1
Fork 0
mirror of git://git.sv.gnu.org/emacs.git synced 2026-01-01 18:00:40 -08:00
emacs/src/atimer.c
Paul Eggert e9a9ae0350 EMACS_TIME simplification (Bug#11875).
This replaces macros (which typically do not work in GDB)
with functions, typedefs and enums, making the code easier to debug.
The functional style also makes code easier to read and maintain.
* lib-src/profile.c (TV2): Remove no-longer-needed static var.
* src/systime.h: Include <sys/time.h> on all hosts, not just if
WINDOWSNT, since 'struct timeval' is needed in general.
(EMACS_TIME): Now a typedef, not a macro.
(EMACS_TIME_RESOLUTION, LOG10_EMACS_TIME_RESOLUTION): Now constants,
not macros.
(EMACS_SECS, EMACS_NSECS, EMACS_TIME_SIGN, EMACS_TIME_VALID_P)
(EMACS_TIME_FROM_DOUBLE, EMACS_TIME_TO_DOUBLE, EMACS_TIME_EQ)
(EMACS_TIME_NE, EMACS_TIME_GT, EMACS_TIME_GE, EMACS_TIME_LT)
(EMACS_TIME_LE): Now functions, not macros.
(EMACS_SET_SECS, EMACS_SET_NSECS, EMACS_SET_SECS_NSECS)
(EMACS_SET_USECS, EMACS_SET_SECS_USECS): Remove these macros,
which are not functions.  All uses rewritten to use:
(make_emacs_time): New function.
(EMACS_SECS_ADDR, EMACS_SET_INVALID_TIME, EMACS_GET_TIME)
(EMACS_ADD_TIME, EMACS_SUB_TIME): Remove these macros, which are
not functions.  All uses rewritten to use the following, respectively:
(emacs_secs_addr, invalid_emacs_time, get_emacs_time)
(add_emacs_time, sub_emacs_time): New functions.
* src/atimer.c: Don't include <sys/time.h>,	as "systime.h" does this.
* src/fileio.c (Fcopy_file):
* src/xterm.c (XTflash): Get the current time closer to when it's used.
* src/makefile.w32-in ($(BLD)/atimer.$(O)): Update dependencies.
2012-07-10 16:24:36 -07:00

430 lines
9.2 KiB
C

/* Asynchronous timers.
Copyright (C) 2000-2012 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
#include <signal.h>
#include <stdio.h>
#include <setjmp.h>
#include "lisp.h"
#include "syssignal.h"
#include "systime.h"
#include "blockinput.h"
#include "atimer.h"
#include <unistd.h>
/* Free-list of atimer structures. */
static struct atimer *free_atimers;
/* List of currently not running timers due to a call to
lock_atimer. */
static struct atimer *stopped_atimers;
/* List of active atimers, sorted by expiration time. The timer that
will become ripe next is always at the front of this list. */
static struct atimer *atimers;
/* Non-zero means alarm_signal_handler has found ripe timers but
interrupt_input_blocked was non-zero. In this case, timer
functions are not called until the next UNBLOCK_INPUT because timer
functions are expected to call X, and X cannot be assumed to be
reentrant. */
int pending_atimers;
/* Block/unblock SIGALRM. */
#define BLOCK_ATIMERS sigblock (sigmask (SIGALRM))
#define UNBLOCK_ATIMERS sigunblock (sigmask (SIGALRM))
/* Function prototypes. */
static void set_alarm (void);
static void schedule_atimer (struct atimer *);
static struct atimer *append_atimer_lists (struct atimer *,
struct atimer *);
static void alarm_signal_handler (int signo);
/* Start a new atimer of type TYPE. TIME specifies when the timer is
ripe. FN is the function to call when the timer fires.
CLIENT_DATA is stored in the client_data member of the atimer
structure returned and so made available to FN when it is called.
If TYPE is ATIMER_ABSOLUTE, TIME is the absolute time at which the
timer fires.
If TYPE is ATIMER_RELATIVE, the timer is ripe TIME s/us in the
future.
In both cases, the timer is automatically freed after it has fired.
If TYPE is ATIMER_CONTINUOUS, the timer fires every TIME s/us.
Value is a pointer to the atimer started. It can be used in calls
to cancel_atimer; don't free it yourself. */
struct atimer *
start_atimer (enum atimer_type type, EMACS_TIME timestamp, atimer_callback fn,
void *client_data)
{
struct atimer *t;
/* Round TIME up to the next full second if we don't have
itimers. */
#ifndef HAVE_SETITIMER
if (EMACS_NSECS (timestamp) != 0
&& EMACS_SECS (timestamp) < TYPE_MAXIMUM (time_t))
timestamp = make_emacs_time (EMACS_SECS (timestamp) + 1, 0);
#endif /* not HAVE_SETITIMER */
/* Get an atimer structure from the free-list, or allocate
a new one. */
if (free_atimers)
{
t = free_atimers;
free_atimers = t->next;
}
else
t = xmalloc (sizeof *t);
/* Fill the atimer structure. */
memset (t, 0, sizeof *t);
t->type = type;
t->fn = fn;
t->client_data = client_data;
BLOCK_ATIMERS;
/* Compute the timer's expiration time. */
switch (type)
{
case ATIMER_ABSOLUTE:
t->expiration = timestamp;
break;
case ATIMER_RELATIVE:
t->expiration = add_emacs_time (current_emacs_time (), timestamp);
break;
case ATIMER_CONTINUOUS:
t->expiration = add_emacs_time (current_emacs_time (), timestamp);
t->interval = timestamp;
break;
}
/* Insert the timer in the list of active atimers. */
schedule_atimer (t);
UNBLOCK_ATIMERS;
/* Arrange for a SIGALRM at the time the next atimer is ripe. */
set_alarm ();
return t;
}
/* Cancel and free atimer TIMER. */
void
cancel_atimer (struct atimer *timer)
{
int i;
BLOCK_ATIMERS;
for (i = 0; i < 2; ++i)
{
struct atimer *t, *prev;
struct atimer **list = i ? &stopped_atimers : &atimers;
/* See if TIMER is active or stopped. */
for (t = *list, prev = NULL; t && t != timer; prev = t, t = t->next)
;
/* If it is, take it off its list, and put in on the free-list.
We don't bother to arrange for setting a different alarm time,
since a too early one doesn't hurt. */
if (t)
{
if (prev)
prev->next = t->next;
else
*list = t->next;
t->next = free_atimers;
free_atimers = t;
break;
}
}
UNBLOCK_ATIMERS;
}
/* Append two lists of atimers LIST_1 and LIST_2 and return the
result list. */
static struct atimer *
append_atimer_lists (struct atimer *list_1, struct atimer *list_2)
{
if (list_1 == NULL)
return list_2;
else if (list_2 == NULL)
return list_1;
else
{
struct atimer *p;
for (p = list_1; p->next; p = p->next)
;
p->next = list_2;
return list_1;
}
}
/* Stop all timers except timer T. T null means stop all timers. */
void
stop_other_atimers (struct atimer *t)
{
BLOCK_ATIMERS;
if (t)
{
struct atimer *p, *prev;
/* See if T is active. */
for (p = atimers, prev = NULL; p && p != t; prev = p, p = p->next)
;
if (p == t)
{
if (prev)
prev->next = t->next;
else
atimers = t->next;
t->next = NULL;
}
else
/* T is not active. Let's handle this like T == 0. */
t = NULL;
}
stopped_atimers = append_atimer_lists (atimers, stopped_atimers);
atimers = t;
UNBLOCK_ATIMERS;
}
/* Run all timers again, if some have been stopped with a call to
stop_other_atimers. */
static void
run_all_atimers (void)
{
if (stopped_atimers)
{
struct atimer *t = atimers;
struct atimer *next;
BLOCK_ATIMERS;
atimers = stopped_atimers;
stopped_atimers = NULL;
while (t)
{
next = t->next;
schedule_atimer (t);
t = next;
}
UNBLOCK_ATIMERS;
}
}
/* A version of run_all_atimers suitable for a record_unwind_protect. */
Lisp_Object
unwind_stop_other_atimers (Lisp_Object dummy)
{
run_all_atimers ();
return Qnil;
}
/* Arrange for a SIGALRM to arrive when the next timer is ripe. */
static void
set_alarm (void)
{
if (atimers)
{
#ifdef HAVE_SETITIMER
struct itimerval it;
#endif
/* Determine s/us till the next timer is ripe. */
EMACS_TIME now = current_emacs_time ();
/* Don't set the interval to 0; this disables the timer. */
EMACS_TIME interval = (EMACS_TIME_LE (atimers->expiration, now)
? make_emacs_time (0, 1000 * 1000)
: sub_emacs_time (atimers->expiration, now));
#ifdef HAVE_SETITIMER
memset (&it, 0, sizeof it);
it.it_value = make_timeval (interval);
setitimer (ITIMER_REAL, &it, 0);
#else /* not HAVE_SETITIMER */
alarm (max (EMACS_SECS (interval), 1));
#endif /* not HAVE_SETITIMER */
}
}
/* Insert timer T into the list of active atimers `atimers', keeping
the list sorted by expiration time. T must not be in this list
already. */
static void
schedule_atimer (struct atimer *t)
{
struct atimer *a = atimers, *prev = NULL;
/* Look for the first atimer that is ripe after T. */
while (a && EMACS_TIME_GT (t->expiration, a->expiration))
prev = a, a = a->next;
/* Insert T in front of the atimer found, if any. */
if (prev)
prev->next = t;
else
atimers = t;
t->next = a;
}
static void
run_timers (void)
{
EMACS_TIME now;
while (atimers
&& (pending_atimers = interrupt_input_blocked) == 0
&& (now = current_emacs_time (),
EMACS_TIME_LE (atimers->expiration, now)))
{
struct atimer *t;
t = atimers;
atimers = atimers->next;
t->fn (t);
if (t->type == ATIMER_CONTINUOUS)
{
t->expiration = add_emacs_time (now, t->interval);
schedule_atimer (t);
}
else
{
t->next = free_atimers;
free_atimers = t;
}
}
if (! atimers)
pending_atimers = 0;
#ifdef SYNC_INPUT
if (pending_atimers)
pending_signals = 1;
else
{
pending_signals = interrupt_input_pending;
set_alarm ();
}
#else
if (! pending_atimers)
set_alarm ();
#endif
}
/* Signal handler for SIGALRM. SIGNO is the signal number, i.e.
SIGALRM. */
void
alarm_signal_handler (int signo)
{
#ifndef SYNC_INPUT
SIGNAL_THREAD_CHECK (signo);
#endif
pending_atimers = 1;
#ifdef SYNC_INPUT
pending_signals = 1;
#else
run_timers ();
#endif
}
/* Call alarm_signal_handler for pending timers. */
void
do_pending_atimers (void)
{
if (pending_atimers)
{
BLOCK_ATIMERS;
run_timers ();
UNBLOCK_ATIMERS;
}
}
/* Turn alarms on/off. This seems to be temporarily necessary on
some systems like HPUX (see process.c). */
void
turn_on_atimers (int on)
{
if (on)
{
signal (SIGALRM, alarm_signal_handler);
set_alarm ();
}
else
alarm (0);
}
void
init_atimer (void)
{
free_atimers = stopped_atimers = atimers = NULL;
pending_atimers = 0;
/* pending_signals is initialized in init_keyboard.*/
signal (SIGALRM, alarm_signal_handler);
}