1
Fork 0
mirror of git://git.sv.gnu.org/emacs.git synced 2025-12-24 06:20:43 -08:00
emacs/mps/code/steptest.c
Gareth Rees 8dc0d72a8d Improve the usability of the test suite:
1. "make test" now reports the name of the test case before running it, so that when you look back through the test output you can see which test case failed.
2. "make test" now collects the standard output from all the tests to a log file in /tmp, so that this does not clutter the user's terminal, and so that nothing is lost if the output exceeds the terminal's scrollback.
3. Each test case now prints a success message ("Conclusion: Failed to find any defects.") to standard output (not standard error) so that these messages do not clutter up the terminal when running "make test".
4. Each test case now uses its result code (not the printed message) to indicate whether it succeeded or failed.
5. More of the diagnostic messages from the test cases now start by printing argv[0] so that it is easier to tell which test case was running.

Copied from Perforce
 Change: 181071
 ServerID: perforce.ravenbrook.com
2013-03-07 13:13:32 +00:00

554 lines
17 KiB
C

/* steptest.c: TEST FOR ARENA STEPPING
*
* $Id$
* Copyright (c) 1998-2013 Ravenbrook Limited. See end of file for license.
*
* Loosely based on <code/amcss.c>.
*/
#include "fmtdy.h"
#include "fmtdytst.h"
#include "testlib.h"
#include "mpscamc.h"
#include "mpsavm.h"
#include "mpstd.h"
#ifdef MPS_OS_W3
#include "mpsw3.h"
#endif
#include "mps.h"
#include <stdlib.h>
#include <string.h>
#define testArenaSIZE ((size_t)((size_t)64 << 20))
#define avLEN 3
#define exactRootsCOUNT 200
#define ambigRootsCOUNT 50
#define objCOUNT 2000000
#define clockSetFREQ 10000
#define multiStepFREQ 500000
#define multiStepMULT 100
#define genCOUNT 3
#define gen1SIZE 750 /* kB */
#define gen2SIZE 2000 /* kB */
#define gen3SIZE 5000 /* kB */
#define gen1MORTALITY 0.85
#define gen2MORTALITY 0.60
#define gen3MORTALITY 0.40
/* testChain -- generation parameters for the test */
static mps_gen_param_s testChain[genCOUNT] = {
{gen1SIZE, gen1MORTALITY},
{gen2SIZE, gen2MORTALITY},
{gen3SIZE, gen3MORTALITY},
};
/* run the test several times, calling mps_arena_step at a different
* frequency each time. When we call it often, tracing is never done
* during allocation. When we call it never, tracing is always done
* during allocation.
*/
static unsigned long step_frequencies[] = {
1000,
5000,
10000,
1000000000, /* one billion */
};
#define TESTS (sizeof(step_frequencies) / sizeof(step_frequencies[0]))
static unsigned test_number = 0;
/* objNULL needs to be odd so that it's ignored in exactRoots. */
#define objNULL ((mps_addr_t)MPS_WORD_CONST(0xDECEA5ED))
static mps_pool_t pool;
static mps_ap_t ap;
static mps_addr_t exactRoots[exactRootsCOUNT];
static mps_addr_t ambigRoots[ambigRootsCOUNT];
/* Things we want to measure. Times are all in microseconds. */
double alloc_time; /* Time spent allocating */
double max_alloc_time; /* Max time taken to allocate one object */
double step_time; /* Time spent in mps_arena_step returning 1 */
double max_step_time; /* Max time of mps_arena_step returning 1 */
double no_step_time; /* Time spent in mps_arena_step returning 0 */
double max_no_step_time; /* Max time of mps_arena_step returning 0 */
double total_clock_time; /* Time spent reading the clock */
long clock_reads; /* Number of times clock is read */
long steps; /* # of mps_arena_step calls returning 1 */
long no_steps; /* # of mps_arena_step calls returning 0 */
size_t alloc_bytes; /* # of bytes allocated */
long commit_failures; /* # of times mps_commit fails */
/* Operating-system dependent timing. Defines two functions, void
* prepare_clock(void) and double my_clock(void). my_clock() returns
* the number of microseconds of CPU time used so far by the process.
* prepare_clock() sets things up so that my_clock() can run
* efficiently.
*/
#ifdef MPS_OS_W3
static HANDLE currentProcess;
static void prepare_clock(void)
{
currentProcess = GetCurrentProcess();
}
static double my_clock(void)
{
FILETIME ctime, etime, ktime, utime;
double dk, du;
GetProcessTimes(currentProcess, &ctime, &etime, &ktime, &utime);
dk = ktime.dwHighDateTime * 4096.0 * 1024.0 * 1024.0 +
ktime.dwLowDateTime;
dk /= 10.0;
du = utime.dwHighDateTime * 4096.0 * 1024.0 * 1024.0 +
utime.dwLowDateTime;
du /= 10.0;
++ clock_reads;
return (du+dk);
}
#else
/* on Posix systems, we can use getrusage. */
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
static void prepare_clock(void)
{
/* do nothing */
}
static double my_clock(void)
{
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
++ clock_reads;
return ((ru.ru_utime.tv_sec +
ru.ru_stime.tv_sec) * 1000000.0 +
(ru.ru_utime.tv_usec +
ru.ru_stime.tv_usec));
}
#endif
/* Need to calibrate the clock. */
/* In fact we need to do this repeatedly while the tests run because
* on some platforms the time taken to read the clock changes
* significantly during program execution. Yes, really (e.g. fri4gc
* on thrush.ravenbrook.com on 2002-06-28, clock_time goes from 5.43
* us near process start to 7.45 us later). */
double clock_time; /* current estimate of time to read the clock */
/* take at least this many microseconds to set the clock */
#define CLOCK_TIME_SET 10000
/* set_clock_timing() sets clock_time. */
static void set_clock_timing(void)
{
long i;
double t1, t2, t3;
t2 = 0.0;
t3 = my_clock();
i = 0;
do {
t1 = my_clock();
/* do nothing here */
t2 += my_clock()-t1;
++i;
} while (t1 < t3 + CLOCK_TIME_SET);
clock_time = t2/i;
total_clock_time += my_clock() - t3 + clock_time;
}
/* How much time has elapsed since a recent call to my_clock?
* Deducts the calibrated clock timing, clamping to zero.
*
* The idea is to have code like this:
*
* t = my_clock();
* do_something();
* t = time_since(t);
*
* and the result will be our best estimate of how much CPU time the
* call to do_something() took.
*/
static double time_since(double t)
{
t = my_clock() - t;
total_clock_time += clock_time + clock_time;
if (t < clock_time)
return 0.0;
else
return (t - clock_time);
}
/* print a number of microseconds in a useful format. */
#define MAXPRINTABLE 100.0
#define MINPRINTABLE (MAXPRINTABLE / 1000.0)
static void print_time(char *before, double t, char *after)
{
char prefixes[] = "\0munpfazy"; /* don't print "ks" etc */
char *x = prefixes+2; /* start at micro */
double ot = t;
if (before)
printf("%s", before);
if (t > MAXPRINTABLE) {
while (x[-1] && t > MAXPRINTABLE) {
t /= 1000.0;
-- x;
}
if (t < MAXPRINTABLE) {
printf("%.3f %cs", t, *x);
} else {
printf("%.3f s", t/1000.0);
}
} else {
while (x[1] && t < MINPRINTABLE) {
t *= 1000.0;
++ x;
}
if (t > MINPRINTABLE)
printf("%.3f %cs", t, *x);
else
printf("%g s", ot/1000000.0);
}
if (after)
printf("%s", after);
}
/* Make a single Dylan object */
static mps_addr_t make(void)
{
size_t length = rnd() % (avLEN * 2);
size_t size = (length+2) * sizeof(mps_word_t);
mps_addr_t p;
mps_res_t res;
alloc_bytes += size;
for(;;) {
mps_bool_t commit_res;
double t1, t2;
t1 = my_clock();
MPS_RESERVE_BLOCK(res, p, ap, size);
t1 = time_since(t1); /* reserve time */
if(res)
die(res, "MPS_RESERVE_BLOCK");
res = dylan_init(p, size, exactRoots, exactRootsCOUNT);
if(res)
die(res, "dylan_init");
t2 = my_clock();
commit_res = mps_commit(ap, p, size);
t2 = time_since(t2); /* commit time */
t1 += t2; /* total MPS time for this allocation */
alloc_time += t1;
if (t1 > max_alloc_time)
max_alloc_time = t1;
if (commit_res)
break;
else
++ commit_failures;
}
return p;
}
/* call mps_arena_step() */
static void test_step(mps_arena_t arena, double multiplier)
{
mps_bool_t res;
double t1 = my_clock();
res = mps_arena_step(arena, 0.1, multiplier);
t1 = time_since(t1);
if (res) {
if (t1 > max_step_time)
max_step_time = t1;
step_time += t1;
++ steps;
} else {
if (t1 > max_no_step_time)
max_no_step_time = t1;
no_step_time += t1;
++ no_steps;
}
}
/* test -- the body of the test */
static void *test(void *arg, size_t s)
{
mps_arena_t arena;
mps_fmt_t format;
mps_chain_t chain;
mps_root_t exactRoot, ambigRoot;
unsigned long objs;
size_t i;
mps_message_t message;
size_t live, condemned, not_condemned;
size_t messages;
mps_word_t collections, old_collections;
double total_mps_time, total_time;
double t1;
arena = (mps_arena_t)arg;
(void)s; /* unused */
die(dylan_fmt(&format, arena), "fmt_create");
die(mps_chain_create(&chain, arena, genCOUNT, testChain), "chain_create");
die(mps_pool_create(&pool, arena, mps_class_amc(), format, chain),
"pool_create(amc)");
die(mps_ap_create(&ap, pool, mps_rank_exact()), "BufferCreate");
for(i = 0; i < exactRootsCOUNT; ++i)
exactRoots[i] = objNULL;
for(i = 0; i < ambigRootsCOUNT; ++i)
ambigRoots[i] = rnd_addr();
die(mps_root_create_table_masked(&exactRoot, arena,
mps_rank_exact(), (mps_rm_t)0,
&exactRoots[0], exactRootsCOUNT,
(mps_word_t)1),
"root_create_table(exact)");
die(mps_root_create_table(&ambigRoot, arena,
mps_rank_ambig(), (mps_rm_t)0,
&ambigRoots[0], ambigRootsCOUNT),
"root_create_table(ambig)");
printf("Stepping every %lu allocations.\n",
(unsigned long)step_frequencies[test_number]);
mps_message_type_enable(arena, mps_message_type_gc());
/* zero all our counters and timers. */
objs = 0;
clock_reads = 0;
steps = no_steps = 0;
alloc_bytes = 0;
commit_failures = 0;
alloc_time = step_time = no_step_time = 0.0;
max_alloc_time = max_step_time = max_no_step_time = 0.0;
total_clock_time = 0.0;
collections = old_collections = 0;
t1 = my_clock();
while(objs < objCOUNT) {
size_t r;
r = (size_t)rnd();
if(r & 1) {
i = (r >> 1) % exactRootsCOUNT;
if(exactRoots[i] != objNULL)
cdie(dylan_check(exactRoots[i]), "dying root check");
exactRoots[i] = make();
if(exactRoots[(exactRootsCOUNT-1) - i] != objNULL)
dylan_write(exactRoots[(exactRootsCOUNT-1) - i],
exactRoots, exactRootsCOUNT);
} else {
i = (r >> 1) % ambigRootsCOUNT;
ambigRoots[(ambigRootsCOUNT-1) - i] = make();
/* Create random interior pointers */
ambigRoots[i] = (mps_addr_t)((char *)(ambigRoots[i/2]) + 1);
}
++objs;
if (objs % step_frequencies[test_number] == 0)
test_step(arena, 0.0);
if (objs % multiStepFREQ == 0)
test_step(arena, multiStepMULT);
if (objs % clockSetFREQ == 0)
set_clock_timing();
collections = mps_collections(arena);
if (collections > old_collections) {
old_collections = collections;
putchar('.');
fflush(stdout);
}
}
total_time = time_since(t1) - total_clock_time;
if (collections > 0)
printf("\n");
messages = live = condemned = not_condemned = 0;
while (mps_message_get(&message, arena, mps_message_type_gc())) {
++ messages;
live += mps_message_gc_live_size(arena, message);
condemned += mps_message_gc_condemned_size(arena, message);
not_condemned += mps_message_gc_not_condemned_size(arena,
message);
mps_message_discard(arena, message);
}
if (collections != messages) {
printf("%lu collections but %lu messages\n",
(unsigned long)collections, (unsigned long)messages);
collections = messages;
}
total_mps_time = alloc_time + step_time + no_step_time;
printf("Collection statistics:\n");
printf(" %"PRIuLONGEST" collections\n", (ulongest_t)collections);
printf(" %"PRIuLONGEST" bytes condemned.\n", (ulongest_t)condemned);
printf(" %lu bytes not condemned.\n",
(unsigned long)not_condemned);
printf(" %"PRIuLONGEST" bytes survived.\n", (ulongest_t)live);
if (condemned) {
printf(" Mortality %5.2f%%.\n",
(1.0 - ((double)live)/condemned) * 100.0);
printf(" Condemned fraction %5.2f%%.\n",
((double)condemned/(condemned + not_condemned)) * 100.0);
}
if (collections) {
printf(" Condemned per collection %lu bytes.\n",
(unsigned long)condemned/collections);
printf(" Reclaimed per collection %lu bytes.\n",
(unsigned long)(condemned - live)/collections);
}
printf("Allocation statistics:\n");
printf(" %"PRIuLONGEST" objects (%"PRIuLONGEST" bytes) allocated.\n",
(ulongest_t)objs, (ulongest_t)alloc_bytes);
printf(" Commit failed %ld times.\n", commit_failures);
printf("Timings:\n");
print_time(" Allocation took ", alloc_time, "");
print_time(", mean ", alloc_time / objs, "");
print_time(", max ", max_alloc_time, ".\n");
if (steps) {
printf(" %ld steps took ", steps);
print_time("", step_time, "");
print_time(", mean ", step_time/steps, "");
print_time(", max ", max_step_time, ".\n");
}
if (no_steps) {
printf(" %ld non-steps took ", no_steps);
print_time("", no_step_time, "");
print_time(", mean ", no_step_time / no_steps, "");
print_time(", max ", max_no_step_time, ".\n");
}
if (alloc_time > 0.0)
printf(" Allocated %.2f bytes per us.\n",
(double)alloc_bytes/alloc_time);
if (step_time > 0.0) {
printf(" Reclaimed %.2f bytes per us of step.\n",
(double)(condemned - live)/step_time);
if (collections > 0) {
printf(" Took %.2f steps ", (double)steps/collections);
print_time("(", step_time / collections, ") per collection.\n");
}
}
print_time(" Total time ", total_time, ".\n");
print_time(" Total MPS time ", total_mps_time, "");
printf(" (%5.2f%%, ", total_mps_time * 100.0 / total_time);
print_time("", total_mps_time/alloc_bytes, " per byte, ");
print_time("", total_mps_time/objs, " per object)\n");
print_time(" (adjusted for clock timing: ",
total_clock_time,
" spent reading the clock;\n");
printf(" %"PRIuLONGEST" clock reads; ", (ulongest_t)clock_reads);
print_time("", total_clock_time / clock_reads, " per read;");
print_time(" recently measured as ", clock_time, ").\n");
mps_ap_destroy(ap);
mps_root_destroy(exactRoot);
mps_root_destroy(ambigRoot);
mps_pool_destroy(pool);
mps_chain_destroy(chain);
mps_fmt_destroy(format);
return NULL;
}
int main(int argc, char *argv[])
{
prepare_clock();
randomize(argc, argv);
while (test_number < TESTS) {
mps_arena_t arena;
mps_thr_t thread;
void *r;
set_clock_timing();
die(mps_arena_create(&arena, mps_arena_class_vm(),
testArenaSIZE),
"arena_create");
die(mps_thread_reg(&thread, arena), "thread_reg");
mps_tramp(&r, test, arena, 0);
mps_thread_dereg(thread);
mps_arena_destroy(arena);
++ test_number;
}
printf("%s: Conclusion: Failed to find any defects.\n", argv[0]);
return 0;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (c) 2001-2013 Ravenbrook Limited <http://www.ravenbrook.com/>.
* All rights reserved. This is an open source license. Contact
* Ravenbrook for commercial licensing options.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Redistributions in any form must be accompanied by information on how
* to obtain complete source code for this software and any accompanying
* software that uses this software. The source code must either be
* included in the distribution or be available for no more than the cost
* of distribution plus a nominal fee, and must be freely redistributable
* under reasonable conditions. For an executable file, complete source
* code means the source code for all modules it contains. It does not
* include source code for modules or files that typically accompany the
* major components of the operating system on which the executable file
* runs.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
* PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/