mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-25 15:00:45 -08:00
* lisp/apropos.el (apropos-do-all): * lisp/auth-source-pass.el (auth-source-pass--select-from-entries): * lisp/auth-source.el (auth-source-user-or-password): * lisp/calc/calc-forms.el (math-tzone-names): * lisp/calendar/diary-lib.el (diary-face-attrs) (diary-mark-entries-1): * lisp/cedet/cedet-files.el (cedet-files-list-recursively): * lisp/cedet/ede.el (ede-constructing, ede-deep-rescan): * lisp/cedet/ede/cpp-root.el (ede-cpp-root-header-file-p): * lisp/cedet/ede/proj.el (ede-proj-target-makefile): * lisp/cedet/inversion.el (inversion-check-version) (inversion-test): * lisp/cedet/mode-local.el (mode-local-map-file-buffers): * lisp/cedet/semantic/complete.el (semantic-displayer-ghost): * lisp/cedet/semantic/db-find.el (semanticdb-find-translate-path-default): * lisp/cedet/semantic/db.el (semanticdb-table) (semanticdb-search-system-databases): * lisp/cedet/semantic/imenu.el (semantic-imenu-index-directory): * lisp/cedet/semantic/java.el (semantic-java-doc-keywords-map): * lisp/cedet/semantic/lex-spp.el (semantic-lex-spp-use-headers-flag): * lisp/cedet/semantic/lex.el (semantic-lex-make-keyword-table) (semantic-lex-make-type-table, semantic-lex-debug-analyzers): * lisp/cedet/semantic/tag-ls.el (semantic-tag-abstract-p) (semantic-tag-leaf-p, semantic-tag-static-p) (semantic-tag-prototype-p): * lisp/dnd.el (dnd-open-remote-file-function, dnd-open-local-file): * lisp/emacs-lisp/eieio-opt.el (eieio-build-class-alist) (eieio-read-class, eieio-read-subclass): * lisp/emacs-lisp/generator.el (cps--replace-variable-references) (cps--handle-loop-for): * lisp/erc/erc-dcc.el (erc-dcc-list, erc-dcc-member, erc-dcc-server) (erc-dcc-auto-mask-p, erc-dcc-get-file, erc-dcc-chat-accept): * lisp/eshell/em-pred.el (eshell-pred-file-type): * lisp/faces.el (defined-colors-with-face-attributes): * lisp/font-core.el (font-lock-mode): * lisp/frame.el (frame-restack): * lisp/net/shr.el (shr-image-animate): * lisp/org/org-agenda.el (org-agenda-change-all-lines) (org-agenda-today-p): * lisp/org/org-id.el (org-id-get): * lisp/org/org.el (org-highlight-latex-and-related) (org--valid-property-p): * lisp/org/ox-beamer.el (org-beamer--get-label): * lisp/org/ox-latex.el (org-latex--caption-above-p): * lisp/org/ox-odt.el (org-odt--copy-image-file) (org-odt--copy-formula-file): * lisp/org/ox.el (org-export-with-timestamps): * lisp/progmodes/verilog-mode.el (verilog-indent-declaration-macros): * lisp/ses.el (ses-file-format-extend-parameter-list): * lisp/term.el (ansi-term): * lisp/textmodes/bibtex.el (bibtex-no-opt-remove-re) (bibtex-beginning-of-first-entry, bibtex-autokey-get-title) (bibtex-read-key, bibtex-initialize): * lisp/textmodes/flyspell.el (flyspell-word): * lisp/view.el (view-mode-exit): * src/composite.c: * src/floatfns.c (Fisnan): Fix typos in docstrings.
626 lines
16 KiB
C
626 lines
16 KiB
C
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
|
||
|
||
Copyright (C) 1988, 1993-1994, 1999, 2001-2019 Free Software Foundation,
|
||
Inc.
|
||
|
||
Author: Wolfgang Rupprecht (according to ack.texi)
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or (at
|
||
your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* C89 requires only the following math.h functions, and Emacs omits
|
||
the starred functions since we haven't found a use for them:
|
||
acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
|
||
frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh,
|
||
sqrt, tan, *tanh.
|
||
|
||
C99 and C11 require the following math.h functions in addition to
|
||
the C89 functions. Of these, Emacs currently exports only the
|
||
starred ones to Lisp, since we haven't found a use for the others:
|
||
acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma,
|
||
fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater,
|
||
isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan,
|
||
isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb
|
||
(approximately), lrint/llrint, lround/llround, nan, nearbyint,
|
||
nextafter, nexttoward, remainder, remquo, *rint, round, scalbln,
|
||
scalbn, signbit, tgamma, *trunc.
|
||
*/
|
||
|
||
#include <config.h>
|
||
|
||
#include "lisp.h"
|
||
#include "bignum.h"
|
||
|
||
#include <math.h>
|
||
|
||
#include <count-leading-zeros.h>
|
||
|
||
/* Emacs needs proper handling of +/-inf; correct printing as well as
|
||
important packages depend on it. Make sure the user didn't specify
|
||
-ffinite-math-only, either directly or implicitly with -Ofast or
|
||
-ffast-math. */
|
||
#if defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__
|
||
#error Emacs cannot be built with -ffinite-math-only
|
||
#endif
|
||
|
||
/* Check that X is a floating point number. */
|
||
|
||
static void
|
||
CHECK_FLOAT (Lisp_Object x)
|
||
{
|
||
CHECK_TYPE (FLOATP (x), Qfloatp, x);
|
||
}
|
||
|
||
/* Extract a Lisp number as a `double', or signal an error. */
|
||
|
||
double
|
||
extract_float (Lisp_Object num)
|
||
{
|
||
CHECK_NUMBER (num);
|
||
return XFLOATINT (num);
|
||
}
|
||
|
||
/* Trig functions. */
|
||
|
||
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
|
||
doc: /* Return the inverse cosine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = acos (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
|
||
doc: /* Return the inverse sine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = asin (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
|
||
doc: /* Return the inverse tangent of the arguments.
|
||
If only one argument Y is given, return the inverse tangent of Y.
|
||
If two arguments Y and X are given, return the inverse tangent of Y
|
||
divided by X, i.e. the angle in radians between the vector (X, Y)
|
||
and the x-axis. */)
|
||
(Lisp_Object y, Lisp_Object x)
|
||
{
|
||
double d = extract_float (y);
|
||
|
||
if (NILP (x))
|
||
d = atan (d);
|
||
else
|
||
{
|
||
double d2 = extract_float (x);
|
||
d = atan2 (d, d2);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
|
||
doc: /* Return the cosine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = cos (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
|
||
doc: /* Return the sine of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = sin (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
|
||
doc: /* Return the tangent of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = tan (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("isnan", Fisnan, Sisnan, 1, 1, 0,
|
||
doc: /* Return non-nil if argument X is a NaN. */)
|
||
(Lisp_Object x)
|
||
{
|
||
CHECK_FLOAT (x);
|
||
return isnan (XFLOAT_DATA (x)) ? Qt : Qnil;
|
||
}
|
||
|
||
/* Although the substitute does not work on NaNs, it is good enough
|
||
for platforms lacking the signbit macro. */
|
||
#ifndef signbit
|
||
# define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0))
|
||
#endif
|
||
|
||
DEFUN ("copysign", Fcopysign, Scopysign, 2, 2, 0,
|
||
doc: /* Copy sign of X2 to value of X1, and return the result.
|
||
Cause an error if X1 or X2 is not a float. */)
|
||
(Lisp_Object x1, Lisp_Object x2)
|
||
{
|
||
double f1, f2;
|
||
|
||
CHECK_FLOAT (x1);
|
||
CHECK_FLOAT (x2);
|
||
|
||
f1 = XFLOAT_DATA (x1);
|
||
f2 = XFLOAT_DATA (x2);
|
||
|
||
/* Use signbit instead of copysign, to avoid calling make_float when
|
||
the result is X1. */
|
||
return signbit (f1) != signbit (f2) ? make_float (-f1) : x1;
|
||
}
|
||
|
||
DEFUN ("frexp", Ffrexp, Sfrexp, 1, 1, 0,
|
||
doc: /* Get significand and exponent of a floating point number.
|
||
Breaks the floating point number X into its binary significand SGNFCAND
|
||
\(a floating point value between 0.5 (included) and 1.0 (excluded))
|
||
and an integral exponent EXP for 2, such that:
|
||
|
||
X = SGNFCAND * 2^EXP
|
||
|
||
The function returns the cons cell (SGNFCAND . EXP).
|
||
If X is zero, both parts (SGNFCAND and EXP) are zero. */)
|
||
(Lisp_Object x)
|
||
{
|
||
double f = extract_float (x);
|
||
int exponent;
|
||
double sgnfcand = frexp (f, &exponent);
|
||
return Fcons (make_float (sgnfcand), make_fixnum (exponent));
|
||
}
|
||
|
||
DEFUN ("ldexp", Fldexp, Sldexp, 2, 2, 0,
|
||
doc: /* Return SGNFCAND * 2**EXPONENT, as a floating point number.
|
||
EXPONENT must be an integer. */)
|
||
(Lisp_Object sgnfcand, Lisp_Object exponent)
|
||
{
|
||
CHECK_FIXNUM (exponent);
|
||
int e = min (max (INT_MIN, XFIXNUM (exponent)), INT_MAX);
|
||
return make_float (ldexp (extract_float (sgnfcand), e));
|
||
}
|
||
|
||
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
|
||
doc: /* Return the exponential base e of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = exp (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
|
||
doc: /* Return the exponential ARG1 ** ARG2. */)
|
||
(Lisp_Object arg1, Lisp_Object arg2)
|
||
{
|
||
CHECK_NUMBER (arg1);
|
||
CHECK_NUMBER (arg2);
|
||
|
||
/* Common Lisp spec: don't promote if both are integers, and if the
|
||
result is not fractional. */
|
||
if (INTEGERP (arg1) && !NILP (Fnatnump (arg2)))
|
||
return expt_integer (arg1, arg2);
|
||
|
||
return make_float (pow (XFLOATINT (arg1), XFLOATINT (arg2)));
|
||
}
|
||
|
||
DEFUN ("log", Flog, Slog, 1, 2, 0,
|
||
doc: /* Return the natural logarithm of ARG.
|
||
If the optional argument BASE is given, return log ARG using that base. */)
|
||
(Lisp_Object arg, Lisp_Object base)
|
||
{
|
||
double d = extract_float (arg);
|
||
|
||
if (NILP (base))
|
||
d = log (d);
|
||
else
|
||
{
|
||
double b = extract_float (base);
|
||
|
||
if (b == 10.0)
|
||
d = log10 (d);
|
||
#if HAVE_LOG2
|
||
else if (b == 2.0)
|
||
d = log2 (d);
|
||
#endif
|
||
else
|
||
d = log (d) / log (b);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
|
||
doc: /* Return the square root of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
double d = extract_float (arg);
|
||
d = sqrt (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
|
||
doc: /* Return the absolute value of ARG. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
CHECK_NUMBER (arg);
|
||
|
||
if (FIXNUMP (arg))
|
||
{
|
||
if (XFIXNUM (arg) < 0)
|
||
arg = make_int (-XFIXNUM (arg));
|
||
}
|
||
else if (FLOATP (arg))
|
||
{
|
||
if (signbit (XFLOAT_DATA (arg)))
|
||
arg = make_float (- XFLOAT_DATA (arg));
|
||
}
|
||
else
|
||
{
|
||
if (mpz_sgn (*xbignum_val (arg)) < 0)
|
||
{
|
||
mpz_neg (mpz[0], *xbignum_val (arg));
|
||
arg = make_integer_mpz ();
|
||
}
|
||
}
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
|
||
doc: /* Return the floating point number equal to ARG. */)
|
||
(register Lisp_Object arg)
|
||
{
|
||
CHECK_NUMBER (arg);
|
||
/* If ARG is a float, give 'em the same float back. */
|
||
return FLOATP (arg) ? arg : make_float (XFLOATINT (arg));
|
||
}
|
||
|
||
static int
|
||
ecount_leading_zeros (EMACS_UINT x)
|
||
{
|
||
return (EMACS_UINT_WIDTH == UINT_WIDTH ? count_leading_zeros (x)
|
||
: EMACS_UINT_WIDTH == ULONG_WIDTH ? count_leading_zeros_l (x)
|
||
: count_leading_zeros_ll (x));
|
||
}
|
||
|
||
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
|
||
doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
|
||
This is the same as the exponent of a float. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
EMACS_INT value;
|
||
CHECK_NUMBER (arg);
|
||
|
||
if (FLOATP (arg))
|
||
{
|
||
double f = XFLOAT_DATA (arg);
|
||
if (f == 0)
|
||
return make_float (-HUGE_VAL);
|
||
if (!isfinite (f))
|
||
return f < 0 ? make_float (-f) : arg;
|
||
int ivalue;
|
||
frexp (f, &ivalue);
|
||
value = ivalue - 1;
|
||
}
|
||
else if (!FIXNUMP (arg))
|
||
value = mpz_sizeinbase (*xbignum_val (arg), 2) - 1;
|
||
else
|
||
{
|
||
EMACS_INT i = XFIXNUM (arg);
|
||
if (i == 0)
|
||
return make_float (-HUGE_VAL);
|
||
value = EMACS_UINT_WIDTH - 1 - ecount_leading_zeros (eabs (i));
|
||
}
|
||
|
||
return make_fixnum (value);
|
||
}
|
||
|
||
/* True if A is exactly representable as an integer. */
|
||
|
||
static bool
|
||
integer_value (Lisp_Object a)
|
||
{
|
||
if (FLOATP (a))
|
||
{
|
||
double d = XFLOAT_DATA (a);
|
||
return d == floor (d) && isfinite (d);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* the rounding functions */
|
||
|
||
static Lisp_Object
|
||
rounding_driver (Lisp_Object arg, Lisp_Object divisor,
|
||
double (*double_round) (double),
|
||
void (*int_divide) (mpz_t, mpz_t const, mpz_t const),
|
||
EMACS_INT (*fixnum_divide) (EMACS_INT, EMACS_INT))
|
||
{
|
||
CHECK_NUMBER (arg);
|
||
|
||
double d;
|
||
if (NILP (divisor))
|
||
{
|
||
if (! FLOATP (arg))
|
||
return arg;
|
||
d = XFLOAT_DATA (arg);
|
||
}
|
||
else
|
||
{
|
||
CHECK_NUMBER (divisor);
|
||
if (integer_value (arg) && integer_value (divisor))
|
||
{
|
||
/* Divide as integers. Converting to double might lose
|
||
info, even for fixnums; also see the FIXME below. */
|
||
|
||
if (FLOATP (arg))
|
||
arg = double_to_integer (XFLOAT_DATA (arg));
|
||
if (FLOATP (divisor))
|
||
divisor = double_to_integer (XFLOAT_DATA (divisor));
|
||
|
||
if (FIXNUMP (divisor))
|
||
{
|
||
if (XFIXNUM (divisor) == 0)
|
||
xsignal0 (Qarith_error);
|
||
if (FIXNUMP (arg))
|
||
return make_int (fixnum_divide (XFIXNUM (arg),
|
||
XFIXNUM (divisor)));
|
||
}
|
||
int_divide (mpz[0],
|
||
*bignum_integer (&mpz[0], arg),
|
||
*bignum_integer (&mpz[1], divisor));
|
||
return make_integer_mpz ();
|
||
}
|
||
|
||
double f1 = XFLOATINT (arg);
|
||
double f2 = XFLOATINT (divisor);
|
||
if (! IEEE_FLOATING_POINT && f2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
/* FIXME: This division rounds, so the result is double-rounded. */
|
||
d = f1 / f2;
|
||
}
|
||
|
||
/* Round, coarsely test for fixnum overflow before converting to
|
||
EMACS_INT (to avoid undefined C behavior), and then exactly test
|
||
for overflow after converting (as FIXNUM_OVERFLOW_P is inaccurate
|
||
on floats). */
|
||
double dr = double_round (d);
|
||
if (fabs (dr) < 2 * (MOST_POSITIVE_FIXNUM + 1))
|
||
{
|
||
EMACS_INT ir = dr;
|
||
if (! FIXNUM_OVERFLOW_P (ir))
|
||
return make_fixnum (ir);
|
||
}
|
||
return double_to_integer (dr);
|
||
}
|
||
|
||
static EMACS_INT
|
||
ceiling2 (EMACS_INT n, EMACS_INT d)
|
||
{
|
||
return n / d + ((n % d != 0) & ((n < 0) == (d < 0)));
|
||
}
|
||
|
||
static EMACS_INT
|
||
floor2 (EMACS_INT n, EMACS_INT d)
|
||
{
|
||
return n / d - ((n % d != 0) & ((n < 0) != (d < 0)));
|
||
}
|
||
|
||
static EMACS_INT
|
||
truncate2 (EMACS_INT n, EMACS_INT d)
|
||
{
|
||
return n / d;
|
||
}
|
||
|
||
static EMACS_INT
|
||
round2 (EMACS_INT n, EMACS_INT d)
|
||
{
|
||
/* The C language's division operator gives us the remainder R
|
||
corresponding to truncated division, but we want the remainder R1
|
||
on the other side of 0 if R1 is closer to 0 than R is; because we
|
||
want to round to even, we also want R1 if R and R1 are the same
|
||
distance from 0 and if the truncated quotient is odd. */
|
||
EMACS_INT q = n / d;
|
||
EMACS_INT r = n % d;
|
||
bool neg_d = d < 0;
|
||
bool neg_r = r < 0;
|
||
EMACS_INT abs_r = eabs (r);
|
||
EMACS_INT abs_r1 = eabs (d) - abs_r;
|
||
if (abs_r1 < abs_r + (q & 1))
|
||
q += neg_d == neg_r ? 1 : -1;
|
||
return q;
|
||
}
|
||
|
||
static void
|
||
rounddiv_q (mpz_t q, mpz_t const n, mpz_t const d)
|
||
{
|
||
/* Mimic the source code of round2, using mpz_t instead of EMACS_INT. */
|
||
mpz_t *r = &mpz[2], *abs_r = r, *abs_r1 = &mpz[3];
|
||
mpz_tdiv_qr (q, *r, n, d);
|
||
bool neg_d = mpz_sgn (d) < 0;
|
||
bool neg_r = mpz_sgn (*r) < 0;
|
||
mpz_abs (*abs_r, *r);
|
||
mpz_abs (*abs_r1, d);
|
||
mpz_sub (*abs_r1, *abs_r1, *abs_r);
|
||
if (mpz_cmp (*abs_r1, *abs_r) < (mpz_odd_p (q) != 0))
|
||
(neg_d == neg_r ? mpz_add_ui : mpz_sub_ui) (q, q, 1);
|
||
}
|
||
|
||
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
|
||
if `rint' exists but does not work right. */
|
||
#ifdef HAVE_RINT
|
||
#define emacs_rint rint
|
||
#else
|
||
static double
|
||
emacs_rint (double d)
|
||
{
|
||
double d1 = d + 0.5;
|
||
double r = floor (d1);
|
||
return r - (r == d1 && fmod (r, 2) != 0);
|
||
}
|
||
#endif
|
||
|
||
#ifndef HAVE_TRUNC
|
||
double
|
||
trunc (double d)
|
||
{
|
||
return (d < 0 ? ceil : floor) (d);
|
||
}
|
||
#endif
|
||
|
||
DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
|
||
doc: /* Return the smallest integer no less than ARG.
|
||
This rounds the value towards +inf.
|
||
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, ceil, mpz_cdiv_q, ceiling2);
|
||
}
|
||
|
||
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
|
||
doc: /* Return the largest integer no greater than ARG.
|
||
This rounds the value towards -inf.
|
||
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, floor, mpz_fdiv_q, floor2);
|
||
}
|
||
|
||
DEFUN ("round", Fround, Sround, 1, 2, 0,
|
||
doc: /* Return the nearest integer to ARG.
|
||
With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
|
||
|
||
Rounding a value equidistant between two integers may choose the
|
||
integer closer to zero, or it may prefer an even integer, depending on
|
||
your machine. For example, (round 2.5) can return 3 on some
|
||
systems, but 2 on others. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, emacs_rint, rounddiv_q, round2);
|
||
}
|
||
|
||
/* Since rounding_driver truncates anyway, no need to call 'trunc'. */
|
||
static double
|
||
identity (double x)
|
||
{
|
||
return x;
|
||
}
|
||
|
||
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
|
||
doc: /* Truncate a floating point number to an int.
|
||
Rounds ARG toward zero.
|
||
With optional DIVISOR, truncate ARG/DIVISOR. */)
|
||
(Lisp_Object arg, Lisp_Object divisor)
|
||
{
|
||
return rounding_driver (arg, divisor, identity, mpz_tdiv_q, truncate2);
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
fmod_float (Lisp_Object x, Lisp_Object y)
|
||
{
|
||
double f1 = XFLOATINT (x);
|
||
double f2 = XFLOATINT (y);
|
||
|
||
f1 = fmod (f1, f2);
|
||
|
||
/* If the "remainder" comes out with the wrong sign, fix it. */
|
||
if (f2 < 0 ? f1 > 0 : f1 < 0)
|
||
f1 += f2;
|
||
|
||
return make_float (f1);
|
||
}
|
||
|
||
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
|
||
doc: /* Return the smallest integer no less than ARG, as a float.
|
||
\(Round toward +inf.) */)
|
||
(Lisp_Object arg)
|
||
{
|
||
CHECK_FLOAT (arg);
|
||
double d = XFLOAT_DATA (arg);
|
||
d = ceil (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
|
||
doc: /* Return the largest integer no greater than ARG, as a float.
|
||
\(Round toward -inf.) */)
|
||
(Lisp_Object arg)
|
||
{
|
||
CHECK_FLOAT (arg);
|
||
double d = XFLOAT_DATA (arg);
|
||
d = floor (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
|
||
doc: /* Return the nearest integer to ARG, as a float. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
CHECK_FLOAT (arg);
|
||
double d = XFLOAT_DATA (arg);
|
||
d = emacs_rint (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
|
||
doc: /* Truncate a floating point number to an integral float value.
|
||
\(Round toward zero.) */)
|
||
(Lisp_Object arg)
|
||
{
|
||
CHECK_FLOAT (arg);
|
||
double d = XFLOAT_DATA (arg);
|
||
d = trunc (d);
|
||
return make_float (d);
|
||
}
|
||
|
||
void
|
||
syms_of_floatfns (void)
|
||
{
|
||
defsubr (&Sacos);
|
||
defsubr (&Sasin);
|
||
defsubr (&Satan);
|
||
defsubr (&Scos);
|
||
defsubr (&Ssin);
|
||
defsubr (&Stan);
|
||
defsubr (&Sisnan);
|
||
defsubr (&Scopysign);
|
||
defsubr (&Sfrexp);
|
||
defsubr (&Sldexp);
|
||
defsubr (&Sfceiling);
|
||
defsubr (&Sffloor);
|
||
defsubr (&Sfround);
|
||
defsubr (&Sftruncate);
|
||
defsubr (&Sexp);
|
||
defsubr (&Sexpt);
|
||
defsubr (&Slog);
|
||
defsubr (&Ssqrt);
|
||
|
||
defsubr (&Sabs);
|
||
defsubr (&Sfloat);
|
||
defsubr (&Slogb);
|
||
defsubr (&Sceiling);
|
||
defsubr (&Sfloor);
|
||
defsubr (&Sround);
|
||
defsubr (&Struncate);
|
||
}
|