mirror of
git://git.sv.gnu.org/emacs.git
synced 2026-01-01 01:41:01 -08:00
* src/bidi.c (bidi_set_sos_type): * src/coding.c (consume_chars): * src/dosfns.c (dos_memory_info): * src/emacs.c (sort_args): * src/insdel.c (count_combining_before) (count_combining_after, replace_range, del_range_2): * src/sort.c (tim_sort): * src/w32.c (sys_write): * src/xfaces.c (face_at_buffer_position) (face_for_overlay_string): Prefer using 'min' and 'max' macros.
973 lines
26 KiB
C
973 lines
26 KiB
C
/* Timsort for sequences.
|
|
|
|
Copyright (C) 2022-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Emacs.
|
|
|
|
GNU Emacs is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Emacs is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* This is a version of the cpython code implementing the TIMSORT
|
|
sorting algorithm described in
|
|
https://github.com/python/cpython/blob/main/Objects/listsort.txt.
|
|
This algorithm identifies and pushes naturally ordered sublists of
|
|
the original list, or "runs", onto a stack, and merges them
|
|
periodically according to a merge strategy called "powersort".
|
|
State is maintained during the sort in a merge_state structure,
|
|
which is passed around as an argument to all the subroutines. A
|
|
"stretch" structure includes a pointer to the run BASE of length
|
|
LEN along with its POWER (a computed integer used by the powersort
|
|
merge strategy that depends on this run and the succeeding run.) */
|
|
|
|
|
|
#include <config.h>
|
|
#include "lisp.h"
|
|
|
|
|
|
/* MAX_MERGE_PENDING is the maximum number of entries in merge_state's
|
|
pending-stretch stack. For a list with n elements, this needs at most
|
|
floor(log2(n)) + 1 entries even if we didn't force runs to a
|
|
minimal length. So the number of bits in a ptrdiff_t is plenty large
|
|
enough for all cases. */
|
|
|
|
#define MAX_MERGE_PENDING PTRDIFF_WIDTH
|
|
|
|
/* Once we get into galloping mode, we stay there as long as both runs
|
|
win at least GALLOP_WIN_MIN consecutive times. */
|
|
|
|
#define GALLOP_WIN_MIN 7
|
|
|
|
/* A small temp array of size MERGESTATE_TEMP_SIZE is used to avoid
|
|
malloc when merging small lists. */
|
|
|
|
#define MERGESTATE_TEMP_SIZE 256
|
|
|
|
struct stretch
|
|
{
|
|
Lisp_Object *base;
|
|
ptrdiff_t len;
|
|
int power;
|
|
};
|
|
|
|
struct reloc
|
|
{
|
|
Lisp_Object **src;
|
|
Lisp_Object **dst;
|
|
ptrdiff_t *size;
|
|
int order; /* -1 while in merge_lo; +1 while in merg_hi; 0 otherwise. */
|
|
};
|
|
|
|
|
|
typedef struct
|
|
{
|
|
Lisp_Object *listbase;
|
|
ptrdiff_t listlen;
|
|
|
|
/* PENDING is a stack of N pending stretches yet to be merged.
|
|
Stretch #i starts at address base[i] and extends for len[i]
|
|
elements. */
|
|
|
|
int n;
|
|
struct stretch pending[MAX_MERGE_PENDING];
|
|
|
|
/* The variable MIN_GALLOP, initialized to GALLOP_WIN_MIN, controls
|
|
when we get *into* galloping mode. merge_lo and merge_hi tend to
|
|
nudge it higher for random data, and lower for highly structured
|
|
data. */
|
|
|
|
ptrdiff_t min_gallop;
|
|
|
|
/* 'A' is temporary storage, able to hold ALLOCED elements, to help
|
|
with merges. 'A' initially points to TEMPARRAY, and subsequently
|
|
to newly allocated memory if needed. */
|
|
|
|
Lisp_Object *a;
|
|
ptrdiff_t alloced;
|
|
specpdl_ref count;
|
|
Lisp_Object temparray[MERGESTATE_TEMP_SIZE];
|
|
|
|
/* If an exception is thrown while merging we might have to relocate
|
|
some list elements from temporary storage back into the list.
|
|
RELOC keeps track of the information needed to do this. */
|
|
|
|
struct reloc reloc;
|
|
|
|
/* PREDICATE is the lisp comparison predicate for the sort. */
|
|
|
|
Lisp_Object predicate;
|
|
} merge_state;
|
|
|
|
|
|
/* Return true iff (PREDICATE A B) is non-nil. */
|
|
|
|
static inline bool
|
|
inorder (const Lisp_Object predicate, const Lisp_Object a, const Lisp_Object b)
|
|
{
|
|
return !NILP (call2 (predicate, a, b));
|
|
}
|
|
|
|
|
|
/* Sort the list starting at LO and ending at HI using a stable binary
|
|
insertion sort algorithm. On entry the sublist [LO, START) (with
|
|
START between LO and HIGH) is known to be sorted (pass START == LO
|
|
if you are unsure). Even in case of error, the output will be some
|
|
permutation of the input (nothing is lost or duplicated). */
|
|
|
|
static void
|
|
binarysort (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
|
|
Lisp_Object *start)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (lo <= start && start <= hi);
|
|
if (lo == start)
|
|
++start;
|
|
for (; start < hi; ++start)
|
|
{
|
|
Lisp_Object *l = lo;
|
|
Lisp_Object *r = start;
|
|
Lisp_Object pivot = *r;
|
|
|
|
eassume (l < r);
|
|
do {
|
|
Lisp_Object *p = l + ((r - l) >> 1);
|
|
if (inorder (pred, pivot, *p))
|
|
r = p;
|
|
else
|
|
l = p + 1;
|
|
} while (l < r);
|
|
eassume (l == r);
|
|
for (Lisp_Object *p = start; p > l; --p)
|
|
p[0] = p[-1];
|
|
*l = pivot;
|
|
}
|
|
}
|
|
|
|
|
|
/* Find and return the length of the "run" (the longest
|
|
non-decreasing sequence or the longest strictly decreasing
|
|
sequence, with the Boolean *DESCENDING set to 0 in the former
|
|
case, or to 1 in the latter) beginning at LO, in the slice [LO,
|
|
HI) with LO < HI. The strictness of the definition of
|
|
"descending" ensures there are no equal elements to get out of
|
|
order so the caller can safely reverse a descending sequence
|
|
without violating stability. */
|
|
|
|
static ptrdiff_t
|
|
count_run (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
|
|
bool *descending)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (lo < hi);
|
|
*descending = 0;
|
|
++lo;
|
|
ptrdiff_t n = 1;
|
|
if (lo == hi)
|
|
return n;
|
|
|
|
n = 2;
|
|
if (inorder (pred, lo[0], lo[-1]))
|
|
{
|
|
*descending = 1;
|
|
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
|
{
|
|
if (!inorder (pred, lo[0], lo[-1]))
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
|
{
|
|
if (inorder (pred, lo[0], lo[-1]))
|
|
break;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
/* Locate and return the proper insertion position of KEY in a sorted
|
|
vector: if the vector contains an element equal to KEY, return the
|
|
position immediately to the left of the leftmost equal element.
|
|
[GALLOP_RIGHT does the same except it returns the position to the
|
|
right of the rightmost equal element (if any).]
|
|
|
|
'A' is a sorted vector of N elements. N must be > 0.
|
|
|
|
Elements preceding HINT, a non-negative index less than N, are
|
|
skipped. The closer HINT is to the final result, the faster this
|
|
runs.
|
|
|
|
The return value is the int k in [0, N] such that
|
|
|
|
A[k-1] < KEY <= a[k]
|
|
|
|
pretending that *(A-1) precedes all values and *(A+N) succeeds all
|
|
values. In other words, the first k elements of A should precede
|
|
KEY, and the last N-k should follow KEY. */
|
|
|
|
static ptrdiff_t
|
|
gallop_left (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
|
const ptrdiff_t n, const ptrdiff_t hint)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
ptrdiff_t lastofs = 0;
|
|
ptrdiff_t ofs = 1;
|
|
if (inorder (pred, *a, key))
|
|
{
|
|
/* When a[hint] < key, gallop right until
|
|
a[hint + lastofs] < key <= a[hint + ofs]. */
|
|
const ptrdiff_t maxofs = n - hint; /* This is one after the end of a. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (pred, a[ofs], key))
|
|
{
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else
|
|
break; /* Here key <= a[hint+ofs]. */
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
else
|
|
{
|
|
/* When key <= a[hint], gallop left, until
|
|
a[hint - ofs] < key <= a[hint - lastofs]. */
|
|
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (pred, a[-ofs], key))
|
|
break;
|
|
/* Here key <= a[hint - ofs]. */
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use positive offsets relative to &a[0]. */
|
|
ptrdiff_t k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
a -= hint;
|
|
|
|
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
|
|
right of lastofs but no farther right than ofs. Do a binary
|
|
search, with invariant a[lastofs-1] < key <= a[ofs]. */
|
|
++lastofs;
|
|
while (lastofs < ofs)
|
|
{
|
|
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
if (inorder (pred, a[m], key))
|
|
lastofs = m + 1; /* Here a[m] < key. */
|
|
else
|
|
ofs = m; /* Here key <= a[m]. */
|
|
}
|
|
eassume (lastofs == ofs); /* Then a[ofs-1] < key <= a[ofs]. */
|
|
return ofs;
|
|
}
|
|
|
|
|
|
/* Locate and return the proper position of KEY in a sorted vector
|
|
exactly like GALLOP_LEFT, except that if KEY already exists in
|
|
A[0:N] find the position immediately to the right of the rightmost
|
|
equal value.
|
|
|
|
The return value is the int k in [0, N] such that
|
|
|
|
A[k-1] <= KEY < A[k]. */
|
|
|
|
static ptrdiff_t
|
|
gallop_right (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
|
const ptrdiff_t n, const ptrdiff_t hint)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (a && n > 0 && hint >= 0 && hint < n);
|
|
|
|
a += hint;
|
|
ptrdiff_t lastofs = 0;
|
|
ptrdiff_t ofs = 1;
|
|
if (inorder (pred, key, *a))
|
|
{
|
|
/* When key < a[hint], gallop left until
|
|
a[hint - ofs] <= key < a[hint - lastofs]. */
|
|
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (pred, key, a[-ofs]))
|
|
{
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
else /* Here a[hint - ofs] <= key. */
|
|
break;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use positive offsets relative to &a[0]. */
|
|
ptrdiff_t k = lastofs;
|
|
lastofs = hint - ofs;
|
|
ofs = hint - k;
|
|
}
|
|
else
|
|
{
|
|
/* When a[hint] <= key, gallop right, until
|
|
a[hint + lastofs] <= key < a[hint + ofs]. */
|
|
const ptrdiff_t maxofs = n - hint; /* Here &a[n-1] is highest. */
|
|
while (ofs < maxofs)
|
|
{
|
|
if (inorder (pred, key, a[ofs]))
|
|
break;
|
|
/* Here a[hint + ofs] <= key. */
|
|
lastofs = ofs;
|
|
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
|
ofs = (ofs << 1) + 1;
|
|
}
|
|
if (ofs > maxofs)
|
|
ofs = maxofs;
|
|
/* Translate back to use offsets relative to &a[0]. */
|
|
lastofs += hint;
|
|
ofs += hint;
|
|
}
|
|
a -= hint;
|
|
|
|
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
|
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
|
|
right of lastofs but no farther right than ofs. Do a binary
|
|
search, with invariant a[lastofs-1] <= key < a[ofs]. */
|
|
++lastofs;
|
|
while (lastofs < ofs)
|
|
{
|
|
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
|
|
|
if (inorder (pred, key, a[m]))
|
|
ofs = m; /* Here key < a[m]. */
|
|
else
|
|
lastofs = m + 1; /* Here a[m] <= key. */
|
|
}
|
|
eassume (lastofs == ofs); /* Now a[ofs-1] <= key < a[ofs]. */
|
|
return ofs;
|
|
}
|
|
|
|
|
|
static void
|
|
merge_init (merge_state *ms, const ptrdiff_t list_size, Lisp_Object *lo,
|
|
const Lisp_Object predicate)
|
|
{
|
|
eassume (ms != NULL);
|
|
|
|
ms->a = ms->temparray;
|
|
ms->alloced = MERGESTATE_TEMP_SIZE;
|
|
|
|
ms->n = 0;
|
|
ms->min_gallop = GALLOP_WIN_MIN;
|
|
ms->listlen = list_size;
|
|
ms->listbase = lo;
|
|
ms->predicate = predicate;
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
}
|
|
|
|
|
|
/* The dynamically allocated memory may hold lisp objects during
|
|
merging. MERGE_MARKMEM marks them so they aren't reaped during
|
|
GC. */
|
|
|
|
static void
|
|
merge_markmem (void *arg)
|
|
{
|
|
merge_state *ms = arg;
|
|
eassume (ms != NULL);
|
|
|
|
if (ms->reloc.size != NULL && *ms->reloc.size > 0)
|
|
{
|
|
eassume (ms->reloc.src != NULL);
|
|
mark_objects (*ms->reloc.src, *ms->reloc.size);
|
|
}
|
|
}
|
|
|
|
|
|
/* Free all temp storage. If an exception occurs while merging,
|
|
relocate any lisp elements in temp storage back to the original
|
|
array. */
|
|
|
|
static void
|
|
cleanup_mem (void *arg)
|
|
{
|
|
merge_state *ms = arg;
|
|
eassume (ms != NULL);
|
|
|
|
/* If we have an exception while merging, some of the list elements
|
|
might only live in temp storage; we copy everything remaining in
|
|
the temp storage back into the original list. This ensures that
|
|
the original list has all of the original elements, although
|
|
their order is unpredictable. */
|
|
|
|
if (ms->reloc.order != 0 && *ms->reloc.size > 0)
|
|
{
|
|
eassume (*ms->reloc.src != NULL && *ms->reloc.dst != NULL);
|
|
ptrdiff_t n = *ms->reloc.size;
|
|
ptrdiff_t shift = ms->reloc.order == -1 ? 0 : n - 1;
|
|
memcpy (*ms->reloc.dst - shift, *ms->reloc.src, n * word_size);
|
|
}
|
|
|
|
/* Free any remaining temp storage. */
|
|
xfree (ms->a);
|
|
}
|
|
|
|
|
|
/* Allocate enough temp memory for NEED array slots. Any previously
|
|
allocated memory is first freed, and a cleanup routine is
|
|
registered to free memory at the very end of the sort, or on
|
|
exception. */
|
|
|
|
static void
|
|
merge_getmem (merge_state *ms, const ptrdiff_t need)
|
|
{
|
|
eassume (ms != NULL);
|
|
|
|
if (ms->a == ms->temparray)
|
|
{
|
|
/* We only get here if alloc is needed and this is the first
|
|
time, so we set up the unwind protection. */
|
|
specpdl_ref count = SPECPDL_INDEX ();
|
|
record_unwind_protect_ptr_mark (cleanup_mem, ms, merge_markmem);
|
|
ms->count = count;
|
|
}
|
|
else
|
|
{
|
|
/* We have previously alloced storage. Since we don't care
|
|
what's in the block we don't use realloc which would waste
|
|
cycles copying the old data. We just free and alloc
|
|
again. */
|
|
xfree (ms->a);
|
|
}
|
|
ms->a = xmalloc (need * word_size);
|
|
ms->alloced = need;
|
|
}
|
|
|
|
|
|
static inline void
|
|
needmem (merge_state *ms, ptrdiff_t na)
|
|
{
|
|
if (na > ms->alloced)
|
|
merge_getmem (ms, na);
|
|
}
|
|
|
|
|
|
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
|
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
|
Require that SSA[NA-1] belongs at the end of the merge, and NA <=
|
|
NB. */
|
|
|
|
static void
|
|
merge_lo (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na, Lisp_Object *ssb,
|
|
ptrdiff_t nb)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (ms && ssa && ssb && na > 0 && nb > 0);
|
|
eassume (ssa + na == ssb);
|
|
needmem (ms, na);
|
|
memcpy (ms->a, ssa, na * word_size);
|
|
Lisp_Object *dest = ssa;
|
|
ssa = ms->a;
|
|
|
|
ms->reloc = (struct reloc){&ssa, &dest, &na, -1};
|
|
|
|
*dest++ = *ssb++;
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
|
|
ptrdiff_t min_gallop = ms->min_gallop;
|
|
for (;;)
|
|
{
|
|
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
|
|
|
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
|
|
|
for (;;)
|
|
{
|
|
eassume (na > 1 && nb > 0);
|
|
if (inorder (pred, *ssb, *ssa))
|
|
{
|
|
*dest++ = *ssb++ ;
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
*dest++ = *ssa++;
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may be a
|
|
huge speedup. We try that, and continue galloping until (if
|
|
ever) neither run appears to be winning consistently
|
|
anymore. */
|
|
++min_gallop;
|
|
do {
|
|
eassume (na > 1 && nb > 0);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
ptrdiff_t k = gallop_right (ms, ssb[0], ssa, na, 0);
|
|
acount = k;
|
|
if (k)
|
|
{
|
|
memcpy (dest, ssa, k * word_size);
|
|
dest += k;
|
|
ssa += k;
|
|
na -= k;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
/* While na==0 is impossible for a consistent comparison
|
|
function, we shouldn't assume that it is. */
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
*dest++ = *ssb++ ;
|
|
--nb;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
|
|
k = gallop_left (ms, ssa[0], ssb, nb, 0);
|
|
bcount = k;
|
|
if (k)
|
|
{
|
|
memmove (dest, ssb, k * word_size);
|
|
dest += k;
|
|
ssb += k;
|
|
nb -= k;
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
*dest++ = *ssa++;
|
|
--na;
|
|
if (na == 1)
|
|
goto CopyB;
|
|
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
|
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
|
|
if (na)
|
|
memcpy (dest, ssa, na * word_size);
|
|
return;
|
|
CopyB:
|
|
eassume (na == 1 && nb > 0);
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
|
|
/* The last element of ssa belongs at the end of the merge. */
|
|
memmove (dest, ssb, nb * word_size);
|
|
dest[nb] = ssa[0];
|
|
}
|
|
|
|
|
|
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
|
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
|
Require that SSA[NA-1] belongs at the end of the merge, and NA >=
|
|
NB. */
|
|
|
|
static void
|
|
merge_hi (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na,
|
|
Lisp_Object *ssb, ptrdiff_t nb)
|
|
{
|
|
Lisp_Object pred = ms->predicate;
|
|
|
|
eassume (ms && ssa && ssb && na > 0 && nb > 0);
|
|
eassume (ssa + na == ssb);
|
|
needmem (ms, nb);
|
|
Lisp_Object *dest = ssb;
|
|
dest += nb - 1;
|
|
memcpy(ms->a, ssb, nb * word_size);
|
|
Lisp_Object *basea = ssa;
|
|
Lisp_Object *baseb = ms->a;
|
|
ssb = ms->a + nb - 1;
|
|
ssa += na - 1;
|
|
|
|
ms->reloc = (struct reloc){&baseb, &dest, &nb, 1};
|
|
|
|
*dest-- = *ssa--;
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
ptrdiff_t min_gallop = ms->min_gallop;
|
|
for (;;) {
|
|
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
|
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
|
|
|
for (;;) {
|
|
eassume (na > 0 && nb > 1);
|
|
if (inorder (pred, *ssb, *ssa))
|
|
{
|
|
*dest-- = *ssa--;
|
|
++acount;
|
|
bcount = 0;
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
if (acount >= min_gallop)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
*dest-- = *ssb--;
|
|
++bcount;
|
|
acount = 0;
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
if (bcount >= min_gallop)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* One run is winning so consistently that galloping may be a huge
|
|
speedup. Try that, and continue galloping until (if ever)
|
|
neither run appears to be winning consistently anymore. */
|
|
++min_gallop;
|
|
do {
|
|
eassume (na > 0 && nb > 1);
|
|
min_gallop -= min_gallop > 1;
|
|
ms->min_gallop = min_gallop;
|
|
ptrdiff_t k = gallop_right (ms, ssb[0], basea, na, na - 1);
|
|
k = na - k;
|
|
acount = k;
|
|
if (k)
|
|
{
|
|
dest += -k;
|
|
ssa += -k;
|
|
memmove(dest + 1, ssa + 1, k * word_size);
|
|
na -= k;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
}
|
|
*dest-- = *ssb--;
|
|
--nb;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
|
|
k = gallop_left (ms, ssa[0], baseb, nb, nb - 1);
|
|
k = nb - k;
|
|
bcount = k;
|
|
if (k)
|
|
{
|
|
dest += -k;
|
|
ssb += -k;
|
|
memcpy(dest + 1, ssb + 1, k * word_size);
|
|
nb -= k;
|
|
if (nb == 1)
|
|
goto CopyA;
|
|
/* While nb==0 is impossible for a consistent comparison
|
|
function we shouldn't assume that it is. */
|
|
if (nb == 0)
|
|
goto Succeed;
|
|
}
|
|
*dest-- = *ssa--;
|
|
--na;
|
|
if (na == 0)
|
|
goto Succeed;
|
|
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
|
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
|
ms->min_gallop = min_gallop;
|
|
}
|
|
Succeed:
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
if (nb)
|
|
memcpy (dest - nb + 1, baseb, nb * word_size);
|
|
return;
|
|
CopyA:
|
|
eassume (nb == 1 && na > 0);
|
|
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
|
/* The first element of ssb belongs at the front of the merge. */
|
|
memmove (dest + 1 - na, ssa + 1 - na, na * word_size);
|
|
dest += -na;
|
|
ssa += -na;
|
|
dest[0] = ssb[0];
|
|
}
|
|
|
|
|
|
/* Merge the two runs at stack indices I and I+1. */
|
|
|
|
static void
|
|
merge_at (merge_state *ms, const ptrdiff_t i)
|
|
{
|
|
eassume (ms != NULL);
|
|
eassume (ms->n >= 2);
|
|
eassume (i >= 0);
|
|
eassume (i == ms->n - 2 || i == ms->n - 3);
|
|
|
|
Lisp_Object *ssa = ms->pending[i].base;
|
|
ptrdiff_t na = ms->pending[i].len;
|
|
Lisp_Object *ssb = ms->pending[i + 1].base;
|
|
ptrdiff_t nb = ms->pending[i + 1].len;
|
|
eassume (na > 0 && nb > 0);
|
|
eassume (ssa + na == ssb);
|
|
|
|
/* Record the length of the combined runs. The current run i+1 goes
|
|
away after the merge. If i is the 3rd-last run now, slide the
|
|
last run (which isn't involved in this merge) over to i+1. */
|
|
ms->pending[i].len = na + nb;
|
|
if (i == ms->n - 3)
|
|
ms->pending[i + 1] = ms->pending[i + 2];
|
|
--ms->n;
|
|
|
|
/* Where does b start in a? Elements in a before that can be
|
|
ignored (they are already in place). */
|
|
ptrdiff_t k = gallop_right (ms, *ssb, ssa, na, 0);
|
|
eassume (k >= 0);
|
|
ssa += k;
|
|
na -= k;
|
|
if (na == 0)
|
|
return;
|
|
|
|
/* Where does a end in b? Elements in b after that can be ignored
|
|
(they are already in place). */
|
|
nb = gallop_left (ms, ssa[na - 1], ssb, nb, nb - 1);
|
|
if (nb == 0)
|
|
return;
|
|
eassume (nb > 0);
|
|
/* Merge what remains of the runs using a temp array with size
|
|
min(na, nb) elements. */
|
|
if (na <= nb)
|
|
merge_lo (ms, ssa, na, ssb, nb);
|
|
else
|
|
merge_hi (ms, ssa, na, ssb, nb);
|
|
}
|
|
|
|
|
|
/* Compute the "power" of the first of two adjacent runs beginning at
|
|
index S1, with the first having length N1 and the second (starting
|
|
at index S1+N1) having length N2. The run has total length N. */
|
|
|
|
static int
|
|
powerloop (const ptrdiff_t s1, const ptrdiff_t n1, const ptrdiff_t n2,
|
|
const ptrdiff_t n)
|
|
{
|
|
eassume (s1 >= 0);
|
|
eassume (n1 > 0 && n2 > 0);
|
|
eassume (s1 + n1 + n2 <= n);
|
|
/* The midpoints a and b are
|
|
a = s1 + n1/2
|
|
b = s1 + n1 + n2/2 = a + (n1 + n2)/2
|
|
|
|
These may not be integers because of the "/2", so we work with
|
|
2*a and 2*b instead. It makes no difference to the outcome,
|
|
since the bits in the expansion of (2*i)/n are merely shifted one
|
|
position from those of i/n. */
|
|
ptrdiff_t a = 2 * s1 + n1;
|
|
ptrdiff_t b = a + n1 + n2;
|
|
int result = 0;
|
|
/* Emulate a/n and b/n one bit a time, until their bits differ. */
|
|
for (;;)
|
|
{
|
|
++result;
|
|
if (a >= n)
|
|
{ /* Both quotient bits are now 1. */
|
|
eassume (b >= a);
|
|
a -= n;
|
|
b -= n;
|
|
}
|
|
else if (b >= n)
|
|
{ /* a/n bit is 0 and b/n bit is 1. */
|
|
break;
|
|
} /* Otherwise both quotient bits are 0. */
|
|
eassume (a < b && b < n);
|
|
a <<= 1;
|
|
b <<= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Update the state upon identifying a run of length N2. If there's
|
|
already a stretch on the stack, apply the "powersort" merge
|
|
strategy: compute the topmost stretch's "power" (depth in a
|
|
conceptual binary merge tree) and merge adjacent runs on the stack
|
|
with greater power. */
|
|
|
|
static void
|
|
found_new_run (merge_state *ms, const ptrdiff_t n2)
|
|
{
|
|
eassume (ms != NULL);
|
|
if (ms->n)
|
|
{
|
|
eassume (ms->n > 0);
|
|
struct stretch *p = ms->pending;
|
|
ptrdiff_t s1 = p[ms->n - 1].base - ms->listbase;
|
|
ptrdiff_t n1 = p[ms->n - 1].len;
|
|
int power = powerloop (s1, n1, n2, ms->listlen);
|
|
while (ms->n > 1 && p[ms->n - 2].power > power)
|
|
{
|
|
merge_at (ms, ms->n - 2);
|
|
}
|
|
eassume (ms->n < 2 || p[ms->n - 2].power < power);
|
|
p[ms->n - 1].power = power;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unconditionally merge all stretches on the stack until only one
|
|
remains. */
|
|
|
|
static void
|
|
merge_force_collapse (merge_state *ms)
|
|
{
|
|
struct stretch *p = ms->pending;
|
|
|
|
eassume (ms != NULL);
|
|
while (ms->n > 1)
|
|
{
|
|
ptrdiff_t n = ms->n - 2;
|
|
if (n > 0 && p[n - 1].len < p[n + 1].len)
|
|
--n;
|
|
merge_at (ms, n);
|
|
}
|
|
}
|
|
|
|
|
|
/* Compute a good value for the minimum run length; natural runs
|
|
shorter than this are boosted artificially via binary insertion.
|
|
|
|
If N < 64, return N (it's too small to bother with fancy stuff).
|
|
Otherwise if N is an exact power of 2, return 32. Finally, return
|
|
an int k, 32 <= k <= 64, such that N/k is close to, but strictly
|
|
less than, an exact power of 2. */
|
|
|
|
static ptrdiff_t
|
|
merge_compute_minrun (ptrdiff_t n)
|
|
{
|
|
ptrdiff_t r = 0; /* r will become 1 if any non-zero bits are
|
|
shifted off. */
|
|
|
|
eassume (n >= 0);
|
|
while (n >= 64)
|
|
{
|
|
r |= n & 1;
|
|
n >>= 1;
|
|
}
|
|
return n + r;
|
|
}
|
|
|
|
|
|
static void
|
|
reverse_vector (Lisp_Object *s, const ptrdiff_t n)
|
|
{
|
|
for (ptrdiff_t i = 0; i < n >> 1; i++)
|
|
{
|
|
Lisp_Object tem = s[i];
|
|
s[i] = s[n - i - 1];
|
|
s[n - i - 1] = tem;
|
|
}
|
|
}
|
|
|
|
/* Sort the array SEQ with LENGTH elements in the order determined by
|
|
PREDICATE. */
|
|
|
|
void
|
|
tim_sort (Lisp_Object predicate, Lisp_Object *seq, const ptrdiff_t length)
|
|
{
|
|
if (SYMBOLP (predicate))
|
|
{
|
|
/* Attempt to resolve the function as far as possible ahead of time,
|
|
to avoid having to do it for each call. */
|
|
Lisp_Object fun = XSYMBOL (predicate)->u.s.function;
|
|
if (SYMBOLP (fun))
|
|
/* Function was an alias; use slow-path resolution. */
|
|
fun = indirect_function (fun);
|
|
/* Don't resolve to an autoload spec; that would be very slow. */
|
|
if (!NILP (fun) && !(CONSP (fun) && EQ (XCAR (fun), Qautoload)))
|
|
predicate = fun;
|
|
}
|
|
|
|
merge_state ms;
|
|
Lisp_Object *lo = seq;
|
|
|
|
merge_init (&ms, length, lo, predicate);
|
|
|
|
/* March over the array once, left to right, finding natural runs,
|
|
and extending short natural runs to minrun elements. */
|
|
const ptrdiff_t minrun = merge_compute_minrun (length);
|
|
ptrdiff_t nremaining = length;
|
|
do {
|
|
bool descending;
|
|
|
|
/* Identify the next run. */
|
|
ptrdiff_t n = count_run (&ms, lo, lo + nremaining, &descending);
|
|
if (descending)
|
|
reverse_vector (lo, n);
|
|
/* If the run is short, extend it to min(minrun, nremaining). */
|
|
if (n < minrun)
|
|
{
|
|
const ptrdiff_t force = min (nremaining, minrun);
|
|
binarysort (&ms, lo, lo + force, lo + n);
|
|
n = force;
|
|
}
|
|
eassume (ms.n == 0 || ms.pending[ms.n - 1].base +
|
|
ms.pending[ms.n - 1].len == lo);
|
|
found_new_run (&ms, n);
|
|
/* Push the new run on to the stack. */
|
|
eassume (ms.n < MAX_MERGE_PENDING);
|
|
ms.pending[ms.n].base = lo;
|
|
ms.pending[ms.n].len = n;
|
|
++ms.n;
|
|
/* Advance to find the next run. */
|
|
lo += n;
|
|
nremaining -= n;
|
|
} while (nremaining);
|
|
|
|
merge_force_collapse (&ms);
|
|
eassume (ms.n == 1);
|
|
eassume (ms.pending[0].len == length);
|
|
lo = ms.pending[0].base;
|
|
|
|
if (ms.a != ms.temparray)
|
|
unbind_to (ms.count, Qnil);
|
|
}
|