if (ms->reloc.size != NULL && *ms->reloc.size > 0)
|
|
{
|
|
Lisp_Object *src = (ms->reloc.src->values
|
|
? ms->reloc.src->values : ms->reloc.src->keys);
|
|
eassume (src != NULL);
|
|
mark_objects (src, *ms->reloc.size);
|
|
}
|
|
}
|
|
|
|
|
|
/* Free all temp storage. If an exception occurs while merging,
|
|
relocate any lisp elements in temp storage back to the original
|
|
array. */
|
|
|
|
static void
|
|
cleanup_mem (void *arg)
|
|
{
|
|
merge_state *ms = arg;
|
|
eassume (ms != NULL);
|
|
|
|
/* If we have an exception while merging, some of the list elements
|
|
might only live in temp storage; we copy everything remaining in
|
|
the temp storage back into the original list. This ensures that
|
|
the original list has all of the original elements, although
|
|
their order is unpredictable. */
|
|
|
|
if (ms->reloc.order != 0 && *ms->reloc.size > 0)
|
|
{
|
|
Lisp_Object *src = (ms->reloc.src->values
|
|
? ms->reloc.src->values : ms->reloc.src->keys);
|
|
Lisp_Object *dst = (ms->reloc.dst->values
|
|
? ms->reloc.dst->values : ms->reloc.dst->keys);
|
|
eassume (src != NULL && dst != NULL);
|
|
ptrdiff_t n = *ms->reloc.size;
|
|
ptrdiff_t shift = ms->reloc.order == -1 ? 0 : n - 1;
|
|
memcpy (dst - shift, src, n * word_size);
|
|
}
|
|
|
|
/* Free any remaining temp storage. */
|
|
if (ms->a.keys != ms->temparray)
|
|
{
|
|
xfree (ms->a.keys);
|
|
ms->a.keys = NULL;
|
|
}
|
|
|
|
if (ms->allocated_keys != NULL)
|
|
{
|
|
xfree (ms->allocated_keys);
|
|
ms->allocated_keys = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
merge_register_cleanup (merge_state *ms)
|
|
{
|
|
specpdl_ref count = SPECPDL_INDEX ();
|
|
record_unwind_protect_ptr_mark (cleanup_mem, ms, merge_markmem);
|
|
ms->count = count;
|
|
}
|
|
|
|
/* Allocate enough temp memory for NEED array slots. Any previously
|
|
allocated memory is first freed, and a cleanup routine is
|
|
registered to free memory at the very end of the sort, or on
|
|
exception. */
|
|
|
|
static void
|
|
merge_getmem (merge_state *ms, const ptrdiff_t need)
|
|
{
|
|
eassume (ms != NULL);
|
|
|
|
if (ms->a.keys == ms->temparray)
|
|
{
|
|
/* We only get here if alloc is needed and this is the first
|
|
time, so we set up the unwind protection. */
|
|
if (!specpdl_ref_valid_p (ms->count))
|
|
merge_register_cleanup (ms);
|
|
}
|
|
else
|
|
{
|
|
/* We have previously alloced storage. Since we don't care
|
|
what's in the block we don't use realloc which would waste
|
|
cycles copying the old data. We just free and alloc
|
|
again. */
|
|
xfree (ms->a.keys);
|
|
}
|
|
ptrdiff_t bytes = (need * word_size) << (ms->a.values != NULL ? 1 : 0);
|
|
ms->a.keys = xmalloc (bytes);
|
|
ms->alloced = need;
|
|
if (ms->a.values != NULL)
|
|
ms->a.values = &ms->a.keys[need];
|
|
}
|
|
|
|
|
|
static inline void
|
|
needmem (merge_state *ms, ptrdiff_t na)
|
|
{
|
|
if (na > ms->alloced)
|
|
merge_getmem (ms, na);
|
|
}
|
|
|
|
|
|
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
|
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
|
Require that SSA[NA-1] belongs at the end of the merge, and NA <=
|
|
NB. */
|
|
|
|
static void
|
|
merge_lo (merge_state *ms, sortslice ssa, ptrdiff_t na,
|
|
sortslice ssb, ptrdiff_t nb)
|
|
{
|
|
eassume (ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
|
|
eassume (ssa.keys + na == ssb.keys);
|
|
needmem (ms, na);
|
|
sortslice_memcpy (&ms->a, 0, &ssa, 0, na);
|
|
sortslice dest = ssa;
|
|
ssa = ms->a;
|
|
|
|
ms->reloc = (struct reloc){&ssa, &dest, &na, -1};
|
|
|
|
sortslice_copy_incr (&dest, &ssb);
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
|
|
ptrdiff_t min_gallop = ms->min_gallop;
|
|
for (;;)
|
|
{
|
|
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
|
|
|
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
|
|
|
for (;;)
|
|
{
|
|
eassume (na > 1 && nb > 0);
|
|
if (inorder (ms, ssb.keys[0], ssa.keys[0]))
|
|
{
|
|
sortslice_copy_incr (&dest, &ssb);
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
sortslice_copy_incr (&dest, &ssa);
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may be a
|
|
huge speedup. We try that, and continue galloping until (if
|
|
ever) neither run appears to be winning consistently
|
|
anymore. */
|
|
++min_gallop;
|
|
do {
|
|
eassume (na > 1 && nb > 0);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
ptrdiff_t k = gallop_right (ms, ssb.keys[0], ssa.keys, na, 0);
|
|
acount = k;
|
|
if (k)
|
|
{
|
|
sortslice_memcpy (&dest, 0, &ssa, 0, k);
|
|
sortslice_advance (&dest, k);
|
|
sortslice_advance (&ssa, k);
|
|
na -= k;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
/* While na==0 is impossible for a consistent comparison
|
|
function, we shouldn't assume that it is. */
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_incr (&dest, &ssb);
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
|
|
k = gallop_left (ms, ssa.keys[0], ssb.keys, nb, 0);
|
|
bcount = k;
|
|
if (k)
|
|
{
|
|
sortslice_memmove (&dest, 0, &ssb, 0, k);
|
|
sortslice_advance (&dest, k);
|
|
sortslice_advance (&ssb, k);
|
|
nb -= k;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_incr (&dest, &ssa);
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
|
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
|
|
if (na)
|
|
sortslice_memcpy(&dest, 0, &ssa, 0, na);
|
|
return;
|
|
CopyB:
|
|
eassume (na == 1 && nb > 0);
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
|
|
/* The last element of ssa belongs at the end of the merge. */
|
|
sortslice_memmove (&dest, 0, &ssb, 0, nb);
|
|
sortslice_copy (&dest, nb, &ssa, 0);
|
|
}
|
|
|
|
|
|
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
|
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
|
Require that SSA[NA-1] belongs at the end of the merge, and NA >=
|
|
NB. */
|
|
|
|
static void
|
|
merge_hi (merge_state *ms, sortslice ssa, ptrdiff_t na,
|
|
sortslice ssb, ptrdiff_t nb)
|
|
{
|
|
eassume (ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
|
|
eassume (ssa.keys + na == ssb.keys);
|
|
needmem (ms, nb);
|
|
sortslice dest = ssb;
|
|
sortslice_advance (&dest, nb-1);
|
|
sortslice_memcpy (&ms->a, 0, &ssb, 0, nb);
|
|
sortslice basea = ssa;
|
|
sortslice baseb = ms->a;
|
|
ssb.keys = ms->a.keys + nb - 1;
|
|
if (ssb.values != NULL)
|
|
ssb.values = ms->a.values + nb - 1;
|
|
sortslice_advance (&ssa, na - 1);
|
|
|
|
ms->reloc = (struct reloc){&baseb, &dest, &nb, 1};
|
|
|
|
sortslice_copy_decr (&dest, &ssa);
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
ptrdiff_t min_gallop = ms->min_gallop;
|
|
for (;;) {
|
|
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
|
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
|
|
|
for (;;) {
|
|
eassume (na > 0 && nb > 1);
|
|
if (inorder (ms, ssb.keys[0], ssa.keys[0]))
|
|
{
|
|
sortslice_copy_decr (&dest, &ssa);
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
sortslice_copy_decr (&dest, &ssb);
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may be a huge
|
|
speedup. Try that, and continue galloping until (if ever)
|
|
neither run appears to be winning consistently anymore. */
|
|
++min_gallop;
|
|
do {
|
|
eassume (na > 0 && nb > 1);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
ptrdiff_t k = gallop_right (ms, ssb.keys[0], basea.keys, na, na - 1);
|
|
k = na - k;
|
|
acount = k;
|
|
if (k)
|
|
{
|
|
sortslice_advance (&dest, -k);
|
|
sortslice_advance (&ssa, -k);
|
|
sortslice_memmove (&dest, 1, &ssa, 1, k);
|
|
na -= k;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_decr(&dest, &ssb);
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
k = gallop_left (ms, ssa.keys[0], baseb.keys, nb, nb - 1);
|
|
k = nb - k;
|
|
bcount = k;
|
|
if (k)
|
|
{
|
|
sortslice_advance (&dest, -k);
|
|
sortslice_advance (&ssb, -k);
|
|
sortslice_memcpy (&dest, 1, &ssb, 1, k);
|
|
nb -= k;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
/* While nb==0 is impossible for a consistent comparison
|
|
function we shouldn't assume that it is. */
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
sortslice_copy_decr (&dest, &ssa);
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
|
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
if (nb)
|
|
sortslice_memcpy (&dest, -(nb-1), &baseb, 0, nb);
|
|
return;
|
|
CopyA:
|
|
eassume (nb == 1 && na > 0);
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
/* The first element of ssb belongs at the front of the merge. */
|
|
sortslice_memmove (&dest, 1-na, &ssa, 1-na, na);
|
|
sortslice_advance (&dest, -na);
|
|
sortslice_advance (&ssa, -na);
|
|
sortslice_copy (&dest, 0, &ssb, 0);
|
|
}
|
|
|
|
|
|
/* Merge the two runs at stack indices I and I+1. */
|
|
|
|
static void
|
|
merge_at (merge_state *ms, const ptrdiff_t i)
|
|
{
|
|
eassume (ms != NULL);
|
|
eassume (ms->n >= 2);
|
|
eassume (i >= 0);
|
|
eassume (i == ms->n - 2 || i == ms->n - 3);
|
|
|
|
sortslice ssa = ms->pending[i].base;
|
|
ptrdiff_t na = ms->pending[i].len;
|
|
sortslice ssb = ms->pending[i + 1].base;
|
|
ptrdiff_t nb = ms->pending[i + 1].len;
|
|
eassume (na > 0 && nb > 0);
|
|
eassume (ssa.keys + na == ssb.keys);
|
|
|
|
/* Record the length of the combined runs. The current run i+1 goes
|
|
away after the merge. If i is the 3rd-last run now, slide the
|
|
last run (which isn't involved in this merge) over to i+1. */
|
|
ms->pending[i].len = na + nb;
|
|
if (i == ms->n - 3)
|
|
ms->pending[i + 1] = ms->pending[i + 2];
|
|
--ms->n;
|
|
|
|
/* Where does b start in a? Elements in a before that can be
|
|
ignored (they are already in place). */
|
|
ptrdiff_t k = gallop_right (ms, *ssb.keys, ssa.keys, na, 0);
|
|
eassume (k >= 0);
|
|
sortslice_advance (&ssa, k);
|
|
na -= k;
|
|
if (na == 0)
|
|
return;
|
|
|
|
/* Where does a end in b? Elements in b after that can be ignored
|
|
(they are already in place). */
|
|
nb = gallop_left (ms, ssa.keys[na - 1], ssb.keys, nb, nb - 1);
|
|
if (nb == 0)
|
|
return;
|
|
eassume (nb > 0);
|
|
/* Merge what remains of the runs using a temp array with size
|
|
min(na, nb) elements. */
|
|
if (na <= nb)
|
|
merge_lo (ms, ssa, na, ssb, nb);
|
|
else
|
|
merge_hi (ms, ssa, na, ssb, nb);
|
|
}
|
|
|
|
|
|
/* Compute the "power" of the first of two adjacent runs beginning at
|
|
index S1, with the first having length N1 and the second (starting
|
|
at index S1+N1) having length N2. The run has total length N. */
|
|
|
|
static int
|
|
powerloop (const ptrdiff_t s1, const ptrdiff_t n1, const ptrdiff_t n2,
|
|
const ptrdiff_t n)
|
|
{
|
|
eassume (s1 >= 0);
|
|
eassume (n1 > 0 && n2 > 0);
|
|
eassume (s1 + n1 + n2 <= n);
|
|
/* The midpoints a and b are
|
|
a = s1 + n1/2
|
|
b = s1 + n1 + n2/2 = a + (n1 + n2)/2
|
|
|
|
These may not be integers because of the "/2", so we work with
|
|
2*a and 2*b instead. It makes no difference to the outcome,
|
|
since the bits in the expansion of (2*i)/n are merely shifted one
|
|
position from those of i/n. */
|
|
ptrdiff_t a = 2 * s1 + n1;
|
|
ptrdiff_t b = a + n1 + n2;
|
|
int result = 0;
|
|
/* Emulate a/n and b/n one bit a time, until their bits differ. */
|
|
for (;;)
|
|
{
|
|
++result;
|
|
if (a >= n)
|
|
{ /* Both quotient bits are now 1. */
|
|
eassume (b >= a);
|
|
a -= n;
|
|
b -= n;
|
|
}
|
|
else if (b >= n)
|
|
{ /* a/n bit is 0 and b/n bit is 1. */
|
|
break;
|
|
} /* Otherwise both quotient bits are 0. */
|
|
eassume (a < b && b < n);
|
|
a <<= 1;
|
|
b <<= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Update the state upon identifying a run of length N2. If there's
|
|
already a stretch on the stack, apply the "powersort" merge
|
|
strategy: compute the topmost stretch's "power" (depth in a
|
|
conceptual binary merge tree) and merge adjacent runs on the stack
|
|
with greater power. */
|
|
|
|
static void
|
|
found_new_run (merge_state *ms, const ptrdiff_t n2)
|
|
{
|
|
eassume (ms != NULL);
|
|
if (ms->n)
|
|
{
|
|
eassume (ms->n > 0);
|
|
struct stretch *p = ms->pending;
|
|
ptrdiff_t s1 = p[ms->n - 1].base.keys - ms->basekeys;
|
|
ptrdiff_t n1 = p[ms->n - 1].len;
|
|
int power = powerloop (s1, n1, n2, ms->listlen);
|
|
while (ms->n > 1 && p[ms->n - 2].power > power)
|
|
{
|
|
merge_at (ms, ms->n - 2);
|
|
}
|
|
eassume (ms->n < 2 || p[ms->n - 2].power < power);
|
|
p[ms->n - 1].power = power;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unconditionally merge all stretches on the stack until only one
|
|
remains. */
|
|
|
|
static void
|
|
merge_force_collapse (merge_state *ms)
|
|
{
|
|
struct stretch *p = ms->pending;
|
|
|
|
eassume (ms != NULL);
|
|
while (ms->n > 1)
|
|
{
|
|
ptrdiff_t n = ms->n - 2;
|
|
if (n > 0 && p[n - 1].len < p[n + 1].len)
|
|
--n;
|
|
merge_at (ms, n);
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute a good value for the minimum run length; natural runs
|
|
shorter than this are boosted artificially via binary insertion.
|
|
|
|
If N < 64, return N (it's too small to bother with fancy stuff).
|
|
Otherwise if N is an exact power of 2, return 32. Finally, return
|
|
an int k, 32 <= k <= 64, such that N/k is close to, but strictly
|
|
less than, an exact power of 2. */
|
|
|
|
static ptrdiff_t
|
|
merge_compute_minrun (ptrdiff_t n)
|
|
{
|
|
ptrdiff_t r = 0; /* r will become 1 if any non-zero bits are
|
|
shifted off. */
|
|
|
|
eassume (n >= 0);
|
|
while (n >= 64)
|
|
{
|
|
r |= n & 1;
|
|
n >>= 1;
|
|
}
|
|
return n + r;
|
|
}
|
|
|
|
|
|
static void
|
|
reverse_sortslice (sortslice *s, const ptrdiff_t n)
|
|
{
|
|
reverse_slice (s->keys, &s->keys[n]);
|
|
if (s->values != NULL)
|
|
reverse_slice (s->values, &s->values[n]);
|
|
}
|
|
|
|
static Lisp_Object
|
|
resolve_fun (Lisp_Object fun)
|
|
{
|
|
if (SYMBOLP (fun))
|
|
{
|
|
/* Attempt to resolve the function as far as possible ahead of time,
|
|
to avoid having to do it for each call. */
|
|
Lisp_Object f = XSYMBOL (fun)->u.s.function;
|
|
if (SYMBOLP (f))
|
|
/* Function was an alias; use slow-path resolution. */
|
|
f = indirect_function (f);
|
|
/* Don't resolve to an autoload spec; that would be very slow. */
|
|
if (!NILP (f) && !(CONSP (f) && EQ (XCAR (f), Qautoload)))
|
|
fun = f;
|
|
}
|
|
return fun;
|
|
}
|
|
|
|
/* Sort the array SEQ with LENGTH elements in the order determined by
|
|
PREDICATE (where Qnil means value<) and KEYFUNC (where Qnil means identity),
|
|
optionally reversed. */
|
|
void
|
|
tim_sort (Lisp_Object predicate, Lisp_Object keyfunc,
|
|
Lisp_Object *seq, const ptrdiff_t length, bool reverse)
|
|
{
|
|
/* FIXME: hoist this to the caller? */
|
|
if (EQ (predicate, Qvaluelt))
|
|
predicate = Qnil;
|
|
if (!NILP (predicate))
|
|
predicate = resolve_fun (predicate);
|
|
if (EQ (keyfunc, Qidentity))
|
|
keyfunc = Qnil;
|
|
|
|
sortslice lo;
|
|
Lisp_Object *keys;
|
|
Lisp_Object *allocated_keys = NULL;
|
|
merge_state ms;
|
|
|
|
if (reverse && 0 < length)
|
|
reverse_slice (seq, seq + length); /* preserve stability */
|
|
|
|
if (NILP (keyfunc))
|
|
{
|
|
keys = NULL;
|
|
lo.keys = seq;
|
|
lo.values = NULL;
|
|
}
|
|
else
|
|
{
|
|
keyfunc = resolve_fun (keyfunc);
|
|
if (length < MERGESTATE_TEMP_SIZE / 2)
|
|
keys = &ms.temparray[length + 1];
|
|
else
|
|
{
|
|
/* Fill with valid Lisp values in case a GC occurs before all
|
|
keys have been computed. */
|
|
static_assert (NIL_IS_ZERO);
|
|
keys = allocated_keys = xzalloc (length * word_size);
|
|
}
|
|
|
|
lo.keys = keys;
|
|
lo.values = seq;
|
|
}
|
|
|
|
merge_init (&ms, length, allocated_keys, &lo, predicate);
|
|
|
|
/* Compute keys after merge_markmem has been registered by merge_init
|
|
(any call to keyfunc might trigger a GC). */
|
|
if (!NILP (keyfunc))
|
|
for (ptrdiff_t i = 0; i < length; i++)
|
|
keys[i] = calln (keyfunc, seq[i]);
|
|
|
|
/* FIXME: This is where we would check the keys for interesting
|
|
properties for more optimized comparison (such as all being fixnums
|
|
etc). */
|
|
|
|
/* March over the array once, left to right, finding natural runs,
|
|
and extending short natural runs to minrun elements. */
|
|
const ptrdiff_t minrun = merge_compute_minrun (length);
|
|
ptrdiff_t nremaining = length;
|
|
do {
|
|
bool descending;
|
|
|
|
/* Identify the next run. */
|
|
ptrdiff_t n = count_run (&ms, lo.keys, lo.keys + nremaining, &descending);
|
|
if (descending)
|
|
reverse_sortslice (&lo, n);
|
|
/* If the run is short, extend it to min(minrun, nremaining). */
|
|
if (n < minrun)
|
|
{
|
|
const ptrdiff_t force = min (nremaining, minrun);
|
|
binarysort (&ms, lo, lo.keys + force, lo.keys + n);
|
|
n = force;
|
|
}
|
|
eassume (ms.n == 0
|
|
|| (ms.pending[ms.n - 1].base.keys + ms.pending[ms.n - 1].len
|
|
== lo.keys));
|
|
found_new_run (&ms, n);
|
|
/* Push the new run on to the stack. */
|
|
eassume (ms.n < MAX_MERGE_PENDING);
|
|
ms.pending[ms.n].base = lo;
|
|
ms.pending[ms.n].len = n;
|
|
++ms.n;
|
|
/* Advance to find the next run. */
|
|
sortslice_advance (&lo, n);
|
|
nremaining -= n;
|
|
} while (nremaining);
|
|
|
|
merge_force_collapse (&ms);
|
|
eassume (ms.n == 1);
|
|
eassume (ms.pending[0].len == length);
|
|
lo = ms.pending[0].base;
|
|
|
|
if (reverse)
|
|
reverse_slice (seq, seq + length);
|
|
|
|
if (ms.a.keys != ms.temparray || allocated_keys != NULL)
|
|
unbind_to (ms.count, Qnil);
|
|
}
|