mirror of
git://git.sv.gnu.org/emacs.git
synced 2026-01-03 02:31:03 -08:00
1045 lines
27 KiB
C
1045 lines
27 KiB
C
/* splay.c: SPLAY TREE IMPLEMENTATION
|
|
*
|
|
* $Id$
|
|
* Copyright (c) 2001 Ravenbrook Limited. See end of file for license.
|
|
*
|
|
* .purpose: Splay trees are used to manage potentially unbounded
|
|
* collections of ordered things.
|
|
*
|
|
* .source: <design/splay/>
|
|
*
|
|
* .note.stack: It's important that the MPS have a bounded stack
|
|
* size, and this is a problem for tree algorithms. Basically,
|
|
* we have to avoid recursion.
|
|
*/
|
|
|
|
|
|
#include "splay.h"
|
|
#include "mpm.h"
|
|
|
|
SRCID(splay, "$Id$");
|
|
|
|
|
|
/* #define SPLAY_DEBUG */
|
|
|
|
|
|
/* Basic getter and setter methods */
|
|
|
|
#define SplayTreeRoot(t) RVALUE((t)->root)
|
|
#define SplayTreeSetRoot(t, r) BEGIN ((t)->root = (r)); END
|
|
|
|
#define SplayCompare(tree, key, node) (((tree)->compare)(node, key))
|
|
|
|
|
|
Bool SplayTreeCheck(SplayTree tree)
|
|
{
|
|
UNUSED(tree);
|
|
CHECKL(tree != NULL);
|
|
CHECKL(FUNCHECK(tree->compare));
|
|
CHECKL(FUNCHECK(tree->nodeKey));
|
|
CHECKL(FUNCHECK(tree->updateNode));
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
void SplayTreeInit(SplayTree tree,
|
|
TreeCompare compare,
|
|
TreeKeyMethod nodeKey,
|
|
SplayUpdateNodeMethod updateNode)
|
|
{
|
|
AVER(tree != NULL);
|
|
AVER(FUNCHECK(compare));
|
|
AVER(FUNCHECK(nodeKey));
|
|
AVER(FUNCHECK(updateNode));
|
|
|
|
tree->compare = compare;
|
|
tree->nodeKey = nodeKey;
|
|
tree->updateNode = updateNode;
|
|
SplayTreeSetRoot(tree, TreeEMPTY);
|
|
|
|
AVERT(SplayTree, tree);
|
|
}
|
|
|
|
|
|
void SplayTreeFinish(SplayTree tree)
|
|
{
|
|
AVERT(SplayTree, tree);
|
|
SplayTreeSetRoot(tree, TreeEMPTY);
|
|
tree->compare = NULL;
|
|
tree->updateNode = NULL;
|
|
}
|
|
|
|
|
|
void SplayTrivUpdate(SplayTree tree, Tree node)
|
|
{
|
|
AVERT(SplayTree, tree);
|
|
AVERT(Tree, node);
|
|
}
|
|
|
|
|
|
#ifdef SPLAY_DEBUG
|
|
static void SplayDebugUpdate(SplayTree tree, Tree node)
|
|
{
|
|
if (node == TreeEMPTY)
|
|
return;
|
|
SplayDebugUpdate(tree, TreeLeft(node));
|
|
SplayDebugUpdate(tree, TreeRight(node));
|
|
tree->updateNode(tree, node);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* SplayLinkRight -- Move top to left child of top
|
|
*
|
|
* Link the current top node into the left child of the right tree,
|
|
* leaving the top node as the left child of the old top node.
|
|
*
|
|
* See <design/splay/#impl.link.right>.
|
|
*/
|
|
|
|
static void SplayLinkRight(Tree *topIO, Tree *rightIO)
|
|
{
|
|
AVERT(Tree, *topIO);
|
|
AVERT(Tree, *rightIO);
|
|
|
|
/* Don't fix client properties yet. */
|
|
|
|
/* .link.right.first: *rightIO is always the first node in the */
|
|
/* right tree, so its left child must be null. */
|
|
AVER(TreeLeft(*rightIO) == TreeEMPTY);
|
|
|
|
TreeSetLeft(*rightIO, *topIO);
|
|
*rightIO = *topIO;
|
|
*topIO = TreeLeft(*topIO);
|
|
|
|
/* The following line is only required for .link.right.first. */
|
|
TreeSetLeft(*rightIO, TreeEMPTY);
|
|
}
|
|
|
|
|
|
/* SplayLinkLeft -- Move top to right child of top
|
|
*
|
|
* Link the current top node into the right child of the left tree,
|
|
* leaving the top node as the right child of the old top node.
|
|
*
|
|
* See <design/splay/#impl.link.left>.
|
|
*/
|
|
|
|
static void SplayLinkLeft(Tree *topIO, Tree *leftIO) {
|
|
AVERT(Tree, *topIO);
|
|
AVERT(Tree, *leftIO);
|
|
|
|
/* Don't fix client properties yet. */
|
|
|
|
/* .link.left.first: *leftIO is always the last node in the */
|
|
/* left tree, so its right child must be null. */
|
|
AVER(TreeRight(*leftIO) == TreeEMPTY);
|
|
|
|
TreeSetRight(*leftIO, *topIO);
|
|
*leftIO = *topIO;
|
|
*topIO = TreeRight(*topIO);
|
|
|
|
/* The following line is only required for .link.left.first. */
|
|
TreeSetRight(*leftIO, TreeEMPTY);
|
|
}
|
|
|
|
|
|
/* SplayUpdateLeftSpine -- undo pointer reversal, updating client property */
|
|
|
|
static Tree SplayUpdateLeftSpine(SplayTree tree, Tree node, Tree top)
|
|
{
|
|
Tree child = TreeRight(top);
|
|
while(node != TreeEMPTY) {
|
|
Tree parent = TreeLeft(node);
|
|
TreeSetLeft(node, child); /* un-reverse pointer */
|
|
tree->updateNode(tree, node);
|
|
child = node;
|
|
node = parent;
|
|
}
|
|
return child;
|
|
}
|
|
|
|
|
|
/* SplayUpdateRightSpine -- undo pointer reversal, updating client property */
|
|
|
|
static Tree SplayUpdateRightSpine(SplayTree tree, Tree node, Tree top)
|
|
{
|
|
Tree child = TreeLeft(top);
|
|
while (node != TreeEMPTY) {
|
|
Tree parent = TreeRight(node);
|
|
TreeSetRight(node, child); /* un-reverse pointer */
|
|
tree->updateNode(tree, node);
|
|
child = node;
|
|
node = parent;
|
|
}
|
|
return child;
|
|
}
|
|
|
|
|
|
/* SplayAssemble -- Assemble left right and top trees into one
|
|
*
|
|
* We do this by moving the children of the top tree to the last and
|
|
* first nodes in the left and right trees, and then moving the tops
|
|
* of the left and right trees to the children of the top tree.
|
|
*
|
|
* When we reach this function, the nodes between the roots of the
|
|
* left and right trees and their last and first nodes respectively
|
|
* will have out of date client properties.
|
|
*
|
|
* See <design/splay/#impl.assemble>.
|
|
*/
|
|
|
|
static void SplayAssemble(SplayTree tree, Tree top,
|
|
Tree leftTop, Tree leftLast,
|
|
Tree rightTop, Tree rightFirst)
|
|
{
|
|
AVERT(SplayTree, tree);
|
|
AVERT(Tree, top);
|
|
AVERT(Tree, leftTop);
|
|
AVERT(Tree, rightTop);
|
|
|
|
if (leftTop != TreeEMPTY) {
|
|
if (tree->updateNode != SplayTrivUpdate) {
|
|
/* Update client property using pointer reversal (Ugh!). */
|
|
Tree left, newLeft;
|
|
left = TreeReverseRightSpine(leftTop);
|
|
AVER(left == leftLast);
|
|
newLeft = SplayUpdateRightSpine(tree, left, top);
|
|
AVER(newLeft == leftTop);
|
|
TreeSetLeft(top, newLeft);
|
|
} else {
|
|
AVER(leftLast != TreeEMPTY);
|
|
TreeSetRight(leftLast, TreeLeft(top));
|
|
TreeSetLeft(top, leftTop);
|
|
}
|
|
}
|
|
|
|
if (rightTop != TreeEMPTY) {
|
|
if (tree->updateNode != SplayTrivUpdate) {
|
|
/* Update client property using pointer reversal (Ugh!). */
|
|
Tree right, newRight;
|
|
right = TreeReverseLeftSpine(rightTop);
|
|
AVER(right == rightFirst);
|
|
newRight = SplayUpdateLeftSpine(tree, rightFirst, top);
|
|
AVER(newRight == rightTop);
|
|
TreeSetRight(top, newRight);
|
|
} else {
|
|
AVER(rightFirst != TreeEMPTY);
|
|
TreeSetLeft(rightFirst, TreeRight(top));
|
|
TreeSetRight(top, rightTop);
|
|
}
|
|
}
|
|
|
|
tree->updateNode(tree, top);
|
|
}
|
|
|
|
|
|
/* SplaySplay -- Splay the tree (top-down) around a given key
|
|
*
|
|
* If the key is not found, splays around an arbitrary neighbour.
|
|
* Returns the relationship of the new tree root to the key.
|
|
* This is the real logic behind splay trees.
|
|
*
|
|
* See <design/splay/#impl.splay>.
|
|
*/
|
|
|
|
static Compare SplaySplit(Tree *nodeReturn,
|
|
Tree *leftTopReturn, Tree *leftLastReturn,
|
|
Tree *rightTopReturn, Tree *rightFirstReturn,
|
|
SplayTree tree, TreeKey key, TreeCompare compare)
|
|
{
|
|
/* The sides structure avoids a boundary case in SplayLink* */
|
|
TreeStruct sides; /* rightTop and leftTop */
|
|
Tree node, leftLast, rightFirst;
|
|
Compare cmp;
|
|
|
|
AVERT(SplayTree, tree);
|
|
AVER(FUNCHECK(compare));
|
|
|
|
node = SplayTreeRoot(tree); /* will be copied back at end */
|
|
|
|
TreeInit(&sides); /* left and right trees now TreeEMPTY */
|
|
leftLast = &sides;
|
|
rightFirst = &sides;
|
|
|
|
if (node == TreeEMPTY) {
|
|
cmp = CompareEQUAL;
|
|
goto assemble;
|
|
}
|
|
|
|
for (;;) {
|
|
Tree child;
|
|
|
|
/* cmp is already initialised above. */
|
|
cmp = compare(node, key);
|
|
switch(cmp) {
|
|
|
|
case CompareLESS:
|
|
child = TreeLeft(node);
|
|
if (child == TreeEMPTY)
|
|
goto assemble;
|
|
|
|
cmp = compare(child, key);
|
|
switch(cmp) {
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
|
|
case CompareEQUAL: /* zig */
|
|
SplayLinkRight(&node, &rightFirst);
|
|
goto assemble;
|
|
|
|
case CompareLESS: /* zig-zig */
|
|
if (TreeLeft(child) == TreeEMPTY) {
|
|
SplayLinkRight(&node, &rightFirst);
|
|
goto assemble;
|
|
}
|
|
TreeRotateRight(&node);
|
|
tree->updateNode(tree, TreeRight(node));
|
|
SplayLinkRight(&node, &rightFirst);
|
|
break;
|
|
|
|
case CompareGREATER: /* zig-zag */
|
|
SplayLinkRight(&node, &rightFirst);
|
|
if (TreeRight(child) == TreeEMPTY)
|
|
goto assemble;
|
|
SplayLinkLeft(&node, &leftLast);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case CompareGREATER:
|
|
child = TreeRight(node);
|
|
if (child == TreeEMPTY)
|
|
goto assemble;
|
|
|
|
cmp = compare(child, key);
|
|
switch(cmp) {
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
|
|
case CompareEQUAL: /* zag */
|
|
SplayLinkLeft(&node, &leftLast);
|
|
goto assemble;
|
|
|
|
case CompareGREATER: /* zag-zag */
|
|
if (TreeRight(child) == TreeEMPTY) {
|
|
SplayLinkLeft(&node, &leftLast);
|
|
goto assemble;
|
|
}
|
|
TreeRotateLeft(&node);
|
|
tree->updateNode(tree, TreeLeft(node));
|
|
SplayLinkLeft(&node, &leftLast);
|
|
break;
|
|
|
|
case CompareLESS: /* zag-zig */
|
|
SplayLinkLeft(&node, &leftLast);
|
|
if (TreeLeft(child) == TreeEMPTY)
|
|
goto assemble;
|
|
SplayLinkRight(&node, &rightFirst);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
|
|
case CompareEQUAL:
|
|
goto assemble;
|
|
}
|
|
}
|
|
|
|
assemble:
|
|
*nodeReturn = node;
|
|
*leftTopReturn = TreeRight(&sides);
|
|
*leftLastReturn = leftLast == &sides ? TreeEMPTY : leftLast;
|
|
*rightTopReturn = TreeLeft(&sides);
|
|
*rightFirstReturn = rightFirst == &sides ? TreeEMPTY : rightFirst;
|
|
return cmp;
|
|
}
|
|
|
|
|
|
static Compare SplaySplay(SplayTree tree, TreeKey key, TreeCompare compare)
|
|
{
|
|
Compare cmp;
|
|
Tree node, leftTop, leftLast, rightTop, rightFirst;
|
|
#ifdef SPLAY_DEBUG
|
|
Count count = TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey);
|
|
#endif
|
|
|
|
cmp = SplaySplit(&node, &leftTop, &leftLast, &rightTop, &rightFirst,
|
|
tree, key, compare);
|
|
|
|
SplayAssemble(tree, node,
|
|
leftTop, leftLast,
|
|
rightTop, rightFirst);
|
|
|
|
SplayTreeSetRoot(tree, node);
|
|
|
|
#ifdef SPLAY_DEBUG
|
|
AVER(count == TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey));
|
|
#endif
|
|
|
|
return cmp;
|
|
}
|
|
|
|
|
|
static void SplayLeft(SplayTree tree)
|
|
{
|
|
/* The sides structure avoids a boundary case in SplayLink* */
|
|
TreeStruct sides; /* rightTop and leftTop */
|
|
Tree node, rightFirst;
|
|
#ifdef SPLAY_DEBUG
|
|
Count count = TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey);
|
|
#endif
|
|
|
|
AVERT(SplayTree, tree);
|
|
|
|
node = SplayTreeRoot(tree); /* will be copied back at end */
|
|
|
|
if (node == TreeEMPTY)
|
|
return;
|
|
|
|
TreeInit(&sides); /* left and right trees now TreeEMPTY */
|
|
rightFirst = &sides;
|
|
|
|
for (;;) {
|
|
Tree child = TreeLeft(node);
|
|
if (child == TreeEMPTY)
|
|
break;
|
|
if (TreeLeft(child) == TreeEMPTY) {
|
|
SplayLinkRight(&node, &rightFirst);
|
|
break;
|
|
}
|
|
TreeRotateRight(&node);
|
|
tree->updateNode(tree, TreeRight(node));
|
|
SplayLinkRight(&node, &rightFirst);
|
|
}
|
|
|
|
SplayAssemble(tree, node,
|
|
TreeEMPTY, TreeEMPTY,
|
|
TreeLeft(&sides), rightFirst);
|
|
|
|
SplayTreeSetRoot(tree, node);
|
|
|
|
#ifdef SPLAY_DEBUG
|
|
AVER(count == TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey));
|
|
#endif
|
|
}
|
|
|
|
|
|
static void SplayRight(SplayTree tree)
|
|
{
|
|
/* The sides structure avoids a boundary case in SplayLink* */
|
|
TreeStruct sides; /* rightTop and leftTop */
|
|
Tree node, leftLast;
|
|
#ifdef SPLAY_DEBUG
|
|
Count count = TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey);
|
|
#endif
|
|
|
|
AVERT(SplayTree, tree);
|
|
|
|
node = SplayTreeRoot(tree); /* will be copied back at end */
|
|
|
|
if (node == TreeEMPTY)
|
|
return;
|
|
|
|
TreeInit(&sides); /* left and right trees now TreeEMPTY */
|
|
leftLast = &sides;
|
|
|
|
for (;;) {
|
|
Tree child = TreeRight(node);
|
|
if (child == TreeEMPTY)
|
|
break;
|
|
if (TreeRight(child) == TreeEMPTY) {
|
|
SplayLinkLeft(&node, &leftLast);
|
|
break;
|
|
}
|
|
TreeRotateLeft(&node);
|
|
tree->updateNode(tree, TreeLeft(node));
|
|
SplayLinkLeft(&node, &leftLast);
|
|
}
|
|
|
|
SplayAssemble(tree, node,
|
|
TreeRight(&sides), leftLast,
|
|
TreeEMPTY, TreeEMPTY);
|
|
|
|
SplayTreeSetRoot(tree, node);
|
|
|
|
#ifdef SPLAY_DEBUG
|
|
AVER(count == TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey));
|
|
#endif
|
|
}
|
|
|
|
|
|
/* SplayTreeInsert -- Insert a node into a splay tree
|
|
*
|
|
* See <design/splay/#function.splay.tree.insert> and
|
|
* <design/splay/#impl.insert>.
|
|
*/
|
|
|
|
Bool SplayTreeInsert(SplayTree tree, Tree node) {
|
|
AVERT(SplayTree, tree);
|
|
AVERT(Tree, node);
|
|
AVER(TreeLeft(node) == TreeEMPTY);
|
|
AVER(TreeRight(node) == TreeEMPTY);
|
|
|
|
if (SplayTreeRoot(tree) == TreeEMPTY) {
|
|
SplayTreeSetRoot(tree, node);
|
|
} else {
|
|
Tree neighbour;
|
|
switch (SplaySplay(tree, tree->nodeKey(node), tree->compare)) {
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
case CompareEQUAL:
|
|
return FALSE;
|
|
|
|
case CompareGREATER: /* left neighbour */
|
|
neighbour = SplayTreeRoot(tree);
|
|
SplayTreeSetRoot(tree, node);
|
|
TreeSetRight(node, TreeRight(neighbour));
|
|
TreeSetLeft(node, neighbour);
|
|
TreeSetRight(neighbour, TreeEMPTY);
|
|
break;
|
|
|
|
case CompareLESS: /* right neighbour */
|
|
neighbour = SplayTreeRoot(tree);
|
|
SplayTreeSetRoot(tree, node);
|
|
TreeSetLeft(node, TreeLeft(neighbour));
|
|
TreeSetRight(node, neighbour);
|
|
TreeSetLeft(neighbour, TreeEMPTY);
|
|
break;
|
|
}
|
|
|
|
tree->updateNode(tree, neighbour);
|
|
tree->updateNode(tree, node);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* SplayTreeDelete -- Delete a node from a splay tree
|
|
*
|
|
* See <design/splay/#function.splay.tree.delete> and
|
|
* <design/splay/#impl.delete>.
|
|
*/
|
|
|
|
Bool SplayTreeDelete(SplayTree tree, Tree node) {
|
|
Tree leftLast;
|
|
Compare cmp;
|
|
|
|
AVERT(SplayTree, tree);
|
|
AVERT(Tree, node);
|
|
|
|
cmp = SplaySplay(tree, tree->nodeKey(node), tree->compare);
|
|
AVER(cmp != CompareEQUAL || SplayTreeRoot(tree) == node);
|
|
|
|
if (cmp != CompareEQUAL) {
|
|
return FALSE;
|
|
} else if (TreeLeft(node) == TreeEMPTY) {
|
|
SplayTreeSetRoot(tree, TreeRight(node));
|
|
TreeClearRight(node);
|
|
} else if (TreeRight(node) == TreeEMPTY) {
|
|
SplayTreeSetRoot(tree, TreeLeft(node));
|
|
TreeClearLeft(node);
|
|
} else {
|
|
Tree rightHalf = TreeRight(node);
|
|
TreeClearRight(node);
|
|
SplayTreeSetRoot(tree, TreeLeft(node));
|
|
TreeClearLeft(node);
|
|
SplayRight(tree);
|
|
leftLast = SplayTreeRoot(tree);
|
|
AVER(leftLast != TreeEMPTY);
|
|
AVER(TreeRight(leftLast) == TreeEMPTY);
|
|
TreeSetRight(leftLast, rightHalf);
|
|
tree->updateNode(tree, leftLast);
|
|
}
|
|
|
|
TreeFinish(node);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* SplayTreeFind -- search for a node in a splay tree matching a key
|
|
*
|
|
* See <design/splay/#function.splay.tree.search> and
|
|
* <design/splay/#impl.search>.
|
|
*/
|
|
|
|
Bool SplayTreeFind(Tree *nodeReturn, SplayTree tree, TreeKey key) {
|
|
AVERT(SplayTree, tree);
|
|
AVER(nodeReturn != NULL);
|
|
|
|
if (SplayTreeRoot(tree) == TreeEMPTY)
|
|
return FALSE;
|
|
|
|
if (SplaySplay(tree, key, tree->compare) != CompareEQUAL)
|
|
return FALSE;
|
|
|
|
*nodeReturn = SplayTreeRoot(tree);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* SplayTreeSuccessor -- Splays a tree at the root's successor
|
|
*
|
|
* Must not be called on en empty tree. Successor need not exist,
|
|
* in which case TreeEMPTY is returned, and the tree is unchanged.
|
|
*/
|
|
|
|
static Tree SplayTreeSuccessor(SplayTree tree) {
|
|
Tree oldRoot, newRoot;
|
|
|
|
AVERT(SplayTree, tree);
|
|
|
|
oldRoot = SplayTreeRoot(tree);
|
|
AVERT(Tree, oldRoot);
|
|
|
|
if (TreeRight(oldRoot) == TreeEMPTY) {
|
|
newRoot = TreeEMPTY; /* No successor */
|
|
} else {
|
|
/* temporarily chop off the left half-tree, inclusive of root */
|
|
SplayTreeSetRoot(tree, TreeRight(oldRoot));
|
|
TreeSetRight(oldRoot, TreeEMPTY);
|
|
SplayLeft(tree);
|
|
newRoot = SplayTreeRoot(tree);
|
|
AVER(newRoot != TreeEMPTY);
|
|
AVER(TreeLeft(newRoot) == TreeEMPTY);
|
|
TreeSetLeft(newRoot, oldRoot);
|
|
tree->updateNode(tree, oldRoot);
|
|
tree->updateNode(tree, newRoot);
|
|
}
|
|
|
|
return newRoot;
|
|
}
|
|
|
|
|
|
/* SplayTreeNeighbours
|
|
*
|
|
* Search for the two nodes in a splay tree neighbouring a key.
|
|
*
|
|
* See <design/splay/#function.splay.tree.neighbours> and
|
|
* <design/splay/#impl.neighbours>.
|
|
*/
|
|
|
|
|
|
Bool SplayTreeNeighbours(Tree *leftReturn, Tree *rightReturn,
|
|
SplayTree tree, TreeKey key)
|
|
{
|
|
Tree node, leftTop, leftLast, rightTop, rightFirst;
|
|
Bool found;
|
|
#ifdef SPLAY_DEBUG
|
|
Count count = TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey);
|
|
#endif
|
|
|
|
|
|
AVERT(SplayTree, tree);
|
|
AVER(leftReturn != NULL);
|
|
AVER(rightReturn != NULL);
|
|
|
|
if (SplayTreeRoot(tree) == TreeEMPTY) {
|
|
*leftReturn = *rightReturn = TreeEMPTY;
|
|
return TRUE;
|
|
}
|
|
|
|
switch (SplaySplit(&node, &leftTop, &leftLast, &rightTop, &rightFirst,
|
|
tree, key, tree->compare)) {
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
case CompareEQUAL:
|
|
found = FALSE;
|
|
break;
|
|
|
|
case CompareLESS:
|
|
AVER(TreeLeft(node) == TreeEMPTY);
|
|
*rightReturn = node;
|
|
*leftReturn = leftLast;
|
|
found = TRUE;
|
|
break;
|
|
|
|
case CompareGREATER:
|
|
AVER(TreeRight(node) == TreeEMPTY);
|
|
*leftReturn = node;
|
|
*rightReturn = rightFirst;
|
|
found = TRUE;
|
|
break;
|
|
}
|
|
|
|
SplayAssemble(tree, node,
|
|
leftTop, leftLast,
|
|
rightTop, rightFirst);
|
|
SplayTreeSetRoot(tree, node);
|
|
|
|
#ifdef SPLAY_DEBUG
|
|
AVER(count == TreeDebugCount(SplayTreeRoot(tree), tree->compare, tree->nodeKey));
|
|
#endif
|
|
|
|
return found;
|
|
}
|
|
|
|
|
|
/* SplayTreeFirst, SplayTreeNext -- Iterators
|
|
*
|
|
* SplayTreeFirst receives a key that must precede all
|
|
* nodes in the tree. It returns TreeEMPTY if the tree is empty.
|
|
* Otherwise, it splays the tree to the first node, and returns the
|
|
* new root. See <design/splay/#function.splay.tree.first>.
|
|
*
|
|
* SplayTreeNext takes a tree and splays it to the successor of the
|
|
* old root, and returns the new root. Returns TreeEMPTY is there are
|
|
* no successors. It takes a key for the old root. See
|
|
* <design/splay/#function.splay.tree.next>.
|
|
*/
|
|
|
|
Tree SplayTreeFirst(SplayTree tree) {
|
|
Tree node;
|
|
|
|
AVERT(SplayTree, tree);
|
|
|
|
if (SplayTreeRoot(tree) == TreeEMPTY)
|
|
return TreeEMPTY;
|
|
|
|
SplayLeft(tree);
|
|
node = SplayTreeRoot(tree);
|
|
AVER(node != TreeEMPTY);
|
|
AVER(TreeLeft(node) == TreeEMPTY);
|
|
|
|
return node;
|
|
}
|
|
|
|
Tree SplayTreeNext(SplayTree tree, TreeKey oldKey) {
|
|
AVERT(SplayTree, tree);
|
|
|
|
if (SplayTreeRoot(tree) == TreeEMPTY)
|
|
return TreeEMPTY;
|
|
|
|
/* Make old node the root. Probably already is. We don't mind if the
|
|
node has been deleted, or replaced by a node with the same key. */
|
|
switch (SplaySplay(tree, oldKey, tree->compare)) {
|
|
default:
|
|
NOTREACHED;
|
|
/* defensive fall-through */
|
|
case CompareGREATER:
|
|
return SplayTreeRoot(tree);
|
|
|
|
case CompareLESS:
|
|
case CompareEQUAL:
|
|
return SplayTreeSuccessor(tree);
|
|
}
|
|
}
|
|
|
|
|
|
/* SplayNodeDescribe -- Describe a node in the splay tree
|
|
*
|
|
* Note that this breaks the restriction of .note.stack.
|
|
* This is alright as the function is debug only.
|
|
*/
|
|
|
|
static Res SplayNodeDescribe(Tree node, mps_lib_FILE *stream,
|
|
SplayNodeDescribeMethod nodeDescribe) {
|
|
Res res;
|
|
|
|
#if defined(AVER_AND_CHECK)
|
|
if (!TreeCheck(node)) return ResFAIL;
|
|
/* stream and nodeDescribe checked by SplayTreeDescribe */
|
|
#endif
|
|
|
|
res = WriteF(stream, "( ", NULL);
|
|
if (res != ResOK) return res;
|
|
|
|
if (TreeLeft(node) != TreeEMPTY) {
|
|
res = SplayNodeDescribe(TreeLeft(node), stream, nodeDescribe);
|
|
if (res != ResOK) return res;
|
|
|
|
res = WriteF(stream, " / ", NULL);
|
|
if (res != ResOK) return res;
|
|
}
|
|
|
|
res = (*nodeDescribe)(node, stream);
|
|
if (res != ResOK) return res;
|
|
|
|
if (TreeRight(node) != TreeEMPTY) {
|
|
res = WriteF(stream, " \\ ", NULL);
|
|
if (res != ResOK) return res;
|
|
|
|
res = SplayNodeDescribe(TreeRight(node), stream, nodeDescribe);
|
|
if (res != ResOK) return res;
|
|
}
|
|
|
|
res = WriteF(stream, " )", NULL);
|
|
if (res != ResOK) return res;
|
|
|
|
return ResOK;
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
SplayTestNodeMethod testNode;
|
|
SplayTestTreeMethod testTree;
|
|
void *p;
|
|
Size s;
|
|
SplayTree tree;
|
|
} SplayFindClosureStruct, *SplayFindClosure;
|
|
|
|
static Compare SplayFindFirstCompare(Tree node, TreeKey key)
|
|
{
|
|
SplayFindClosure closure;
|
|
void *closureP;
|
|
Size closureS;
|
|
SplayTestNodeMethod testNode;
|
|
SplayTestTreeMethod testTree;
|
|
SplayTree tree;
|
|
|
|
AVERT(Tree, node);
|
|
AVER(key != NULL);
|
|
|
|
closure = (SplayFindClosure)key;
|
|
closureP = closure->p;
|
|
closureS = closure->s;
|
|
testNode = closure->testNode;
|
|
testTree = closure->testTree;
|
|
tree = closure->tree;
|
|
|
|
if (TreeLeft(node) != TreeEMPTY &&
|
|
(*testTree)(tree, TreeLeft(node), closureP, closureS)) {
|
|
return CompareLESS;
|
|
} else if ((*testNode)(tree, node, closureP, closureS)) {
|
|
return CompareEQUAL;
|
|
} else {
|
|
AVER(TreeRight(node) != TreeEMPTY);
|
|
AVER((*testTree)(tree, TreeRight(node), closureP, closureS));
|
|
return CompareGREATER;
|
|
}
|
|
}
|
|
|
|
static Compare SplayFindLastCompare(Tree node, TreeKey key)
|
|
{
|
|
SplayFindClosure closure;
|
|
void *closureP;
|
|
Size closureS;
|
|
SplayTestNodeMethod testNode;
|
|
SplayTestTreeMethod testTree;
|
|
SplayTree tree;
|
|
|
|
AVERT(Tree, node);
|
|
AVER(key != NULL);
|
|
|
|
closure = (SplayFindClosure)key;
|
|
closureP = closure->p;
|
|
closureS = closure->s;
|
|
testNode = closure->testNode;
|
|
testTree = closure->testTree;
|
|
tree = closure->tree;
|
|
|
|
if (TreeRight(node) != TreeEMPTY &&
|
|
(*testTree)(tree, TreeRight(node), closureP, closureS)) {
|
|
return CompareGREATER;
|
|
} else if ((*testNode)(tree, node, closureP, closureS)) {
|
|
return CompareEQUAL;
|
|
} else {
|
|
AVER(TreeLeft(node) != TreeEMPTY);
|
|
AVER((*testTree)(tree, TreeLeft(node), closureP, closureS));
|
|
return CompareLESS;
|
|
}
|
|
}
|
|
|
|
|
|
/* SplayFindFirst -- Find first node that satisfies client property
|
|
*
|
|
* This function finds the first node (in address order) in the given
|
|
* tree that satisfies some property defined by the client. The
|
|
* property is such that the client can detect, given a sub-tree,
|
|
* whether that sub-tree contains any nodes satisfying the property.
|
|
*
|
|
* The given callbacks testNode and testTree detect this property in
|
|
* a single node or a sub-tree rooted at a node, and both receive the
|
|
* arbitrary closures closureP and closureS.
|
|
*/
|
|
|
|
Bool SplayFindFirst(Tree *nodeReturn, SplayTree tree,
|
|
SplayTestNodeMethod testNode,
|
|
SplayTestTreeMethod testTree,
|
|
void *closureP, Size closureS)
|
|
{
|
|
Tree node;
|
|
SplayFindClosureStruct closureStruct;
|
|
|
|
AVER(nodeReturn != NULL);
|
|
AVERT(SplayTree, tree);
|
|
AVER(FUNCHECK(testNode));
|
|
AVER(FUNCHECK(testTree));
|
|
|
|
node = SplayTreeRoot(tree);
|
|
|
|
if (node == TreeEMPTY || !(*testTree)(tree, node, closureP, closureS))
|
|
return FALSE; /* no suitable nodes in tree */
|
|
|
|
closureStruct.p = closureP;
|
|
closureStruct.s = closureS;
|
|
closureStruct.testNode = testNode;
|
|
closureStruct.testTree = testTree;
|
|
closureStruct.tree = tree;
|
|
|
|
if (SplaySplay(tree, &closureStruct, SplayFindFirstCompare) != CompareEQUAL)
|
|
return FALSE;
|
|
|
|
*nodeReturn = SplayTreeRoot(tree);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* SplayFindLast -- As SplayFindFirst but in reverse address order */
|
|
|
|
Bool SplayFindLast(Tree *nodeReturn, SplayTree tree,
|
|
SplayTestNodeMethod testNode,
|
|
SplayTestTreeMethod testTree,
|
|
void *closureP, Size closureS)
|
|
{
|
|
Tree node;
|
|
SplayFindClosureStruct closureStruct;
|
|
|
|
AVER(nodeReturn != NULL);
|
|
AVERT(SplayTree, tree);
|
|
AVER(FUNCHECK(testNode));
|
|
AVER(FUNCHECK(testTree));
|
|
|
|
node = SplayTreeRoot(tree);
|
|
|
|
if (node == TreeEMPTY || !(*testTree)(tree, node, closureP, closureS))
|
|
return FALSE; /* no suitable nodes in tree */
|
|
|
|
closureStruct.p = closureP;
|
|
closureStruct.s = closureS;
|
|
closureStruct.testNode = testNode;
|
|
closureStruct.testTree = testTree;
|
|
closureStruct.tree = tree;
|
|
|
|
if (SplaySplay(tree, &closureStruct, SplayFindLastCompare) != CompareEQUAL)
|
|
return FALSE;
|
|
|
|
*nodeReturn = SplayTreeRoot(tree);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* SplayRoot -- return the root node of the tree */
|
|
|
|
Bool SplayRoot(Tree *nodeReturn, SplayTree tree)
|
|
{
|
|
Tree node;
|
|
|
|
AVER(nodeReturn != NULL);
|
|
AVERT(SplayTree, tree);
|
|
|
|
node = SplayTreeRoot(tree);
|
|
if (node == TreeEMPTY)
|
|
return FALSE;
|
|
else {
|
|
*nodeReturn = node;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
/* SplayNodeRefresh -- Updates the client property that has changed at a node
|
|
*
|
|
* This function undertakes to call the client updateNode callback for each
|
|
* node affected by the change in properties at the given node (which has
|
|
* the given key) in an appropriate order.
|
|
*
|
|
* The function fullfils its job by first splaying at the given node, and
|
|
* updating the single node. This may change.
|
|
*/
|
|
|
|
void SplayNodeRefresh(SplayTree tree, Tree node)
|
|
{
|
|
Compare cmp;
|
|
|
|
AVERT(SplayTree, tree);
|
|
AVERT(Tree, node);
|
|
|
|
cmp = SplaySplay(tree, tree->nodeKey(node), tree->compare);
|
|
AVER(cmp == CompareEQUAL);
|
|
AVER(SplayTreeRoot(tree) == node);
|
|
|
|
tree->updateNode(tree, node);
|
|
}
|
|
|
|
|
|
/* SplayTreeDescribe -- Describe a splay tree
|
|
*
|
|
* See <design/splay/#function.splay.tree.describe>.
|
|
*/
|
|
|
|
Res SplayTreeDescribe(SplayTree tree, mps_lib_FILE *stream,
|
|
SplayNodeDescribeMethod nodeDescribe) {
|
|
Res res;
|
|
|
|
#if defined(AVER_AND_CHECK)
|
|
if (!SplayTreeCheck(tree)) return ResFAIL;
|
|
if (stream == NULL) return ResFAIL;
|
|
if (!FUNCHECK(nodeDescribe)) return ResFAIL;
|
|
#endif
|
|
|
|
res = WriteF(stream,
|
|
"Splay $P {\n", (WriteFP)tree,
|
|
" compare $F\n", (WriteFF)tree->compare,
|
|
NULL);
|
|
if (res != ResOK) return res;
|
|
|
|
if (SplayTreeRoot(tree) != TreeEMPTY) {
|
|
res = SplayNodeDescribe(SplayTreeRoot(tree), stream, nodeDescribe);
|
|
if (res != ResOK) return res;
|
|
}
|
|
|
|
res = WriteF(stream, "\n}\n", NULL);
|
|
return res;
|
|
}
|
|
|
|
|
|
/* C. COPYRIGHT AND LICENSE
|
|
*
|
|
* Copyright (C) 2001-2002 Ravenbrook Limited <http://www.ravenbrook.com/>.
|
|
* All rights reserved. This is an open source license. Contact
|
|
* Ravenbrook for commercial licensing options.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Redistributions in any form must be accompanied by information on how
|
|
* to obtain complete source code for this software and any accompanying
|
|
* software that uses this software. The source code must either be
|
|
* included in the distribution or be available for no more than the cost
|
|
* of distribution plus a nominal fee, and must be freely redistributable
|
|
* under reasonable conditions. For an executable file, complete source
|
|
* code means the source code for all modules it contains. It does not
|
|
* include source code for modules or files that typically accompany the
|
|
* major components of the operating system on which the executable file
|
|
* runs.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|