1
Fork 0
mirror of git://git.sv.gnu.org/emacs.git synced 2025-12-30 09:00:31 -08:00
emacs/mps/code/fbmtest.c
Gareth Rees 2493f121dc Correct indentation of describe output by passing depth parameter to describe functions and to writef.
Call Describe functions from test cases so that we get coverage.

Copied from Perforce
 Change: 186000
 ServerID: perforce.ravenbrook.com
2014-05-11 18:20:38 +01:00

663 lines
18 KiB
C

/* fbmtest.c: FREE BLOCK MANAGEMENT TEST
*
* $Id$
* Copyright (c) 2001-2014 Ravenbrook Limited. See end of file for license.
*
* The MPS contains two free block management modules:
*
* 1. the CBS (Coalescing Block Structure) module maintains free
* blocks in a splay tree for fast access with a cost in storage;
*
* 2. the Freelist module maintains free blocks in an address-ordered
* singly linked list for zero storage overhead with a cost in
* performance.
*
* The two modules present identical interfaces, so we apply the same
* test cases to both.
*/
#include "cbs.h"
#include "freelist.h"
#include "mpm.h"
#include "mps.h"
#include "mpsavm.h"
#include "mpstd.h"
#include "testlib.h"
#include <stdio.h> /* printf */
SRCID(fbmtest, "$Id$");
#define ArraySize ((Size)123456)
/* CBS is much faster than Freelist, so we apply more operations to
* the former. */
#define nCBSOperations ((Size)125000)
#define nFLOperations ((Size)12500)
static Count NAllocateTried, NAllocateSucceeded, NDeallocateTried,
NDeallocateSucceeded;
static Bool verbose = FALSE;
typedef unsigned FBMType;
enum {
FBMTypeCBS = 1,
FBMTypeFreelist,
FBMTypeLimit
};
typedef struct FBMStateStruct {
FBMType type;
Align align;
BT allocTable;
Addr block;
union {
CBS cbs;
Freelist fl;
} the;
} FBMStateStruct, *FBMState;
typedef struct CheckFBMClosureStruct {
FBMState state;
Addr limit;
Addr oldLimit;
} CheckFBMClosureStruct, *CheckFBMClosure;
static Addr (addrOfIndex)(FBMState state, Index i)
{
return AddrAdd(state->block, (i * state->align));
}
static Index (indexOfAddr)(FBMState state, Addr a)
{
return (Index)(AddrOffset(state->block, a) / state->align);
}
static void describe(FBMState state) {
switch (state->type) {
case FBMTypeCBS:
die(CBSDescribe(state->the.cbs, mps_lib_get_stdout(), 0),
"CBSDescribe");
break;
case FBMTypeFreelist:
die(FreelistDescribe(state->the.fl, mps_lib_get_stdout(), 0),
"FreelistDescribe");
break;
default:
cdie(0, "invalid state->type");
break;
}
}
static Bool checkCallback(Range range, void *closureP, Size closureS)
{
Addr base, limit;
CheckFBMClosure cl = (CheckFBMClosure)closureP;
UNUSED(closureS);
Insist(cl != NULL);
base = RangeBase(range);
limit = RangeLimit(range);
if (base > cl->oldLimit) {
Insist(BTIsSetRange(cl->state->allocTable,
indexOfAddr(cl->state, cl->oldLimit),
indexOfAddr(cl->state, base)));
} else { /* must be at start of table */
Insist(base == cl->oldLimit);
Insist(cl->oldLimit == cl->state->block);
}
Insist(BTIsResRange(cl->state->allocTable,
indexOfAddr(cl->state, base),
indexOfAddr(cl->state, limit)));
cl->oldLimit = limit;
return TRUE;
}
static Bool checkCBSCallback(CBS cbs, Range range,
void *closureP, Size closureS)
{
UNUSED(cbs);
return checkCallback(range, closureP, closureS);
}
static Bool checkFLCallback(Bool *deleteReturn, Range range,
void *closureP, Size closureS)
{
*deleteReturn = FALSE;
return checkCallback(range, closureP, closureS);
}
static void check(FBMState state)
{
CheckFBMClosureStruct closure;
closure.state = state;
closure.limit = addrOfIndex(state, ArraySize);
closure.oldLimit = state->block;
switch (state->type) {
case FBMTypeCBS:
CBSIterate(state->the.cbs, checkCBSCallback, (void *)&closure, 0);
break;
case FBMTypeFreelist:
FreelistIterate(state->the.fl, checkFLCallback, (void *)&closure, 0);
break;
default:
cdie(0, "invalid state->type");
return;
}
if (closure.oldLimit == state->block)
Insist(BTIsSetRange(state->allocTable, 0,
indexOfAddr(state, closure.limit)));
else if (closure.limit > closure.oldLimit)
Insist(BTIsSetRange(state->allocTable,
indexOfAddr(state, closure.oldLimit),
indexOfAddr(state, closure.limit)));
else
Insist(closure.oldLimit == closure.limit);
}
static Word fbmRnd(Word limit)
{
/* Not very uniform, but never mind. */
return (Word)rnd() % limit;
}
/* nextEdge -- Finds the next transition in the bit table
*
* Returns the index greater than <base> such that the
* range [<base>, <return>) has the same value in the bit table,
* and <return> has a different value or does not exist.
*/
static Index nextEdge(BT bt, Size size, Index base)
{
Index end;
Bool baseValue;
Insist(bt != NULL);
Insist(base < size);
baseValue = BTGet(bt, base);
for(end = base + 1; end < size && BTGet(bt, end) == baseValue; end++)
NOOP;
return end;
}
/* lastEdge -- Finds the previous transition in the bit table
*
* Returns the index less than <base> such that the range
* [<return>, <base>] has the same value in the bit table,
* and <return>-1 has a different value or does not exist.
*/
static Index lastEdge(BT bt, Size size, Index base)
{
Index end;
Bool baseValue;
Insist(bt != NULL);
Insist(base < size);
baseValue = BTGet(bt, base);
for(end = base; end > (Index)0 && BTGet(bt, end - 1) == baseValue; end--)
NOOP;
return end;
}
/* randomRange -- picks random range within table
*
* The function first picks a uniformly distributed <base> within the table.
*
* It then scans forward a binary exponentially distributed
* number of "edges" in the table (that is, transitions between set and
* reset) to get <end>. Note that there is a 50% chance that <end> will
* be the next edge, a 25% chance it will be the edge after, etc., until
* the end of the table.
*
* Finally it picks a <limit> uniformly distributed in the range
* [base+1, limit].
*
* Hence there is a somewhat better than 50% chance that the range will be
* all either set or reset.
*/
static void randomRange(Addr *baseReturn, Addr *limitReturn, FBMState state)
{
Index base; /* the start of our range */
Index end; /* an edge (i.e. different from its predecessor) */
/* after base */
Index limit; /* a randomly chosen value in (base, limit]. */
base = fbmRnd(ArraySize);
do {
end = nextEdge(state->allocTable, ArraySize, base);
} while(end < ArraySize && fbmRnd(2) == 0); /* p=0.5 exponential */
Insist(end > base);
limit = base + 1 + fbmRnd(end - base);
*baseReturn = addrOfIndex(state, base);
*limitReturn = addrOfIndex(state, limit);
}
static void allocate(FBMState state, Addr base, Addr limit)
{
Res res;
Index ib, il; /* Indexed for base and limit */
Bool isFree;
RangeStruct range, oldRange;
Addr outerBase, outerLimit; /* interval containing [ib, il) */
ib = indexOfAddr(state, base);
il = indexOfAddr(state, limit);
isFree = BTIsResRange(state->allocTable, ib, il);
NAllocateTried++;
if (isFree) {
Size left, right, total; /* Sizes of block and two fragments */
outerBase =
addrOfIndex(state, lastEdge(state->allocTable, ArraySize, ib));
outerLimit =
addrOfIndex(state, nextEdge(state->allocTable, ArraySize, il - 1));
left = AddrOffset(outerBase, base);
right = AddrOffset(limit, outerLimit);
total = AddrOffset(outerBase, outerLimit);
/* TODO: check these values */
UNUSED(left);
UNUSED(right);
UNUSED(total);
} else {
outerBase = outerLimit = NULL;
}
RangeInit(&range, base, limit);
switch (state->type) {
case FBMTypeCBS:
res = CBSDelete(&oldRange, state->the.cbs, &range);
break;
case FBMTypeFreelist:
res = FreelistDelete(&oldRange, state->the.fl, &range);
break;
default:
cdie(0, "invalid state->type");
return;
}
if (verbose) {
printf("allocate: [%p,%p) -- %s\n",
(void *)base, (void *)limit, isFree ? "succeed" : "fail");
describe(state);
}
if (!isFree) {
die_expect((mps_res_t)res, MPS_RES_FAIL,
"Succeeded in deleting allocated block");
} else { /* isFree */
die_expect((mps_res_t)res, MPS_RES_OK,
"failed to delete free block");
Insist(RangeBase(&oldRange) == outerBase);
Insist(RangeLimit(&oldRange) == outerLimit);
NAllocateSucceeded++;
BTSetRange(state->allocTable, ib, il);
}
}
static void deallocate(FBMState state, Addr base, Addr limit)
{
Res res;
Index ib, il;
Bool isAllocated;
Addr outerBase = base, outerLimit = limit; /* interval containing [ib, il) */
RangeStruct range, freeRange; /* interval returned by the manager */
ib = indexOfAddr(state, base);
il = indexOfAddr(state, limit);
isAllocated = BTIsSetRange(state->allocTable, ib, il);
NDeallocateTried++;
if (isAllocated) {
Size left, right, total; /* Sizes of block and two fragments */
/* Find the free blocks adjacent to the allocated block */
if (ib > 0 && !BTGet(state->allocTable, ib - 1)) {
outerBase =
addrOfIndex(state, lastEdge(state->allocTable, ArraySize, ib - 1));
} else {
outerBase = base;
}
if (il < ArraySize && !BTGet(state->allocTable, il)) {
outerLimit =
addrOfIndex(state, nextEdge(state->allocTable, ArraySize, il));
} else {
outerLimit = limit;
}
left = AddrOffset(outerBase, base);
right = AddrOffset(limit, outerLimit);
total = AddrOffset(outerBase, outerLimit);
/* TODO: check these values */
UNUSED(left);
UNUSED(right);
UNUSED(total);
}
RangeInit(&range, base, limit);
switch (state->type) {
case FBMTypeCBS:
res = CBSInsert(&freeRange, state->the.cbs, &range);
break;
case FBMTypeFreelist:
res = FreelistInsert(&freeRange, state->the.fl, &range);
break;
default:
cdie(0, "invalid state->type");
return;
}
if (verbose) {
printf("deallocate: [%p,%p) -- %s\n",
(void *)base, (void *)limit, isAllocated ? "succeed" : "fail");
describe(state);
}
if (!isAllocated) {
die_expect((mps_res_t)res, MPS_RES_FAIL,
"succeeded in inserting non-allocated block");
} else { /* isAllocated */
die_expect((mps_res_t)res, MPS_RES_OK,
"failed to insert allocated block");
NDeallocateSucceeded++;
BTResRange(state->allocTable, ib, il);
Insist(RangeBase(&freeRange) == outerBase);
Insist(RangeLimit(&freeRange) == outerLimit);
}
}
static void find(FBMState state, Size size, Bool high, FindDelete findDelete)
{
Bool expected, found;
Index expectedBase, expectedLimit;
RangeStruct foundRange, oldRange;
Addr remainderBase, remainderLimit;
Addr origBase, origLimit;
Size oldSize, newSize;
origBase = origLimit = NULL;
expected = (high ? BTFindLongResRangeHigh : BTFindLongResRange)
(&expectedBase, &expectedLimit, state->allocTable,
(Index)0, (Index)ArraySize, (Count)size);
if (expected) {
oldSize = (expectedLimit - expectedBase) * state->align;
remainderBase = origBase = addrOfIndex(state, expectedBase);
remainderLimit = origLimit = addrOfIndex(state, expectedLimit);
switch(findDelete) {
case FindDeleteNONE:
/* do nothing */
break;
case FindDeleteENTIRE:
remainderBase = remainderLimit;
break;
case FindDeleteLOW:
expectedLimit = expectedBase + size;
remainderBase = addrOfIndex(state, expectedLimit);
break;
case FindDeleteHIGH:
expectedBase = expectedLimit - size;
remainderLimit = addrOfIndex(state, expectedBase);
break;
default:
cdie(0, "invalid findDelete");
break;
}
if (findDelete != FindDeleteNONE) {
newSize = AddrOffset(remainderBase, remainderLimit);
}
/* TODO: check these values */
UNUSED(oldSize);
UNUSED(newSize);
}
switch (state->type) {
case FBMTypeCBS:
found = (high ? CBSFindLast : CBSFindFirst)
(&foundRange, &oldRange, state->the.cbs, size * state->align, findDelete);
break;
case FBMTypeFreelist:
found = (high ? FreelistFindLast : FreelistFindFirst)
(&foundRange, &oldRange, state->the.fl, size * state->align, findDelete);
break;
default:
cdie(0, "invalid state->type");
return;
}
if (verbose) {
printf("find %s %lu: ", high ? "last" : "first",
(unsigned long)(size * state->align));
if (expected) {
printf("expecting [%p,%p)\n",
(void *)addrOfIndex(state, expectedBase),
(void *)addrOfIndex(state, expectedLimit));
} else {
printf("expecting this not to be found\n");
}
if (found) {
printf(" found [%p,%p)\n", (void *)RangeBase(&foundRange),
(void *)RangeLimit(&foundRange));
} else {
printf(" not found\n");
}
}
Insist(found == expected);
if (found) {
Insist(expectedBase == indexOfAddr(state, RangeBase(&foundRange)));
Insist(expectedLimit == indexOfAddr(state, RangeLimit(&foundRange)));
if (findDelete != FindDeleteNONE) {
Insist(RangeBase(&oldRange) == origBase);
Insist(RangeLimit(&oldRange) == origLimit);
BTSetRange(state->allocTable, expectedBase, expectedLimit);
}
}
return;
}
static void test(FBMState state, unsigned n) {
Addr base, limit;
unsigned i;
Size size;
Bool high;
FindDelete findDelete = FindDeleteNONE;
BTSetRange(state->allocTable, 0, ArraySize); /* Initially all allocated */
check(state);
for(i = 0; i < n; i++) {
switch(fbmRnd(3)) {
case 0:
randomRange(&base, &limit, state);
allocate(state, base, limit);
break;
case 1:
randomRange(&base, &limit, state);
deallocate(state, base, limit);
break;
case 2:
size = fbmRnd(ArraySize / 10) + 1;
high = fbmRnd(2) ? TRUE : FALSE;
switch(fbmRnd(6)) {
default: findDelete = FindDeleteNONE; break;
case 3: findDelete = FindDeleteLOW; break;
case 4: findDelete = FindDeleteHIGH; break;
case 5: findDelete = FindDeleteENTIRE; break;
}
find(state, size, high, findDelete);
break;
default:
cdie(0, "invalid state->type");
return;
}
if ((i + 1) % 1000 == 0)
check(state);
if (i == 100)
describe(state);
}
}
#define testArenaSIZE (((size_t)4)<<20)
extern int main(int argc, char *argv[])
{
mps_arena_t mpsArena;
Arena arena; /* the ANSI arena which we use to allocate the BT */
FBMStateStruct state;
void *p;
Addr dummyBlock;
BT allocTable;
FreelistStruct flStruct;
CBSStruct cbsStruct;
Align align;
testlib_init(argc, argv);
align = sizeof(void *) << (rnd() % 4);
NAllocateTried = NAllocateSucceeded = NDeallocateTried =
NDeallocateSucceeded = 0;
die(mps_arena_create(&mpsArena, mps_arena_class_vm(), testArenaSIZE),
"mps_arena_create");
arena = (Arena)mpsArena; /* avoid pun */
die((mps_res_t)BTCreate(&allocTable, arena, ArraySize),
"failed to create alloc table");
/* We're not going to use this block, but I feel unhappy just */
/* inventing addresses. */
die((mps_res_t)ControlAlloc(&p, arena, ArraySize * align,
/* withReservoirPermit */ FALSE),
"failed to allocate block");
dummyBlock = p; /* avoid pun */
if (verbose) {
printf("Allocated block [%p,%p)\n", (void*)dummyBlock,
(char *)dummyBlock + ArraySize);
}
die((mps_res_t)CBSInit(&cbsStruct, arena, arena, align,
/* fastFind */ TRUE, /* zoned */ FALSE, mps_args_none),
"failed to initialise CBS");
state.type = FBMTypeCBS;
state.align = align;
state.block = dummyBlock;
state.allocTable = allocTable;
state.the.cbs = &cbsStruct;
test(&state, nCBSOperations);
CBSFinish(&cbsStruct);
die((mps_res_t)FreelistInit(&flStruct, align),
"failed to initialise Freelist");
state.type = FBMTypeFreelist;
state.the.fl = &flStruct;
test(&state, nFLOperations);
FreelistFinish(&flStruct);
mps_arena_destroy(arena);
printf("\nNumber of allocations attempted: %"PRIuLONGEST"\n",
(ulongest_t)NAllocateTried);
printf("Number of allocations succeeded: %"PRIuLONGEST"\n",
(ulongest_t)NAllocateSucceeded);
printf("Number of deallocations attempted: %"PRIuLONGEST"\n",
(ulongest_t)NDeallocateTried);
printf("Number of deallocations succeeded: %"PRIuLONGEST"\n",
(ulongest_t)NDeallocateSucceeded);
printf("%s: Conclusion: Failed to find any defects.\n", argv[0]);
return 0;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (c) 2001-2014 Ravenbrook Limited <http://www.ravenbrook.com/>.
* All rights reserved. This is an open source license. Contact
* Ravenbrook for commercial licensing options.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Redistributions in any form must be accompanied by information on how
* to obtain complete source code for this software and any accompanying
* software that uses this software. The source code must either be
* included in the distribution or be available for no more than the cost
* of distribution plus a nominal fee, and must be freely redistributable
* under reasonable conditions. For an executable file, complete source
* code means the source code for all modules it contains. It does not
* include source code for modules or files that typically accompany the
* major components of the operating system on which the executable file
* runs.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/