mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-25 06:50:46 -08:00
3226 lines
89 KiB
C
3226 lines
89 KiB
C
/* Manipulation of keymaps
|
||
Copyright (C) 1985, 86,87,88,93,94,95,98 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#undef NULL
|
||
#include "lisp.h"
|
||
#include "commands.h"
|
||
#include "buffer.h"
|
||
#include "charset.h"
|
||
#include "keyboard.h"
|
||
#include "termhooks.h"
|
||
#include "blockinput.h"
|
||
#include "puresize.h"
|
||
|
||
#define min(a, b) ((a) < (b) ? (a) : (b))
|
||
|
||
/* The number of elements in keymap vectors. */
|
||
#define DENSE_TABLE_SIZE (0200)
|
||
|
||
/* Actually allocate storage for these variables */
|
||
|
||
Lisp_Object current_global_map; /* Current global keymap */
|
||
|
||
Lisp_Object global_map; /* default global key bindings */
|
||
|
||
Lisp_Object meta_map; /* The keymap used for globally bound
|
||
ESC-prefixed default commands */
|
||
|
||
Lisp_Object control_x_map; /* The keymap used for globally bound
|
||
C-x-prefixed default commands */
|
||
|
||
/* was MinibufLocalMap */
|
||
Lisp_Object Vminibuffer_local_map;
|
||
/* The keymap used by the minibuf for local
|
||
bindings when spaces are allowed in the
|
||
minibuf */
|
||
|
||
/* was MinibufLocalNSMap */
|
||
Lisp_Object Vminibuffer_local_ns_map;
|
||
/* The keymap used by the minibuf for local
|
||
bindings when spaces are not encouraged
|
||
in the minibuf */
|
||
|
||
/* keymap used for minibuffers when doing completion */
|
||
/* was MinibufLocalCompletionMap */
|
||
Lisp_Object Vminibuffer_local_completion_map;
|
||
|
||
/* keymap used for minibuffers when doing completion and require a match */
|
||
/* was MinibufLocalMustMatchMap */
|
||
Lisp_Object Vminibuffer_local_must_match_map;
|
||
|
||
/* Alist of minor mode variables and keymaps. */
|
||
Lisp_Object Vminor_mode_map_alist;
|
||
|
||
/* Alist of major-mode-specific overrides for
|
||
minor mode variables and keymaps. */
|
||
Lisp_Object Vminor_mode_overriding_map_alist;
|
||
|
||
/* Keymap mapping ASCII function key sequences onto their preferred forms.
|
||
Initialized by the terminal-specific lisp files. See DEFVAR for more
|
||
documentation. */
|
||
Lisp_Object Vfunction_key_map;
|
||
|
||
/* Keymap mapping ASCII function key sequences onto their preferred forms. */
|
||
Lisp_Object Vkey_translation_map;
|
||
|
||
/* A list of all commands given new bindings since a certain time
|
||
when nil was stored here.
|
||
This is used to speed up recomputation of menu key equivalents
|
||
when Emacs starts up. t means don't record anything here. */
|
||
Lisp_Object Vdefine_key_rebound_commands;
|
||
|
||
Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii;
|
||
|
||
/* A char with the CHAR_META bit set in a vector or the 0200 bit set
|
||
in a string key sequence is equivalent to prefixing with this
|
||
character. */
|
||
extern Lisp_Object meta_prefix_char;
|
||
|
||
extern Lisp_Object Voverriding_local_map;
|
||
|
||
static Lisp_Object define_as_prefix ();
|
||
static Lisp_Object describe_buffer_bindings ();
|
||
static void describe_command (), describe_translation ();
|
||
static void describe_map ();
|
||
Lisp_Object Fcopy_keymap ();
|
||
|
||
/* Keymap object support - constructors and predicates. */
|
||
|
||
DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
|
||
"Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
|
||
VECTOR is a vector which holds the bindings for the ASCII\n\
|
||
characters. ALIST is an assoc-list which holds bindings for function keys,\n\
|
||
mouse events, and any other things that appear in the input stream.\n\
|
||
All entries in it are initially nil, meaning \"command undefined\".\n\n\
|
||
The optional arg STRING supplies a menu name for the keymap\n\
|
||
in case you use it as a menu with `x-popup-menu'.")
|
||
(string)
|
||
Lisp_Object string;
|
||
{
|
||
Lisp_Object tail;
|
||
if (!NILP (string))
|
||
tail = Fcons (string, Qnil);
|
||
else
|
||
tail = Qnil;
|
||
return Fcons (Qkeymap,
|
||
Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
|
||
}
|
||
|
||
DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
|
||
"Construct and return a new sparse-keymap list.\n\
|
||
Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
|
||
which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
|
||
which binds the function key or mouse event SYMBOL to DEFINITION.\n\
|
||
Initially the alist is nil.\n\n\
|
||
The optional arg STRING supplies a menu name for the keymap\n\
|
||
in case you use it as a menu with `x-popup-menu'.")
|
||
(string)
|
||
Lisp_Object string;
|
||
{
|
||
if (!NILP (string))
|
||
return Fcons (Qkeymap, Fcons (string, Qnil));
|
||
return Fcons (Qkeymap, Qnil);
|
||
}
|
||
|
||
/* This function is used for installing the standard key bindings
|
||
at initialization time.
|
||
|
||
For example:
|
||
|
||
initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
|
||
|
||
void
|
||
initial_define_key (keymap, key, defname)
|
||
Lisp_Object keymap;
|
||
int key;
|
||
char *defname;
|
||
{
|
||
store_in_keymap (keymap, make_number (key), intern (defname));
|
||
}
|
||
|
||
void
|
||
initial_define_lispy_key (keymap, keyname, defname)
|
||
Lisp_Object keymap;
|
||
char *keyname;
|
||
char *defname;
|
||
{
|
||
store_in_keymap (keymap, intern (keyname), intern (defname));
|
||
}
|
||
|
||
/* Define character fromchar in map frommap as an alias for character
|
||
tochar in map tomap. Subsequent redefinitions of the latter WILL
|
||
affect the former. */
|
||
|
||
#if 0
|
||
void
|
||
synkey (frommap, fromchar, tomap, tochar)
|
||
struct Lisp_Vector *frommap, *tomap;
|
||
int fromchar, tochar;
|
||
{
|
||
Lisp_Object v, c;
|
||
XSETVECTOR (v, tomap);
|
||
XSETFASTINT (c, tochar);
|
||
frommap->contents[fromchar] = Fcons (v, c);
|
||
}
|
||
#endif /* 0 */
|
||
|
||
DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
|
||
"Return t if OBJECT is a keymap.\n\
|
||
\n\
|
||
A keymap is a list (keymap . ALIST),\n\
|
||
or a symbol whose function definition is itself a keymap.\n\
|
||
ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
|
||
a vector of densely packed bindings for small character codes\n\
|
||
is also allowed as an element.")
|
||
(object)
|
||
Lisp_Object object;
|
||
{
|
||
return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
|
||
}
|
||
|
||
/* Check that OBJECT is a keymap (after dereferencing through any
|
||
symbols). If it is, return it.
|
||
|
||
If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
|
||
is an autoload form, do the autoload and try again.
|
||
If AUTOLOAD is nonzero, callers must assume GC is possible.
|
||
|
||
ERROR controls how we respond if OBJECT isn't a keymap.
|
||
If ERROR is non-zero, signal an error; otherwise, just return Qnil.
|
||
|
||
Note that most of the time, we don't want to pursue autoloads.
|
||
Functions like Faccessible_keymaps which scan entire keymap trees
|
||
shouldn't load every autoloaded keymap. I'm not sure about this,
|
||
but it seems to me that only read_key_sequence, Flookup_key, and
|
||
Fdefine_key should cause keymaps to be autoloaded. */
|
||
|
||
Lisp_Object
|
||
get_keymap_1 (object, error, autoload)
|
||
Lisp_Object object;
|
||
int error, autoload;
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
autoload_retry:
|
||
tem = indirect_function (object);
|
||
if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
|
||
return tem;
|
||
|
||
/* Should we do an autoload? Autoload forms for keymaps have
|
||
Qkeymap as their fifth element. */
|
||
if (autoload
|
||
&& SYMBOLP (object)
|
||
&& CONSP (tem)
|
||
&& EQ (XCONS (tem)->car, Qautoload))
|
||
{
|
||
Lisp_Object tail;
|
||
|
||
tail = Fnth (make_number (4), tem);
|
||
if (EQ (tail, Qkeymap))
|
||
{
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
GCPRO2 (tem, object);
|
||
do_autoload (tem, object);
|
||
UNGCPRO;
|
||
|
||
goto autoload_retry;
|
||
}
|
||
}
|
||
|
||
if (error)
|
||
wrong_type_argument (Qkeymapp, object);
|
||
else
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
/* Follow any symbol chaining, and return the keymap denoted by OBJECT.
|
||
If OBJECT doesn't denote a keymap at all, signal an error. */
|
||
Lisp_Object
|
||
get_keymap (object)
|
||
Lisp_Object object;
|
||
{
|
||
return get_keymap_1 (object, 1, 0);
|
||
}
|
||
|
||
/* Return the parent map of the keymap MAP, or nil if it has none.
|
||
We assume that MAP is a valid keymap. */
|
||
|
||
DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
|
||
"Return the parent keymap of KEYMAP.")
|
||
(keymap)
|
||
Lisp_Object keymap;
|
||
{
|
||
Lisp_Object list;
|
||
|
||
keymap = get_keymap_1 (keymap, 1, 1);
|
||
|
||
/* Skip past the initial element `keymap'. */
|
||
list = XCONS (keymap)->cdr;
|
||
for (; CONSP (list); list = XCONS (list)->cdr)
|
||
{
|
||
/* See if there is another `keymap'. */
|
||
if (EQ (Qkeymap, XCONS (list)->car))
|
||
return list;
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
/* Set the parent keymap of MAP to PARENT. */
|
||
|
||
DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
|
||
"Modify KEYMAP to set its parent map to PARENT.\n\
|
||
PARENT should be nil or another keymap.")
|
||
(keymap, parent)
|
||
Lisp_Object keymap, parent;
|
||
{
|
||
Lisp_Object list, prev;
|
||
int i;
|
||
|
||
keymap = get_keymap_1 (keymap, 1, 1);
|
||
if (!NILP (parent))
|
||
parent = get_keymap_1 (parent, 1, 1);
|
||
|
||
/* Skip past the initial element `keymap'. */
|
||
prev = keymap;
|
||
while (1)
|
||
{
|
||
list = XCONS (prev)->cdr;
|
||
/* If there is a parent keymap here, replace it.
|
||
If we came to the end, add the parent in PREV. */
|
||
if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
|
||
{
|
||
/* If we already have the right parent, return now
|
||
so that we avoid the loops below. */
|
||
if (EQ (XCONS (prev)->cdr, parent))
|
||
return parent;
|
||
|
||
XCONS (prev)->cdr = parent;
|
||
break;
|
||
}
|
||
prev = list;
|
||
}
|
||
|
||
/* Scan through for submaps, and set their parents too. */
|
||
|
||
for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
|
||
{
|
||
/* Stop the scan when we come to the parent. */
|
||
if (EQ (XCONS (list)->car, Qkeymap))
|
||
break;
|
||
|
||
/* If this element holds a prefix map, deal with it. */
|
||
if (CONSP (XCONS (list)->car)
|
||
&& CONSP (XCONS (XCONS (list)->car)->cdr))
|
||
fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
|
||
XCONS (XCONS (list)->car)->cdr);
|
||
|
||
if (VECTORP (XCONS (list)->car))
|
||
for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
|
||
if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
|
||
fix_submap_inheritance (keymap, make_number (i),
|
||
XVECTOR (XCONS (list)->car)->contents[i]);
|
||
|
||
if (CHAR_TABLE_P (XCONS (list)->car))
|
||
{
|
||
Lisp_Object indices[3];
|
||
|
||
map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
|
||
keymap, 0, indices);
|
||
}
|
||
}
|
||
|
||
return parent;
|
||
}
|
||
|
||
/* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
|
||
if EVENT is also a prefix in MAP's parent,
|
||
make sure that SUBMAP inherits that definition as its own parent. */
|
||
|
||
void
|
||
fix_submap_inheritance (map, event, submap)
|
||
Lisp_Object map, event, submap;
|
||
{
|
||
Lisp_Object map_parent, parent_entry;
|
||
|
||
/* SUBMAP is a cons that we found as a key binding.
|
||
Discard the other things found in a menu key binding. */
|
||
|
||
if (CONSP (submap)
|
||
&& STRINGP (XCONS (submap)->car))
|
||
{
|
||
submap = XCONS (submap)->cdr;
|
||
/* Also remove a menu help string, if any,
|
||
following the menu item name. */
|
||
if (CONSP (submap) && STRINGP (XCONS (submap)->car))
|
||
submap = XCONS (submap)->cdr;
|
||
/* Also remove the sublist that caches key equivalences, if any. */
|
||
if (CONSP (submap)
|
||
&& CONSP (XCONS (submap)->car))
|
||
{
|
||
Lisp_Object carcar;
|
||
carcar = XCONS (XCONS (submap)->car)->car;
|
||
if (NILP (carcar) || VECTORP (carcar))
|
||
submap = XCONS (submap)->cdr;
|
||
}
|
||
}
|
||
|
||
/* If it isn't a keymap now, there's no work to do. */
|
||
if (! CONSP (submap)
|
||
|| ! EQ (XCONS (submap)->car, Qkeymap))
|
||
return;
|
||
|
||
map_parent = Fkeymap_parent (map);
|
||
if (! NILP (map_parent))
|
||
parent_entry = access_keymap (map_parent, event, 0, 0);
|
||
else
|
||
parent_entry = Qnil;
|
||
|
||
/* If MAP's parent has something other than a keymap,
|
||
our own submap shadows it completely, so use nil as SUBMAP's parent. */
|
||
if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
|
||
parent_entry = Qnil;
|
||
|
||
if (! EQ (parent_entry, submap))
|
||
Fset_keymap_parent (submap, parent_entry);
|
||
}
|
||
|
||
/* Look up IDX in MAP. IDX may be any sort of event.
|
||
Note that this does only one level of lookup; IDX must be a single
|
||
event, not a sequence.
|
||
|
||
If T_OK is non-zero, bindings for Qt are treated as default
|
||
bindings; any key left unmentioned by other tables and bindings is
|
||
given the binding of Qt.
|
||
|
||
If T_OK is zero, bindings for Qt are not treated specially.
|
||
|
||
If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
|
||
|
||
Lisp_Object
|
||
access_keymap (map, idx, t_ok, noinherit)
|
||
Lisp_Object map;
|
||
Lisp_Object idx;
|
||
int t_ok;
|
||
int noinherit;
|
||
{
|
||
int noprefix = 0;
|
||
Lisp_Object val;
|
||
|
||
/* If idx is a list (some sort of mouse click, perhaps?),
|
||
the index we want to use is the car of the list, which
|
||
ought to be a symbol. */
|
||
idx = EVENT_HEAD (idx);
|
||
|
||
/* If idx is a symbol, it might have modifiers, which need to
|
||
be put in the canonical order. */
|
||
if (SYMBOLP (idx))
|
||
idx = reorder_modifiers (idx);
|
||
else if (INTEGERP (idx))
|
||
/* Clobber the high bits that can be present on a machine
|
||
with more than 24 bits of integer. */
|
||
XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
|
||
|
||
{
|
||
Lisp_Object tail;
|
||
Lisp_Object t_binding;
|
||
|
||
t_binding = Qnil;
|
||
for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
Lisp_Object binding;
|
||
|
||
binding = XCONS (tail)->car;
|
||
if (SYMBOLP (binding))
|
||
{
|
||
/* If NOINHERIT, stop finding prefix definitions
|
||
after we pass a second occurrence of the `keymap' symbol. */
|
||
if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
|
||
noprefix = 1;
|
||
}
|
||
else if (CONSP (binding))
|
||
{
|
||
if (EQ (XCONS (binding)->car, idx))
|
||
{
|
||
val = XCONS (binding)->cdr;
|
||
if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
|
||
return Qnil;
|
||
if (CONSP (val))
|
||
fix_submap_inheritance (map, idx, val);
|
||
return val;
|
||
}
|
||
if (t_ok && EQ (XCONS (binding)->car, Qt))
|
||
t_binding = XCONS (binding)->cdr;
|
||
}
|
||
else if (VECTORP (binding))
|
||
{
|
||
if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
|
||
{
|
||
val = XVECTOR (binding)->contents[XFASTINT (idx)];
|
||
if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
|
||
return Qnil;
|
||
if (CONSP (val))
|
||
fix_submap_inheritance (map, idx, val);
|
||
return val;
|
||
}
|
||
}
|
||
else if (CHAR_TABLE_P (binding))
|
||
{
|
||
/* Character codes with modifiers
|
||
are not included in a char-table.
|
||
All character codes without modifiers are included. */
|
||
if (NATNUMP (idx)
|
||
&& ! (XFASTINT (idx)
|
||
& (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
|
||
| CHAR_SHIFT | CHAR_CTL | CHAR_META)))
|
||
{
|
||
val = Faref (binding, idx);
|
||
if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
|
||
return Qnil;
|
||
if (CONSP (val))
|
||
fix_submap_inheritance (map, idx, val);
|
||
return val;
|
||
}
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
|
||
return t_binding;
|
||
}
|
||
}
|
||
|
||
/* Given OBJECT which was found in a slot in a keymap,
|
||
trace indirect definitions to get the actual definition of that slot.
|
||
An indirect definition is a list of the form
|
||
(KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
|
||
and INDEX is the object to look up in KEYMAP to yield the definition.
|
||
|
||
Also if OBJECT has a menu string as the first element,
|
||
remove that. Also remove a menu help string as second element.
|
||
|
||
If AUTOLOAD is nonzero, load autoloadable keymaps
|
||
that are referred to with indirection. */
|
||
|
||
Lisp_Object
|
||
get_keyelt (object, autoload)
|
||
register Lisp_Object object;
|
||
int autoload;
|
||
{
|
||
while (1)
|
||
{
|
||
register Lisp_Object map, tem;
|
||
|
||
/* If the contents are (KEYMAP . ELEMENT), go indirect. */
|
||
map = get_keymap_1 (Fcar_safe (object), 0, autoload);
|
||
tem = Fkeymapp (map);
|
||
if (!NILP (tem))
|
||
{
|
||
Lisp_Object key;
|
||
key = Fcdr (object);
|
||
if (INTEGERP (key) && (XINT (key) & meta_modifier))
|
||
{
|
||
object = access_keymap (map, meta_prefix_char, 0, 0);
|
||
map = get_keymap_1 (object, 0, autoload);
|
||
object = access_keymap (map,
|
||
make_number (XINT (key) & ~meta_modifier),
|
||
0, 0);
|
||
}
|
||
else
|
||
object = access_keymap (map, key, 0, 0);
|
||
}
|
||
|
||
/* If the keymap contents looks like (STRING . DEFN),
|
||
use DEFN.
|
||
Keymap alist elements like (CHAR MENUSTRING . DEFN)
|
||
will be used by HierarKey menus. */
|
||
else if (CONSP (object)
|
||
&& STRINGP (XCONS (object)->car))
|
||
{
|
||
object = XCONS (object)->cdr;
|
||
/* Also remove a menu help string, if any,
|
||
following the menu item name. */
|
||
if (CONSP (object) && STRINGP (XCONS (object)->car))
|
||
object = XCONS (object)->cdr;
|
||
/* Also remove the sublist that caches key equivalences, if any. */
|
||
if (CONSP (object)
|
||
&& CONSP (XCONS (object)->car))
|
||
{
|
||
Lisp_Object carcar;
|
||
carcar = XCONS (XCONS (object)->car)->car;
|
||
if (NILP (carcar) || VECTORP (carcar))
|
||
object = XCONS (object)->cdr;
|
||
}
|
||
}
|
||
|
||
else
|
||
/* Anything else is really the value. */
|
||
return object;
|
||
}
|
||
}
|
||
|
||
Lisp_Object
|
||
store_in_keymap (keymap, idx, def)
|
||
Lisp_Object keymap;
|
||
register Lisp_Object idx;
|
||
register Lisp_Object def;
|
||
{
|
||
/* If we are preparing to dump, and DEF is a menu element
|
||
with a menu item string, copy it to ensure it is not pure. */
|
||
if (CONSP (def) && PURE_P (def) && STRINGP (XCONS (def)->car))
|
||
def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
|
||
|
||
if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
|
||
error ("attempt to define a key in a non-keymap");
|
||
|
||
/* If idx is a list (some sort of mouse click, perhaps?),
|
||
the index we want to use is the car of the list, which
|
||
ought to be a symbol. */
|
||
idx = EVENT_HEAD (idx);
|
||
|
||
/* If idx is a symbol, it might have modifiers, which need to
|
||
be put in the canonical order. */
|
||
if (SYMBOLP (idx))
|
||
idx = reorder_modifiers (idx);
|
||
else if (INTEGERP (idx))
|
||
/* Clobber the high bits that can be present on a machine
|
||
with more than 24 bits of integer. */
|
||
XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
|
||
|
||
/* Scan the keymap for a binding of idx. */
|
||
{
|
||
Lisp_Object tail;
|
||
|
||
/* The cons after which we should insert new bindings. If the
|
||
keymap has a table element, we record its position here, so new
|
||
bindings will go after it; this way, the table will stay
|
||
towards the front of the alist and character lookups in dense
|
||
keymaps will remain fast. Otherwise, this just points at the
|
||
front of the keymap. */
|
||
Lisp_Object insertion_point;
|
||
|
||
insertion_point = keymap;
|
||
for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
Lisp_Object elt;
|
||
|
||
elt = XCONS (tail)->car;
|
||
if (VECTORP (elt))
|
||
{
|
||
if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
|
||
{
|
||
XVECTOR (elt)->contents[XFASTINT (idx)] = def;
|
||
return def;
|
||
}
|
||
insertion_point = tail;
|
||
}
|
||
else if (CHAR_TABLE_P (elt))
|
||
{
|
||
/* Character codes with modifiers
|
||
are not included in a char-table.
|
||
All character codes without modifiers are included. */
|
||
if (NATNUMP (idx)
|
||
&& ! (XFASTINT (idx)
|
||
& (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
|
||
| CHAR_SHIFT | CHAR_CTL | CHAR_META)))
|
||
{
|
||
Faset (elt, idx, def);
|
||
return def;
|
||
}
|
||
insertion_point = tail;
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
if (EQ (idx, XCONS (elt)->car))
|
||
{
|
||
XCONS (elt)->cdr = def;
|
||
return def;
|
||
}
|
||
}
|
||
else if (SYMBOLP (elt))
|
||
{
|
||
/* If we find a 'keymap' symbol in the spine of KEYMAP,
|
||
then we must have found the start of a second keymap
|
||
being used as the tail of KEYMAP, and a binding for IDX
|
||
should be inserted before it. */
|
||
if (EQ (elt, Qkeymap))
|
||
goto keymap_end;
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
|
||
keymap_end:
|
||
/* We have scanned the entire keymap, and not found a binding for
|
||
IDX. Let's add one. */
|
||
XCONS (insertion_point)->cdr
|
||
= Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
|
||
}
|
||
|
||
return def;
|
||
}
|
||
|
||
void
|
||
copy_keymap_1 (chartable, idx, elt)
|
||
Lisp_Object chartable, idx, elt;
|
||
{
|
||
if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
|
||
Faset (chartable, idx, Fcopy_keymap (elt));
|
||
}
|
||
|
||
DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
|
||
"Return a copy of the keymap KEYMAP.\n\
|
||
The copy starts out with the same definitions of KEYMAP,\n\
|
||
but changing either the copy or KEYMAP does not affect the other.\n\
|
||
Any key definitions that are subkeymaps are recursively copied.\n\
|
||
However, a key definition which is a symbol whose definition is a keymap\n\
|
||
is not copied.")
|
||
(keymap)
|
||
Lisp_Object keymap;
|
||
{
|
||
register Lisp_Object copy, tail;
|
||
|
||
copy = Fcopy_alist (get_keymap (keymap));
|
||
|
||
for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
Lisp_Object elt;
|
||
|
||
elt = XCONS (tail)->car;
|
||
if (CHAR_TABLE_P (elt))
|
||
{
|
||
Lisp_Object indices[3];
|
||
|
||
elt = Fcopy_sequence (elt);
|
||
XCONS (tail)->car = elt;
|
||
|
||
map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
|
||
}
|
||
else if (VECTORP (elt))
|
||
{
|
||
int i;
|
||
|
||
elt = Fcopy_sequence (elt);
|
||
XCONS (tail)->car = elt;
|
||
|
||
for (i = 0; i < XVECTOR (elt)->size; i++)
|
||
if (!SYMBOLP (XVECTOR (elt)->contents[i])
|
||
&& ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
|
||
XVECTOR (elt)->contents[i]
|
||
= Fcopy_keymap (XVECTOR (elt)->contents[i]);
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
/* Skip the optional menu string. */
|
||
if (CONSP (XCONS (elt)->cdr)
|
||
&& STRINGP (XCONS (XCONS (elt)->cdr)->car))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
/* Copy the cell, since copy-alist didn't go this deep. */
|
||
XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
|
||
XCONS (XCONS (elt)->cdr)->cdr);
|
||
elt = XCONS (elt)->cdr;
|
||
|
||
/* Also skip the optional menu help string. */
|
||
if (CONSP (XCONS (elt)->cdr)
|
||
&& STRINGP (XCONS (XCONS (elt)->cdr)->car))
|
||
{
|
||
XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
|
||
XCONS (XCONS (elt)->cdr)->cdr);
|
||
elt = XCONS (elt)->cdr;
|
||
}
|
||
/* There may also be a list that caches key equivalences.
|
||
Just delete it for the new keymap. */
|
||
if (CONSP (XCONS (elt)->cdr)
|
||
&& CONSP (XCONS (XCONS (elt)->cdr)->car)
|
||
&& (NILP (tem = XCONS (XCONS (XCONS (elt)->cdr)->car)->car)
|
||
|| VECTORP (tem)))
|
||
XCONS (elt)->cdr = XCONS (XCONS (elt)->cdr)->cdr;
|
||
}
|
||
if (CONSP (elt)
|
||
&& ! SYMBOLP (XCONS (elt)->cdr)
|
||
&& ! NILP (Fkeymapp (XCONS (elt)->cdr)))
|
||
XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
|
||
}
|
||
}
|
||
|
||
return copy;
|
||
}
|
||
|
||
/* Simple Keymap mutators and accessors. */
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
|
||
"Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
|
||
KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
|
||
meaning a sequence of keystrokes and events.\n\
|
||
Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
|
||
can be included if you use a vector.\n\
|
||
DEF is anything that can be a key's definition:\n\
|
||
nil (means key is undefined in this keymap),\n\
|
||
a command (a Lisp function suitable for interactive calling)\n\
|
||
a string (treated as a keyboard macro),\n\
|
||
a keymap (to define a prefix key),\n\
|
||
a symbol. When the key is looked up, the symbol will stand for its\n\
|
||
function definition, which should at that time be one of the above,\n\
|
||
or another symbol whose function definition is used, etc.\n\
|
||
a cons (STRING . DEFN), meaning that DEFN is the definition\n\
|
||
(DEFN should be a valid definition in its own right),\n\
|
||
or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
|
||
\n\
|
||
If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
|
||
the front of KEYMAP.")
|
||
(keymap, key, def)
|
||
Lisp_Object keymap;
|
||
Lisp_Object key;
|
||
Lisp_Object def;
|
||
{
|
||
register int idx;
|
||
register Lisp_Object c;
|
||
register Lisp_Object tem;
|
||
register Lisp_Object cmd;
|
||
int metized = 0;
|
||
int meta_bit;
|
||
int length;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
keymap = get_keymap_1 (keymap, 1, 1);
|
||
|
||
if (!VECTORP (key) && !STRINGP (key))
|
||
key = wrong_type_argument (Qarrayp, key);
|
||
|
||
length = XFASTINT (Flength (key));
|
||
if (length == 0)
|
||
return Qnil;
|
||
|
||
if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
|
||
Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
|
||
|
||
GCPRO3 (keymap, key, def);
|
||
|
||
if (VECTORP (key))
|
||
meta_bit = meta_modifier;
|
||
else
|
||
meta_bit = 0x80;
|
||
|
||
idx = 0;
|
||
while (1)
|
||
{
|
||
c = Faref (key, make_number (idx));
|
||
|
||
if (CONSP (c) && lucid_event_type_list_p (c))
|
||
c = Fevent_convert_list (c);
|
||
|
||
if (INTEGERP (c)
|
||
&& (XINT (c) & meta_bit)
|
||
&& !metized)
|
||
{
|
||
c = meta_prefix_char;
|
||
metized = 1;
|
||
}
|
||
else
|
||
{
|
||
if (INTEGERP (c))
|
||
XSETINT (c, XINT (c) & ~meta_bit);
|
||
|
||
metized = 0;
|
||
idx++;
|
||
}
|
||
|
||
if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
|
||
error ("Key sequence contains invalid events");
|
||
|
||
if (idx == length)
|
||
RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
|
||
|
||
cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
|
||
|
||
/* If this key is undefined, make it a prefix. */
|
||
if (NILP (cmd))
|
||
cmd = define_as_prefix (keymap, c);
|
||
|
||
keymap = get_keymap_1 (cmd, 0, 1);
|
||
if (NILP (keymap))
|
||
/* We must use Fkey_description rather than just passing key to
|
||
error; key might be a vector, not a string. */
|
||
error ("Key sequence %s uses invalid prefix characters",
|
||
XSTRING (Fkey_description (key))->data);
|
||
}
|
||
}
|
||
|
||
/* Value is number if KEY is too long; NIL if valid but has no definition. */
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
|
||
"In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
|
||
nil means undefined. See doc of `define-key' for kinds of definitions.\n\
|
||
\n\
|
||
A number as value means KEY is \"too long\";\n\
|
||
that is, characters or symbols in it except for the last one\n\
|
||
fail to be a valid sequence of prefix characters in KEYMAP.\n\
|
||
The number is how many characters at the front of KEY\n\
|
||
it takes to reach a non-prefix command.\n\
|
||
\n\
|
||
Normally, `lookup-key' ignores bindings for t, which act as default\n\
|
||
bindings, used when nothing else in the keymap applies; this makes it\n\
|
||
usable as a general function for probing keymaps. However, if the\n\
|
||
third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
|
||
recognize the default bindings, just as `read-key-sequence' does.")
|
||
(keymap, key, accept_default)
|
||
register Lisp_Object keymap;
|
||
Lisp_Object key;
|
||
Lisp_Object accept_default;
|
||
{
|
||
register int idx;
|
||
register Lisp_Object tem;
|
||
register Lisp_Object cmd;
|
||
register Lisp_Object c;
|
||
int metized = 0;
|
||
int length;
|
||
int t_ok = ! NILP (accept_default);
|
||
int meta_bit;
|
||
struct gcpro gcpro1;
|
||
|
||
keymap = get_keymap_1 (keymap, 1, 1);
|
||
|
||
if (!VECTORP (key) && !STRINGP (key))
|
||
key = wrong_type_argument (Qarrayp, key);
|
||
|
||
length = XFASTINT (Flength (key));
|
||
if (length == 0)
|
||
return keymap;
|
||
|
||
if (VECTORP (key))
|
||
meta_bit = meta_modifier;
|
||
else
|
||
meta_bit = 0x80;
|
||
|
||
GCPRO1 (key);
|
||
|
||
idx = 0;
|
||
while (1)
|
||
{
|
||
c = Faref (key, make_number (idx));
|
||
|
||
if (CONSP (c) && lucid_event_type_list_p (c))
|
||
c = Fevent_convert_list (c);
|
||
|
||
if (INTEGERP (c)
|
||
&& (XINT (c) & meta_bit)
|
||
&& !metized)
|
||
{
|
||
c = meta_prefix_char;
|
||
metized = 1;
|
||
}
|
||
else
|
||
{
|
||
if (INTEGERP (c))
|
||
XSETINT (c, XINT (c) & ~meta_bit);
|
||
|
||
metized = 0;
|
||
idx++;
|
||
}
|
||
|
||
cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
|
||
if (idx == length)
|
||
RETURN_UNGCPRO (cmd);
|
||
|
||
keymap = get_keymap_1 (cmd, 0, 1);
|
||
if (NILP (keymap))
|
||
RETURN_UNGCPRO (make_number (idx));
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Make KEYMAP define event C as a keymap (i.e., as a prefix).
|
||
Assume that currently it does not define C at all.
|
||
Return the keymap. */
|
||
|
||
static Lisp_Object
|
||
define_as_prefix (keymap, c)
|
||
Lisp_Object keymap, c;
|
||
{
|
||
Lisp_Object inherit, cmd;
|
||
|
||
cmd = Fmake_sparse_keymap (Qnil);
|
||
/* If this key is defined as a prefix in an inherited keymap,
|
||
make it a prefix in this map, and make its definition
|
||
inherit the other prefix definition. */
|
||
inherit = access_keymap (keymap, c, 0, 0);
|
||
#if 0
|
||
/* This code is needed to do the right thing in the following case:
|
||
keymap A inherits from B,
|
||
you define KEY as a prefix in A,
|
||
then later you define KEY as a prefix in B.
|
||
We want the old prefix definition in A to inherit from that in B.
|
||
It is hard to do that retroactively, so this code
|
||
creates the prefix in B right away.
|
||
|
||
But it turns out that this code causes problems immediately
|
||
when the prefix in A is defined: it causes B to define KEY
|
||
as a prefix with no subcommands.
|
||
|
||
So I took out this code. */
|
||
if (NILP (inherit))
|
||
{
|
||
/* If there's an inherited keymap
|
||
and it doesn't define this key,
|
||
make it define this key. */
|
||
Lisp_Object tail;
|
||
|
||
for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
|
||
if (EQ (XCONS (tail)->car, Qkeymap))
|
||
break;
|
||
|
||
if (!NILP (tail))
|
||
inherit = define_as_prefix (tail, c);
|
||
}
|
||
#endif
|
||
|
||
cmd = nconc2 (cmd, inherit);
|
||
store_in_keymap (keymap, c, cmd);
|
||
|
||
return cmd;
|
||
}
|
||
|
||
/* Append a key to the end of a key sequence. We always make a vector. */
|
||
|
||
Lisp_Object
|
||
append_key (key_sequence, key)
|
||
Lisp_Object key_sequence, key;
|
||
{
|
||
Lisp_Object args[2];
|
||
|
||
args[0] = key_sequence;
|
||
|
||
args[1] = Fcons (key, Qnil);
|
||
return Fvconcat (2, args);
|
||
}
|
||
|
||
|
||
/* Global, local, and minor mode keymap stuff. */
|
||
|
||
/* We can't put these variables inside current_minor_maps, since under
|
||
some systems, static gets macro-defined to be the empty string.
|
||
Ickypoo. */
|
||
static Lisp_Object *cmm_modes, *cmm_maps;
|
||
static int cmm_size;
|
||
|
||
/* Error handler used in current_minor_maps. */
|
||
static Lisp_Object
|
||
current_minor_maps_error ()
|
||
{
|
||
return Qnil;
|
||
}
|
||
|
||
/* Store a pointer to an array of the keymaps of the currently active
|
||
minor modes in *buf, and return the number of maps it contains.
|
||
|
||
This function always returns a pointer to the same buffer, and may
|
||
free or reallocate it, so if you want to keep it for a long time or
|
||
hand it out to lisp code, copy it. This procedure will be called
|
||
for every key sequence read, so the nice lispy approach (return a
|
||
new assoclist, list, what have you) for each invocation would
|
||
result in a lot of consing over time.
|
||
|
||
If we used xrealloc/xmalloc and ran out of memory, they would throw
|
||
back to the command loop, which would try to read a key sequence,
|
||
which would call this function again, resulting in an infinite
|
||
loop. Instead, we'll use realloc/malloc and silently truncate the
|
||
list, let the key sequence be read, and hope some other piece of
|
||
code signals the error. */
|
||
int
|
||
current_minor_maps (modeptr, mapptr)
|
||
Lisp_Object **modeptr, **mapptr;
|
||
{
|
||
int i = 0;
|
||
int list_number = 0;
|
||
Lisp_Object alist, assoc, var, val;
|
||
Lisp_Object lists[2];
|
||
|
||
lists[0] = Vminor_mode_overriding_map_alist;
|
||
lists[1] = Vminor_mode_map_alist;
|
||
|
||
for (list_number = 0; list_number < 2; list_number++)
|
||
for (alist = lists[list_number];
|
||
CONSP (alist);
|
||
alist = XCONS (alist)->cdr)
|
||
if ((assoc = XCONS (alist)->car, CONSP (assoc))
|
||
&& (var = XCONS (assoc)->car, SYMBOLP (var))
|
||
&& (val = find_symbol_value (var), ! EQ (val, Qunbound))
|
||
&& ! NILP (val))
|
||
{
|
||
Lisp_Object temp;
|
||
|
||
/* If a variable has an entry in Vminor_mode_overriding_map_alist,
|
||
and also an entry in Vminor_mode_map_alist,
|
||
ignore the latter. */
|
||
if (list_number == 1)
|
||
{
|
||
val = assq_no_quit (var, lists[0]);
|
||
if (!NILP (val))
|
||
break;
|
||
}
|
||
|
||
if (i >= cmm_size)
|
||
{
|
||
Lisp_Object *newmodes, *newmaps;
|
||
|
||
if (cmm_maps)
|
||
{
|
||
BLOCK_INPUT;
|
||
cmm_size *= 2;
|
||
newmodes
|
||
= (Lisp_Object *) realloc (cmm_modes,
|
||
cmm_size * sizeof (Lisp_Object));
|
||
newmaps
|
||
= (Lisp_Object *) realloc (cmm_maps,
|
||
cmm_size * sizeof (Lisp_Object));
|
||
UNBLOCK_INPUT;
|
||
}
|
||
else
|
||
{
|
||
BLOCK_INPUT;
|
||
cmm_size = 30;
|
||
newmodes
|
||
= (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
|
||
newmaps
|
||
= (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
|
||
UNBLOCK_INPUT;
|
||
}
|
||
|
||
if (newmaps && newmodes)
|
||
{
|
||
cmm_modes = newmodes;
|
||
cmm_maps = newmaps;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* Get the keymap definition--or nil if it is not defined. */
|
||
temp = internal_condition_case_1 (Findirect_function,
|
||
XCONS (assoc)->cdr,
|
||
Qerror, current_minor_maps_error);
|
||
if (!NILP (temp))
|
||
{
|
||
cmm_modes[i] = var;
|
||
cmm_maps [i] = temp;
|
||
i++;
|
||
}
|
||
}
|
||
|
||
if (modeptr) *modeptr = cmm_modes;
|
||
if (mapptr) *mapptr = cmm_maps;
|
||
return i;
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
|
||
"Return the binding for command KEY in current keymaps.\n\
|
||
KEY is a string or vector, a sequence of keystrokes.\n\
|
||
The binding is probably a symbol with a function definition.\n\
|
||
\n\
|
||
Normally, `key-binding' ignores bindings for t, which act as default\n\
|
||
bindings, used when nothing else in the keymap applies; this makes it\n\
|
||
usable as a general function for probing keymaps. However, if the\n\
|
||
optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
|
||
recognize the default bindings, just as `read-key-sequence' does.")
|
||
(key, accept_default)
|
||
Lisp_Object key, accept_default;
|
||
{
|
||
Lisp_Object *maps, value;
|
||
int nmaps, i;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (key);
|
||
|
||
if (!NILP (current_kboard->Voverriding_terminal_local_map))
|
||
{
|
||
value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
|
||
key, accept_default);
|
||
if (! NILP (value) && !INTEGERP (value))
|
||
RETURN_UNGCPRO (value);
|
||
}
|
||
else if (!NILP (Voverriding_local_map))
|
||
{
|
||
value = Flookup_key (Voverriding_local_map, key, accept_default);
|
||
if (! NILP (value) && !INTEGERP (value))
|
||
RETURN_UNGCPRO (value);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object local;
|
||
|
||
nmaps = current_minor_maps (0, &maps);
|
||
/* Note that all these maps are GCPRO'd
|
||
in the places where we found them. */
|
||
|
||
for (i = 0; i < nmaps; i++)
|
||
if (! NILP (maps[i]))
|
||
{
|
||
value = Flookup_key (maps[i], key, accept_default);
|
||
if (! NILP (value) && !INTEGERP (value))
|
||
RETURN_UNGCPRO (value);
|
||
}
|
||
|
||
local = get_local_map (PT, current_buffer);
|
||
|
||
if (! NILP (local))
|
||
{
|
||
value = Flookup_key (local, key, accept_default);
|
||
if (! NILP (value) && !INTEGERP (value))
|
||
RETURN_UNGCPRO (value);
|
||
}
|
||
}
|
||
|
||
value = Flookup_key (current_global_map, key, accept_default);
|
||
UNGCPRO;
|
||
if (! NILP (value) && !INTEGERP (value))
|
||
return value;
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
|
||
"Return the binding for command KEYS in current local keymap only.\n\
|
||
KEYS is a string, a sequence of keystrokes.\n\
|
||
The binding is probably a symbol with a function definition.\n\
|
||
\n\
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
|
||
bindings; see the description of `lookup-key' for more details about this.")
|
||
(keys, accept_default)
|
||
Lisp_Object keys, accept_default;
|
||
{
|
||
register Lisp_Object map;
|
||
map = current_buffer->keymap;
|
||
if (NILP (map))
|
||
return Qnil;
|
||
return Flookup_key (map, keys, accept_default);
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
|
||
"Return the binding for command KEYS in current global keymap only.\n\
|
||
KEYS is a string, a sequence of keystrokes.\n\
|
||
The binding is probably a symbol with a function definition.\n\
|
||
This function's return values are the same as those of lookup-key\n\
|
||
\(which see).\n\
|
||
\n\
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
|
||
bindings; see the description of `lookup-key' for more details about this.")
|
||
(keys, accept_default)
|
||
Lisp_Object keys, accept_default;
|
||
{
|
||
return Flookup_key (current_global_map, keys, accept_default);
|
||
}
|
||
|
||
/* GC is possible in this function if it autoloads a keymap. */
|
||
|
||
DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
|
||
"Find the visible minor mode bindings of KEY.\n\
|
||
Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
|
||
the symbol which names the minor mode binding KEY, and BINDING is\n\
|
||
KEY's definition in that mode. In particular, if KEY has no\n\
|
||
minor-mode bindings, return nil. If the first binding is a\n\
|
||
non-prefix, all subsequent bindings will be omitted, since they would\n\
|
||
be ignored. Similarly, the list doesn't include non-prefix bindings\n\
|
||
that come after prefix bindings.\n\
|
||
\n\
|
||
If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
|
||
bindings; see the description of `lookup-key' for more details about this.")
|
||
(key, accept_default)
|
||
Lisp_Object key, accept_default;
|
||
{
|
||
Lisp_Object *modes, *maps;
|
||
int nmaps;
|
||
Lisp_Object binding;
|
||
int i, j;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
nmaps = current_minor_maps (&modes, &maps);
|
||
/* Note that all these maps are GCPRO'd
|
||
in the places where we found them. */
|
||
|
||
binding = Qnil;
|
||
GCPRO2 (key, binding);
|
||
|
||
for (i = j = 0; i < nmaps; i++)
|
||
if (! NILP (maps[i])
|
||
&& ! NILP (binding = Flookup_key (maps[i], key, accept_default))
|
||
&& !INTEGERP (binding))
|
||
{
|
||
if (! NILP (get_keymap (binding)))
|
||
maps[j++] = Fcons (modes[i], binding);
|
||
else if (j == 0)
|
||
RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
|
||
}
|
||
|
||
UNGCPRO;
|
||
return Flist (j, maps);
|
||
}
|
||
|
||
DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
|
||
"Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
|
||
A new sparse keymap is stored as COMMAND's function definition and its value.\n\
|
||
If a second optional argument MAPVAR is given, the map is stored as\n\
|
||
its value instead of as COMMAND's value; but COMMAND is still defined\n\
|
||
as a function.")
|
||
(command, mapvar)
|
||
Lisp_Object command, mapvar;
|
||
{
|
||
Lisp_Object map;
|
||
map = Fmake_sparse_keymap (Qnil);
|
||
Ffset (command, map);
|
||
if (!NILP (mapvar))
|
||
Fset (mapvar, map);
|
||
else
|
||
Fset (command, map);
|
||
return command;
|
||
}
|
||
|
||
DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
|
||
"Select KEYMAP as the global keymap.")
|
||
(keymap)
|
||
Lisp_Object keymap;
|
||
{
|
||
keymap = get_keymap (keymap);
|
||
current_global_map = keymap;
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
|
||
"Select KEYMAP as the local keymap.\n\
|
||
If KEYMAP is nil, that means no local keymap.")
|
||
(keymap)
|
||
Lisp_Object keymap;
|
||
{
|
||
if (!NILP (keymap))
|
||
keymap = get_keymap (keymap);
|
||
|
||
current_buffer->keymap = keymap;
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
|
||
"Return current buffer's local keymap, or nil if it has none.")
|
||
()
|
||
{
|
||
return current_buffer->keymap;
|
||
}
|
||
|
||
DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
|
||
"Return the current global keymap.")
|
||
()
|
||
{
|
||
return current_global_map;
|
||
}
|
||
|
||
DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
|
||
"Return a list of keymaps for the minor modes of the current buffer.")
|
||
()
|
||
{
|
||
Lisp_Object *maps;
|
||
int nmaps = current_minor_maps (0, &maps);
|
||
|
||
return Flist (nmaps, maps);
|
||
}
|
||
|
||
/* Help functions for describing and documenting keymaps. */
|
||
|
||
static void accessible_keymaps_char_table ();
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
|
||
1, 2, 0,
|
||
"Find all keymaps accessible via prefix characters from KEYMAP.\n\
|
||
Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
|
||
KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
|
||
so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
|
||
An optional argument PREFIX, if non-nil, should be a key sequence;\n\
|
||
then the value includes only maps for prefixes that start with PREFIX.")
|
||
(keymap, prefix)
|
||
Lisp_Object keymap, prefix;
|
||
{
|
||
Lisp_Object maps, good_maps, tail;
|
||
int prefixlen = 0;
|
||
|
||
/* no need for gcpro because we don't autoload any keymaps. */
|
||
|
||
if (!NILP (prefix))
|
||
prefixlen = XINT (Flength (prefix));
|
||
|
||
if (!NILP (prefix))
|
||
{
|
||
/* If a prefix was specified, start with the keymap (if any) for
|
||
that prefix, so we don't waste time considering other prefixes. */
|
||
Lisp_Object tem;
|
||
tem = Flookup_key (keymap, prefix, Qt);
|
||
/* Flookup_key may give us nil, or a number,
|
||
if the prefix is not defined in this particular map.
|
||
It might even give us a list that isn't a keymap. */
|
||
tem = get_keymap_1 (tem, 0, 0);
|
||
if (!NILP (tem))
|
||
{
|
||
/* Convert PREFIX to a vector now, so that later on
|
||
we don't have to deal with the possibility of a string. */
|
||
if (STRINGP (prefix))
|
||
{
|
||
int i, i_byte, c;
|
||
Lisp_Object copy;
|
||
|
||
copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
|
||
for (i = 0, i_byte; i < XSTRING (prefix)->size;)
|
||
{
|
||
int i_before = i;
|
||
if (STRING_MULTIBYTE (prefix))
|
||
FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
|
||
else
|
||
c = XSTRING (prefix)->data[i++];
|
||
if (c & 0200)
|
||
c ^= 0200 | meta_modifier;
|
||
XVECTOR (copy)->contents[i_before] = make_number (c);
|
||
}
|
||
prefix = copy;
|
||
}
|
||
maps = Fcons (Fcons (prefix, tem), Qnil);
|
||
}
|
||
else
|
||
return Qnil;
|
||
}
|
||
else
|
||
maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
|
||
get_keymap (keymap)),
|
||
Qnil);
|
||
|
||
/* For each map in the list maps,
|
||
look at any other maps it points to,
|
||
and stick them at the end if they are not already in the list.
|
||
|
||
This is a breadth-first traversal, where tail is the queue of
|
||
nodes, and maps accumulates a list of all nodes visited. */
|
||
|
||
for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
register Lisp_Object thisseq, thismap;
|
||
Lisp_Object last;
|
||
/* Does the current sequence end in the meta-prefix-char? */
|
||
int is_metized;
|
||
|
||
thisseq = Fcar (Fcar (tail));
|
||
thismap = Fcdr (Fcar (tail));
|
||
last = make_number (XINT (Flength (thisseq)) - 1);
|
||
is_metized = (XINT (last) >= 0
|
||
/* Don't metize the last char of PREFIX. */
|
||
&& XINT (last) >= prefixlen
|
||
&& EQ (Faref (thisseq, last), meta_prefix_char));
|
||
|
||
for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
|
||
{
|
||
Lisp_Object elt;
|
||
|
||
elt = XCONS (thismap)->car;
|
||
|
||
QUIT;
|
||
|
||
if (CHAR_TABLE_P (elt))
|
||
{
|
||
Lisp_Object indices[3];
|
||
|
||
map_char_table (accessible_keymaps_char_table, Qnil,
|
||
elt, Fcons (maps, Fcons (tail, thisseq)),
|
||
0, indices);
|
||
}
|
||
else if (VECTORP (elt))
|
||
{
|
||
register int i;
|
||
|
||
/* Vector keymap. Scan all the elements. */
|
||
for (i = 0; i < XVECTOR (elt)->size; i++)
|
||
{
|
||
register Lisp_Object tem;
|
||
register Lisp_Object cmd;
|
||
|
||
cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
|
||
if (NILP (cmd)) continue;
|
||
tem = Fkeymapp (cmd);
|
||
if (!NILP (tem))
|
||
{
|
||
cmd = get_keymap (cmd);
|
||
/* Ignore keymaps that are already added to maps. */
|
||
tem = Frassq (cmd, maps);
|
||
if (NILP (tem))
|
||
{
|
||
/* If the last key in thisseq is meta-prefix-char,
|
||
turn it into a meta-ized keystroke. We know
|
||
that the event we're about to append is an
|
||
ascii keystroke since we're processing a
|
||
keymap table. */
|
||
if (is_metized)
|
||
{
|
||
int meta_bit = meta_modifier;
|
||
tem = Fcopy_sequence (thisseq);
|
||
|
||
Faset (tem, last, make_number (i | meta_bit));
|
||
|
||
/* This new sequence is the same length as
|
||
thisseq, so stick it in the list right
|
||
after this one. */
|
||
XCONS (tail)->cdr
|
||
= Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
|
||
}
|
||
else
|
||
{
|
||
tem = append_key (thisseq, make_number (i));
|
||
nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
register Lisp_Object cmd, tem, filter;
|
||
|
||
cmd = get_keyelt (XCONS (elt)->cdr, 0);
|
||
/* Ignore definitions that aren't keymaps themselves. */
|
||
tem = Fkeymapp (cmd);
|
||
if (!NILP (tem))
|
||
{
|
||
/* Ignore keymaps that have been seen already. */
|
||
cmd = get_keymap (cmd);
|
||
tem = Frassq (cmd, maps);
|
||
if (NILP (tem))
|
||
{
|
||
/* Let elt be the event defined by this map entry. */
|
||
elt = XCONS (elt)->car;
|
||
|
||
/* If the last key in thisseq is meta-prefix-char, and
|
||
this entry is a binding for an ascii keystroke,
|
||
turn it into a meta-ized keystroke. */
|
||
if (is_metized && INTEGERP (elt))
|
||
{
|
||
Lisp_Object element;
|
||
|
||
element = thisseq;
|
||
tem = Fvconcat (1, &element);
|
||
XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
|
||
XINT (elt) | meta_modifier);
|
||
|
||
/* This new sequence is the same length as
|
||
thisseq, so stick it in the list right
|
||
after this one. */
|
||
XCONS (tail)->cdr
|
||
= Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
|
||
}
|
||
else
|
||
nconc2 (tail,
|
||
Fcons (Fcons (append_key (thisseq, elt), cmd),
|
||
Qnil));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (NILP (prefix))
|
||
return maps;
|
||
|
||
/* Now find just the maps whose access prefixes start with PREFIX. */
|
||
|
||
good_maps = Qnil;
|
||
for (; CONSP (maps); maps = XCONS (maps)->cdr)
|
||
{
|
||
Lisp_Object elt, thisseq;
|
||
elt = XCONS (maps)->car;
|
||
thisseq = XCONS (elt)->car;
|
||
/* The access prefix must be at least as long as PREFIX,
|
||
and the first elements must match those of PREFIX. */
|
||
if (XINT (Flength (thisseq)) >= prefixlen)
|
||
{
|
||
int i;
|
||
for (i = 0; i < prefixlen; i++)
|
||
{
|
||
Lisp_Object i1;
|
||
XSETFASTINT (i1, i);
|
||
if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
|
||
break;
|
||
}
|
||
if (i == prefixlen)
|
||
good_maps = Fcons (elt, good_maps);
|
||
}
|
||
}
|
||
|
||
return Fnreverse (good_maps);
|
||
}
|
||
|
||
static void
|
||
accessible_keymaps_char_table (args, index, cmd)
|
||
Lisp_Object args, index, cmd;
|
||
{
|
||
Lisp_Object tem;
|
||
Lisp_Object maps, tail, thisseq;
|
||
|
||
if (NILP (cmd))
|
||
return;
|
||
|
||
maps = XCONS (args)->car;
|
||
tail = XCONS (XCONS (args)->cdr)->car;
|
||
thisseq = XCONS (XCONS (args)->cdr)->cdr;
|
||
|
||
tem = Fkeymapp (cmd);
|
||
if (!NILP (tem))
|
||
{
|
||
cmd = get_keymap (cmd);
|
||
/* Ignore keymaps that are already added to maps. */
|
||
tem = Frassq (cmd, maps);
|
||
if (NILP (tem))
|
||
{
|
||
tem = append_key (thisseq, index);
|
||
nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
|
||
}
|
||
}
|
||
}
|
||
|
||
Lisp_Object Qsingle_key_description, Qkey_description;
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
|
||
"Return a pretty description of key-sequence KEYS.\n\
|
||
Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
|
||
spaces are put between sequence elements, etc.")
|
||
(keys)
|
||
Lisp_Object keys;
|
||
{
|
||
int len;
|
||
int i, i_byte;
|
||
Lisp_Object sep;
|
||
Lisp_Object *args;
|
||
|
||
if (STRINGP (keys))
|
||
{
|
||
Lisp_Object vector;
|
||
vector = Fmake_vector (Flength (keys), Qnil);
|
||
for (i = 0; i < XSTRING (keys)->size; )
|
||
{
|
||
int c;
|
||
int i_before = i;
|
||
|
||
if (STRING_MULTIBYTE (keys))
|
||
FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
|
||
else
|
||
c = XSTRING (keys)->data[i++];
|
||
|
||
if (c & 0x80)
|
||
XSETFASTINT (XVECTOR (vector)->contents[i_before],
|
||
meta_modifier | (c & ~0x80));
|
||
else
|
||
XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
|
||
}
|
||
keys = vector;
|
||
}
|
||
else if (!VECTORP (keys))
|
||
keys = wrong_type_argument (Qarrayp, keys);
|
||
|
||
/* In effect, this computes
|
||
(mapconcat 'single-key-description keys " ")
|
||
but we shouldn't use mapconcat because it can do GC. */
|
||
|
||
len = XVECTOR (keys)->size;
|
||
sep = build_string (" ");
|
||
/* This has one extra element at the end that we don't pass to Fconcat. */
|
||
args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
|
||
args[i * 2 + 1] = sep;
|
||
}
|
||
|
||
return Fconcat (len * 2 - 1, args);
|
||
}
|
||
|
||
char *
|
||
push_key_description (c, p)
|
||
register unsigned int c;
|
||
register char *p;
|
||
{
|
||
/* Clear all the meaningless bits above the meta bit. */
|
||
c &= meta_modifier | ~ - meta_modifier;
|
||
|
||
if (c & alt_modifier)
|
||
{
|
||
*p++ = 'A';
|
||
*p++ = '-';
|
||
c -= alt_modifier;
|
||
}
|
||
if (c & ctrl_modifier)
|
||
{
|
||
*p++ = 'C';
|
||
*p++ = '-';
|
||
c -= ctrl_modifier;
|
||
}
|
||
if (c & hyper_modifier)
|
||
{
|
||
*p++ = 'H';
|
||
*p++ = '-';
|
||
c -= hyper_modifier;
|
||
}
|
||
if (c & meta_modifier)
|
||
{
|
||
*p++ = 'M';
|
||
*p++ = '-';
|
||
c -= meta_modifier;
|
||
}
|
||
if (c & shift_modifier)
|
||
{
|
||
*p++ = 'S';
|
||
*p++ = '-';
|
||
c -= shift_modifier;
|
||
}
|
||
if (c & super_modifier)
|
||
{
|
||
*p++ = 's';
|
||
*p++ = '-';
|
||
c -= super_modifier;
|
||
}
|
||
if (c < 040)
|
||
{
|
||
if (c == 033)
|
||
{
|
||
*p++ = 'E';
|
||
*p++ = 'S';
|
||
*p++ = 'C';
|
||
}
|
||
else if (c == '\t')
|
||
{
|
||
*p++ = 'T';
|
||
*p++ = 'A';
|
||
*p++ = 'B';
|
||
}
|
||
else if (c == Ctl ('M'))
|
||
{
|
||
*p++ = 'R';
|
||
*p++ = 'E';
|
||
*p++ = 'T';
|
||
}
|
||
else
|
||
{
|
||
*p++ = 'C';
|
||
*p++ = '-';
|
||
if (c > 0 && c <= Ctl ('Z'))
|
||
*p++ = c + 0140;
|
||
else
|
||
*p++ = c + 0100;
|
||
}
|
||
}
|
||
else if (c == 0177)
|
||
{
|
||
*p++ = 'D';
|
||
*p++ = 'E';
|
||
*p++ = 'L';
|
||
}
|
||
else if (c == ' ')
|
||
{
|
||
*p++ = 'S';
|
||
*p++ = 'P';
|
||
*p++ = 'C';
|
||
}
|
||
else if (c < 128)
|
||
*p++ = c;
|
||
else if (c < 512)
|
||
{
|
||
*p++ = '\\';
|
||
*p++ = (7 & (c >> 6)) + '0';
|
||
*p++ = (7 & (c >> 3)) + '0';
|
||
*p++ = (7 & (c >> 0)) + '0';
|
||
}
|
||
else
|
||
{
|
||
*p++ = '\\';
|
||
*p++ = (7 & (c >> 15)) + '0';
|
||
*p++ = (7 & (c >> 12)) + '0';
|
||
*p++ = (7 & (c >> 9)) + '0';
|
||
*p++ = (7 & (c >> 6)) + '0';
|
||
*p++ = (7 & (c >> 3)) + '0';
|
||
*p++ = (7 & (c >> 0)) + '0';
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
|
||
"Return a pretty description of command character KEY.\n\
|
||
Control characters turn into C-whatever, etc.")
|
||
(key)
|
||
Lisp_Object key;
|
||
{
|
||
char tem[20];
|
||
|
||
key = EVENT_HEAD (key);
|
||
|
||
if (INTEGERP (key)) /* Normal character */
|
||
{
|
||
*push_key_description (XUINT (key), tem) = 0;
|
||
return build_string (tem);
|
||
}
|
||
else if (SYMBOLP (key)) /* Function key or event-symbol */
|
||
return Fsymbol_name (key);
|
||
else if (STRINGP (key)) /* Buffer names in the menubar. */
|
||
return Fcopy_sequence (key);
|
||
else
|
||
error ("KEY must be an integer, cons, symbol, or string");
|
||
}
|
||
|
||
char *
|
||
push_text_char_description (c, p)
|
||
register unsigned int c;
|
||
register char *p;
|
||
{
|
||
if (c >= 0200)
|
||
{
|
||
*p++ = 'M';
|
||
*p++ = '-';
|
||
c -= 0200;
|
||
}
|
||
if (c < 040)
|
||
{
|
||
*p++ = '^';
|
||
*p++ = c + 64; /* 'A' - 1 */
|
||
}
|
||
else if (c == 0177)
|
||
{
|
||
*p++ = '^';
|
||
*p++ = '?';
|
||
}
|
||
else
|
||
*p++ = c;
|
||
return p;
|
||
}
|
||
|
||
/* This function cannot GC. */
|
||
|
||
DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
|
||
"Return a pretty description of file-character CHARACTER.\n\
|
||
Control characters turn into \"^char\", etc.")
|
||
(character)
|
||
Lisp_Object character;
|
||
{
|
||
char tem[6];
|
||
|
||
CHECK_NUMBER (character, 0);
|
||
|
||
if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
|
||
{
|
||
unsigned char *str;
|
||
int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
|
||
|
||
return make_multibyte_string (str, 1, len);
|
||
}
|
||
|
||
*push_text_char_description (XINT (character) & 0377, tem) = 0;
|
||
|
||
return build_string (tem);
|
||
}
|
||
|
||
/* Return non-zero if SEQ contains only ASCII characters, perhaps with
|
||
a meta bit. */
|
||
static int
|
||
ascii_sequence_p (seq)
|
||
Lisp_Object seq;
|
||
{
|
||
int i;
|
||
int len = XINT (Flength (seq));
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
Lisp_Object ii, elt;
|
||
|
||
XSETFASTINT (ii, i);
|
||
elt = Faref (seq, ii);
|
||
|
||
if (!INTEGERP (elt)
|
||
|| (XUINT (elt) & ~CHAR_META) >= 0x80)
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* where-is - finding a command in a set of keymaps. */
|
||
|
||
static Lisp_Object where_is_internal_1 ();
|
||
static void where_is_internal_2 ();
|
||
|
||
/* This function can GC if Flookup_key autoloads any keymaps. */
|
||
|
||
DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
|
||
"Return list of keys that invoke DEFINITION.\n\
|
||
If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
|
||
If KEYMAP is nil, search all the currently active keymaps.\n\
|
||
\n\
|
||
If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
|
||
rather than a list of all possible key sequences.\n\
|
||
If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
|
||
no matter what it is.\n\
|
||
If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
|
||
and entirely reject menu bindings.\n\
|
||
\n\
|
||
If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
|
||
to other keymaps or slots. This makes it possible to search for an\n\
|
||
indirect definition itself.")
|
||
(definition, keymap, firstonly, noindirect)
|
||
Lisp_Object definition, keymap;
|
||
Lisp_Object firstonly, noindirect;
|
||
{
|
||
Lisp_Object maps;
|
||
Lisp_Object found, sequences;
|
||
Lisp_Object keymap1;
|
||
int keymap_specified = !NILP (keymap);
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
|
||
/* 1 means ignore all menu bindings entirely. */
|
||
int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
|
||
|
||
/* Find keymaps accessible from `keymap' or the current
|
||
context. But don't muck with the value of `keymap',
|
||
because `where_is_internal_1' uses it to check for
|
||
shadowed bindings. */
|
||
keymap1 = keymap;
|
||
if (! keymap_specified)
|
||
{
|
||
#ifdef USE_TEXT_PROPERTIES
|
||
keymap1 = get_local_map (PT, current_buffer);
|
||
#else
|
||
keymap1 = current_buffer->keymap;
|
||
#endif
|
||
}
|
||
|
||
if (!NILP (keymap1))
|
||
maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
|
||
Faccessible_keymaps (get_keymap (current_global_map),
|
||
Qnil));
|
||
else
|
||
maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
|
||
|
||
/* Put the minor mode keymaps on the front. */
|
||
if (! keymap_specified)
|
||
{
|
||
Lisp_Object minors;
|
||
minors = Fnreverse (Fcurrent_minor_mode_maps ());
|
||
while (!NILP (minors))
|
||
{
|
||
maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
|
||
Qnil),
|
||
maps);
|
||
minors = XCONS (minors)->cdr;
|
||
}
|
||
}
|
||
|
||
GCPRO5 (definition, keymap, maps, found, sequences);
|
||
found = Qnil;
|
||
sequences = Qnil;
|
||
|
||
for (; !NILP (maps); maps = Fcdr (maps))
|
||
{
|
||
/* Key sequence to reach map, and the map that it reaches */
|
||
register Lisp_Object this, map;
|
||
|
||
/* In order to fold [META-PREFIX-CHAR CHAR] sequences into
|
||
[M-CHAR] sequences, check if last character of the sequence
|
||
is the meta-prefix char. */
|
||
Lisp_Object last;
|
||
int last_is_meta;
|
||
|
||
this = Fcar (Fcar (maps));
|
||
map = Fcdr (Fcar (maps));
|
||
last = make_number (XINT (Flength (this)) - 1);
|
||
last_is_meta = (XINT (last) >= 0
|
||
&& EQ (Faref (this, last), meta_prefix_char));
|
||
|
||
QUIT;
|
||
|
||
while (CONSP (map))
|
||
{
|
||
/* Because the code we want to run on each binding is rather
|
||
large, we don't want to have two separate loop bodies for
|
||
sparse keymap bindings and tables; we want to iterate one
|
||
loop body over both keymap and vector bindings.
|
||
|
||
For this reason, if Fcar (map) is a vector, we don't
|
||
advance map to the next element until i indicates that we
|
||
have finished off the vector. */
|
||
Lisp_Object elt, key, binding;
|
||
elt = XCONS (map)->car;
|
||
map = XCONS (map)->cdr;
|
||
|
||
sequences = Qnil;
|
||
|
||
QUIT;
|
||
|
||
/* Set key and binding to the current key and binding, and
|
||
advance map and i to the next binding. */
|
||
if (VECTORP (elt))
|
||
{
|
||
Lisp_Object sequence;
|
||
int i;
|
||
/* In a vector, look at each element. */
|
||
for (i = 0; i < XVECTOR (elt)->size; i++)
|
||
{
|
||
binding = XVECTOR (elt)->contents[i];
|
||
XSETFASTINT (key, i);
|
||
sequence = where_is_internal_1 (binding, key, definition,
|
||
noindirect, keymap, this,
|
||
last, nomenus, last_is_meta);
|
||
if (!NILP (sequence))
|
||
sequences = Fcons (sequence, sequences);
|
||
}
|
||
}
|
||
else if (CHAR_TABLE_P (elt))
|
||
{
|
||
Lisp_Object indices[3];
|
||
Lisp_Object args;
|
||
|
||
args = Fcons (Fcons (Fcons (definition, noindirect),
|
||
Fcons (keymap, Qnil)),
|
||
Fcons (Fcons (this, last),
|
||
Fcons (make_number (nomenus),
|
||
make_number (last_is_meta))));
|
||
|
||
map_char_table (where_is_internal_2, Qnil, elt, args,
|
||
0, indices);
|
||
sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
|
||
}
|
||
else if (CONSP (elt))
|
||
{
|
||
Lisp_Object sequence;
|
||
|
||
key = XCONS (elt)->car;
|
||
binding = XCONS (elt)->cdr;
|
||
|
||
sequence = where_is_internal_1 (binding, key, definition,
|
||
noindirect, keymap, this,
|
||
last, nomenus, last_is_meta);
|
||
if (!NILP (sequence))
|
||
sequences = Fcons (sequence, sequences);
|
||
}
|
||
|
||
|
||
for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
|
||
{
|
||
Lisp_Object sequence;
|
||
|
||
sequence = XCONS (sequences)->car;
|
||
|
||
/* It is a true unshadowed match. Record it, unless it's already
|
||
been seen (as could happen when inheriting keymaps). */
|
||
if (NILP (Fmember (sequence, found)))
|
||
found = Fcons (sequence, found);
|
||
|
||
/* If firstonly is Qnon_ascii, then we can return the first
|
||
binding we find. If firstonly is not Qnon_ascii but not
|
||
nil, then we should return the first ascii-only binding
|
||
we find. */
|
||
if (EQ (firstonly, Qnon_ascii))
|
||
RETURN_UNGCPRO (sequence);
|
||
else if (! NILP (firstonly) && ascii_sequence_p (sequence))
|
||
RETURN_UNGCPRO (sequence);
|
||
}
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
|
||
found = Fnreverse (found);
|
||
|
||
/* firstonly may have been t, but we may have gone all the way through
|
||
the keymaps without finding an all-ASCII key sequence. So just
|
||
return the best we could find. */
|
||
if (! NILP (firstonly))
|
||
return Fcar (found);
|
||
|
||
return found;
|
||
}
|
||
|
||
/* This is the function that Fwhere_is_internal calls using map_char_table.
|
||
ARGS has the form
|
||
(((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
|
||
.
|
||
((THIS . LAST) . (NOMENUS . LAST_IS_META)))
|
||
Since map_char_table doesn't really use the return value from this function,
|
||
we the result append to RESULT, the slot in ARGS. */
|
||
|
||
static void
|
||
where_is_internal_2 (args, key, binding)
|
||
Lisp_Object args, key, binding;
|
||
{
|
||
Lisp_Object definition, noindirect, keymap, this, last;
|
||
Lisp_Object result, sequence;
|
||
int nomenus, last_is_meta;
|
||
|
||
result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
|
||
definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
|
||
noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
|
||
keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
|
||
this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
|
||
last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
|
||
nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
|
||
last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
|
||
|
||
sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
|
||
this, last, nomenus, last_is_meta);
|
||
|
||
if (!NILP (sequence))
|
||
XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
|
||
= Fcons (sequence, result);
|
||
}
|
||
|
||
static Lisp_Object
|
||
where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
|
||
nomenus, last_is_meta)
|
||
Lisp_Object binding, key, definition, noindirect, keymap, this, last;
|
||
int nomenus, last_is_meta;
|
||
{
|
||
Lisp_Object sequence;
|
||
int keymap_specified = !NILP (keymap);
|
||
|
||
/* Search through indirections unless that's not wanted. */
|
||
if (NILP (noindirect))
|
||
{
|
||
if (nomenus)
|
||
{
|
||
while (1)
|
||
{
|
||
Lisp_Object map, tem;
|
||
/* If the contents are (KEYMAP . ELEMENT), go indirect. */
|
||
map = get_keymap_1 (Fcar_safe (definition), 0, 0);
|
||
tem = Fkeymapp (map);
|
||
if (!NILP (tem))
|
||
definition = access_keymap (map, Fcdr (definition), 0, 0);
|
||
else
|
||
break;
|
||
}
|
||
/* If the contents are (STRING ...), reject. */
|
||
if (CONSP (definition)
|
||
&& STRINGP (XCONS (definition)->car))
|
||
return Qnil;
|
||
}
|
||
else
|
||
binding = get_keyelt (binding, 0);
|
||
}
|
||
|
||
/* End this iteration if this element does not match
|
||
the target. */
|
||
|
||
if (CONSP (definition))
|
||
{
|
||
Lisp_Object tem;
|
||
tem = Fequal (binding, definition);
|
||
if (NILP (tem))
|
||
return Qnil;
|
||
}
|
||
else
|
||
if (!EQ (binding, definition))
|
||
return Qnil;
|
||
|
||
/* We have found a match.
|
||
Construct the key sequence where we found it. */
|
||
if (INTEGERP (key) && last_is_meta)
|
||
{
|
||
sequence = Fcopy_sequence (this);
|
||
Faset (sequence, last, make_number (XINT (key) | meta_modifier));
|
||
}
|
||
else
|
||
sequence = append_key (this, key);
|
||
|
||
/* Verify that this key binding is not shadowed by another
|
||
binding for the same key, before we say it exists.
|
||
|
||
Mechanism: look for local definition of this key and if
|
||
it is defined and does not match what we found then
|
||
ignore this key.
|
||
|
||
Either nil or number as value from Flookup_key
|
||
means undefined. */
|
||
if (keymap_specified)
|
||
{
|
||
binding = Flookup_key (keymap, sequence, Qnil);
|
||
if (!NILP (binding) && !INTEGERP (binding))
|
||
{
|
||
if (CONSP (definition))
|
||
{
|
||
Lisp_Object tem;
|
||
tem = Fequal (binding, definition);
|
||
if (NILP (tem))
|
||
return Qnil;
|
||
}
|
||
else
|
||
if (!EQ (binding, definition))
|
||
return Qnil;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
binding = Fkey_binding (sequence, Qnil);
|
||
if (!EQ (binding, definition))
|
||
return Qnil;
|
||
}
|
||
|
||
return sequence;
|
||
}
|
||
|
||
/* describe-bindings - summarizing all the bindings in a set of keymaps. */
|
||
|
||
DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 1, "",
|
||
"Show a list of all defined keys, and their definitions.\n\
|
||
The list is put in a buffer, which is displayed.\n\
|
||
An optional argument PREFIX, if non-nil, should be a key sequence;\n\
|
||
then we display only bindings that start with that prefix.")
|
||
(prefix)
|
||
Lisp_Object prefix;
|
||
{
|
||
register Lisp_Object thisbuf;
|
||
XSETBUFFER (thisbuf, current_buffer);
|
||
internal_with_output_to_temp_buffer ("*Help*",
|
||
describe_buffer_bindings,
|
||
Fcons (thisbuf, prefix));
|
||
return Qnil;
|
||
}
|
||
|
||
/* ARG is (BUFFER . PREFIX). */
|
||
|
||
static Lisp_Object
|
||
describe_buffer_bindings (arg)
|
||
Lisp_Object arg;
|
||
{
|
||
Lisp_Object descbuf, prefix, shadow;
|
||
register Lisp_Object start1;
|
||
struct gcpro gcpro1;
|
||
|
||
char *alternate_heading
|
||
= "\
|
||
Alternate Characters (use anywhere the nominal character is listed):\n\
|
||
nominal alternate\n\
|
||
------- ---------\n";
|
||
|
||
descbuf = XCONS (arg)->car;
|
||
prefix = XCONS (arg)->cdr;
|
||
shadow = Qnil;
|
||
GCPRO1 (shadow);
|
||
|
||
Fset_buffer (Vstandard_output);
|
||
|
||
/* Report on alternates for keys. */
|
||
if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
|
||
{
|
||
int c;
|
||
unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
|
||
int translate_len = XSTRING (Vkeyboard_translate_table)->size;
|
||
|
||
for (c = 0; c < translate_len; c++)
|
||
if (translate[c] != c)
|
||
{
|
||
char buf[20];
|
||
char *bufend;
|
||
|
||
if (alternate_heading)
|
||
{
|
||
insert_string (alternate_heading);
|
||
alternate_heading = 0;
|
||
}
|
||
|
||
bufend = push_key_description (translate[c], buf);
|
||
insert (buf, bufend - buf);
|
||
Findent_to (make_number (16), make_number (1));
|
||
bufend = push_key_description (c, buf);
|
||
insert (buf, bufend - buf);
|
||
|
||
insert ("\n", 1);
|
||
}
|
||
|
||
insert ("\n", 1);
|
||
}
|
||
|
||
if (!NILP (Vkey_translation_map))
|
||
describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
|
||
"Key translations", 0, 1, 0);
|
||
|
||
{
|
||
int i, nmaps;
|
||
Lisp_Object *modes, *maps;
|
||
|
||
/* Temporarily switch to descbuf, so that we can get that buffer's
|
||
minor modes correctly. */
|
||
Fset_buffer (descbuf);
|
||
|
||
if (!NILP (current_kboard->Voverriding_terminal_local_map)
|
||
|| !NILP (Voverriding_local_map))
|
||
nmaps = 0;
|
||
else
|
||
nmaps = current_minor_maps (&modes, &maps);
|
||
Fset_buffer (Vstandard_output);
|
||
|
||
/* Print the minor mode maps. */
|
||
for (i = 0; i < nmaps; i++)
|
||
{
|
||
/* The title for a minor mode keymap
|
||
is constructed at run time.
|
||
We let describe_map_tree do the actual insertion
|
||
because it takes care of other features when doing so. */
|
||
char *title, *p;
|
||
|
||
if (!SYMBOLP (modes[i]))
|
||
abort();
|
||
|
||
p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
|
||
*p++ = '`';
|
||
bcopy (XSYMBOL (modes[i])->name->data, p,
|
||
XSYMBOL (modes[i])->name->size);
|
||
p += XSYMBOL (modes[i])->name->size;
|
||
*p++ = '\'';
|
||
bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
|
||
p += sizeof (" Minor Mode Bindings") - 1;
|
||
*p = 0;
|
||
|
||
describe_map_tree (maps[i], 1, shadow, prefix, title, 0, 0, 0);
|
||
shadow = Fcons (maps[i], shadow);
|
||
}
|
||
}
|
||
|
||
/* Print the (major mode) local map. */
|
||
if (!NILP (current_kboard->Voverriding_terminal_local_map))
|
||
start1 = current_kboard->Voverriding_terminal_local_map;
|
||
else if (!NILP (Voverriding_local_map))
|
||
start1 = Voverriding_local_map;
|
||
else
|
||
start1 = XBUFFER (descbuf)->keymap;
|
||
|
||
if (!NILP (start1))
|
||
{
|
||
describe_map_tree (start1, 1, shadow, prefix,
|
||
"Major Mode Bindings", 0, 0, 0);
|
||
shadow = Fcons (start1, shadow);
|
||
}
|
||
|
||
describe_map_tree (current_global_map, 1, shadow, prefix,
|
||
"Global Bindings", 0, 0, 1);
|
||
|
||
/* Print the function-key-map translations under this prefix. */
|
||
if (!NILP (Vfunction_key_map))
|
||
describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
|
||
"Function key map translations", 0, 1, 0);
|
||
|
||
call0 (intern ("help-mode"));
|
||
Fset_buffer (descbuf);
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
/* Insert a description of the key bindings in STARTMAP,
|
||
followed by those of all maps reachable through STARTMAP.
|
||
If PARTIAL is nonzero, omit certain "uninteresting" commands
|
||
(such as `undefined').
|
||
If SHADOW is non-nil, it is a list of maps;
|
||
don't mention keys which would be shadowed by any of them.
|
||
PREFIX, if non-nil, says mention only keys that start with PREFIX.
|
||
TITLE, if not 0, is a string to insert at the beginning.
|
||
TITLE should not end with a colon or a newline; we supply that.
|
||
If NOMENU is not 0, then omit menu-bar commands.
|
||
|
||
If TRANSL is nonzero, the definitions are actually key translations
|
||
so print strings and vectors differently.
|
||
|
||
If ALWAYS_TITLE is nonzero, print the title even if there are no maps
|
||
to look through. */
|
||
|
||
void
|
||
describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
|
||
always_title)
|
||
Lisp_Object startmap, shadow, prefix;
|
||
int partial;
|
||
char *title;
|
||
int nomenu;
|
||
int transl;
|
||
int always_title;
|
||
{
|
||
Lisp_Object maps, seen, sub_shadows;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
int something = 0;
|
||
char *key_heading
|
||
= "\
|
||
key binding\n\
|
||
--- -------\n";
|
||
|
||
maps = Faccessible_keymaps (startmap, prefix);
|
||
seen = Qnil;
|
||
sub_shadows = Qnil;
|
||
GCPRO3 (maps, seen, sub_shadows);
|
||
|
||
if (nomenu)
|
||
{
|
||
Lisp_Object list;
|
||
|
||
/* Delete from MAPS each element that is for the menu bar. */
|
||
for (list = maps; !NILP (list); list = XCONS (list)->cdr)
|
||
{
|
||
Lisp_Object elt, prefix, tem;
|
||
|
||
elt = Fcar (list);
|
||
prefix = Fcar (elt);
|
||
if (XVECTOR (prefix)->size >= 1)
|
||
{
|
||
tem = Faref (prefix, make_number (0));
|
||
if (EQ (tem, Qmenu_bar))
|
||
maps = Fdelq (elt, maps);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!NILP (maps) || always_title)
|
||
{
|
||
if (title)
|
||
{
|
||
insert_string (title);
|
||
if (!NILP (prefix))
|
||
{
|
||
insert_string (" Starting With ");
|
||
insert1 (Fkey_description (prefix));
|
||
}
|
||
insert_string (":\n");
|
||
}
|
||
insert_string (key_heading);
|
||
something = 1;
|
||
}
|
||
|
||
for (; !NILP (maps); maps = Fcdr (maps))
|
||
{
|
||
register Lisp_Object elt, prefix, tail;
|
||
|
||
elt = Fcar (maps);
|
||
prefix = Fcar (elt);
|
||
|
||
sub_shadows = Qnil;
|
||
|
||
for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
Lisp_Object shmap;
|
||
|
||
shmap = XCONS (tail)->car;
|
||
|
||
/* If the sequence by which we reach this keymap is zero-length,
|
||
then the shadow map for this keymap is just SHADOW. */
|
||
if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
|
||
|| (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
|
||
;
|
||
/* If the sequence by which we reach this keymap actually has
|
||
some elements, then the sequence's definition in SHADOW is
|
||
what we should use. */
|
||
else
|
||
{
|
||
shmap = Flookup_key (shmap, Fcar (elt), Qt);
|
||
if (INTEGERP (shmap))
|
||
shmap = Qnil;
|
||
}
|
||
|
||
/* If shmap is not nil and not a keymap,
|
||
it completely shadows this map, so don't
|
||
describe this map at all. */
|
||
if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
|
||
goto skip;
|
||
|
||
if (!NILP (shmap))
|
||
sub_shadows = Fcons (shmap, sub_shadows);
|
||
}
|
||
|
||
describe_map (Fcdr (elt), Fcar (elt),
|
||
transl ? describe_translation : describe_command,
|
||
partial, sub_shadows, &seen, nomenu);
|
||
|
||
skip: ;
|
||
}
|
||
|
||
if (something)
|
||
insert_string ("\n");
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
static int previous_description_column;
|
||
|
||
static void
|
||
describe_command (definition)
|
||
Lisp_Object definition;
|
||
{
|
||
register Lisp_Object tem1;
|
||
int column = current_column ();
|
||
int description_column;
|
||
|
||
/* If column 16 is no good, go to col 32;
|
||
but don't push beyond that--go to next line instead. */
|
||
if (column > 30)
|
||
{
|
||
insert_char ('\n');
|
||
description_column = 32;
|
||
}
|
||
else if (column > 14 || (column > 10 && previous_description_column == 32))
|
||
description_column = 32;
|
||
else
|
||
description_column = 16;
|
||
|
||
Findent_to (make_number (description_column), make_number (1));
|
||
previous_description_column = description_column;
|
||
|
||
if (SYMBOLP (definition))
|
||
{
|
||
XSETSTRING (tem1, XSYMBOL (definition)->name);
|
||
insert1 (tem1);
|
||
insert_string ("\n");
|
||
}
|
||
else if (STRINGP (definition) || VECTORP (definition))
|
||
insert_string ("Keyboard Macro\n");
|
||
else
|
||
{
|
||
tem1 = Fkeymapp (definition);
|
||
if (!NILP (tem1))
|
||
insert_string ("Prefix Command\n");
|
||
else
|
||
insert_string ("??\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
describe_translation (definition)
|
||
Lisp_Object definition;
|
||
{
|
||
register Lisp_Object tem1;
|
||
|
||
Findent_to (make_number (16), make_number (1));
|
||
|
||
if (SYMBOLP (definition))
|
||
{
|
||
XSETSTRING (tem1, XSYMBOL (definition)->name);
|
||
insert1 (tem1);
|
||
insert_string ("\n");
|
||
}
|
||
else if (STRINGP (definition) || VECTORP (definition))
|
||
{
|
||
insert1 (Fkey_description (definition));
|
||
insert_string ("\n");
|
||
}
|
||
else
|
||
{
|
||
tem1 = Fkeymapp (definition);
|
||
if (!NILP (tem1))
|
||
insert_string ("Prefix Command\n");
|
||
else
|
||
insert_string ("??\n");
|
||
}
|
||
}
|
||
|
||
/* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
|
||
Returns the first non-nil binding found in any of those maps. */
|
||
|
||
static Lisp_Object
|
||
shadow_lookup (shadow, key, flag)
|
||
Lisp_Object shadow, key, flag;
|
||
{
|
||
Lisp_Object tail, value;
|
||
|
||
for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
value = Flookup_key (XCONS (tail)->car, key, flag);
|
||
if (!NILP (value))
|
||
return value;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
/* Describe the contents of map MAP, assuming that this map itself is
|
||
reached by the sequence of prefix keys KEYS (a string or vector).
|
||
PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
|
||
|
||
static void
|
||
describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
|
||
register Lisp_Object map;
|
||
Lisp_Object keys;
|
||
void (*elt_describer) P_ ((Lisp_Object));
|
||
int partial;
|
||
Lisp_Object shadow;
|
||
Lisp_Object *seen;
|
||
int nomenu;
|
||
{
|
||
Lisp_Object elt_prefix;
|
||
Lisp_Object tail, definition, event;
|
||
Lisp_Object tem;
|
||
Lisp_Object suppress;
|
||
Lisp_Object kludge;
|
||
int first = 1;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
|
||
{
|
||
/* Call Fkey_description first, to avoid GC bug for the other string. */
|
||
tem = Fkey_description (keys);
|
||
elt_prefix = concat2 (tem, build_string (" "));
|
||
}
|
||
else
|
||
elt_prefix = Qnil;
|
||
|
||
if (partial)
|
||
suppress = intern ("suppress-keymap");
|
||
|
||
/* This vector gets used to present single keys to Flookup_key. Since
|
||
that is done once per keymap element, we don't want to cons up a
|
||
fresh vector every time. */
|
||
kludge = Fmake_vector (make_number (1), Qnil);
|
||
definition = Qnil;
|
||
|
||
GCPRO3 (elt_prefix, definition, kludge);
|
||
|
||
for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
QUIT;
|
||
|
||
if (VECTORP (XCONS (tail)->car)
|
||
|| CHAR_TABLE_P (XCONS (tail)->car))
|
||
describe_vector (XCONS (tail)->car,
|
||
elt_prefix, elt_describer, partial, shadow, map,
|
||
(int *)0, 0);
|
||
else if (CONSP (XCONS (tail)->car))
|
||
{
|
||
event = XCONS (XCONS (tail)->car)->car;
|
||
|
||
/* Ignore bindings whose "keys" are not really valid events.
|
||
(We get these in the frames and buffers menu.) */
|
||
if (! (SYMBOLP (event) || INTEGERP (event)))
|
||
continue;
|
||
|
||
if (nomenu && EQ (event, Qmenu_bar))
|
||
continue;
|
||
|
||
definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
|
||
|
||
/* Don't show undefined commands or suppressed commands. */
|
||
if (NILP (definition)) continue;
|
||
if (SYMBOLP (definition) && partial)
|
||
{
|
||
tem = Fget (definition, suppress);
|
||
if (!NILP (tem))
|
||
continue;
|
||
}
|
||
|
||
/* Don't show a command that isn't really visible
|
||
because a local definition of the same key shadows it. */
|
||
|
||
XVECTOR (kludge)->contents[0] = event;
|
||
if (!NILP (shadow))
|
||
{
|
||
tem = shadow_lookup (shadow, kludge, Qt);
|
||
if (!NILP (tem)) continue;
|
||
}
|
||
|
||
tem = Flookup_key (map, kludge, Qt);
|
||
if (! EQ (tem, definition)) continue;
|
||
|
||
if (first)
|
||
{
|
||
previous_description_column = 0;
|
||
insert ("\n", 1);
|
||
first = 0;
|
||
}
|
||
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
|
||
/* THIS gets the string to describe the character EVENT. */
|
||
insert1 (Fsingle_key_description (event));
|
||
|
||
/* Print a description of the definition of this character.
|
||
elt_describer will take care of spacing out far enough
|
||
for alignment purposes. */
|
||
(*elt_describer) (definition);
|
||
}
|
||
else if (EQ (XCONS (tail)->car, Qkeymap))
|
||
{
|
||
/* The same keymap might be in the structure twice, if we're
|
||
using an inherited keymap. So skip anything we've already
|
||
encountered. */
|
||
tem = Fassq (tail, *seen);
|
||
if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
|
||
break;
|
||
*seen = Fcons (Fcons (tail, keys), *seen);
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
static void
|
||
describe_vector_princ (elt)
|
||
Lisp_Object elt;
|
||
{
|
||
Findent_to (make_number (16), make_number (1));
|
||
Fprinc (elt, Qnil);
|
||
Fterpri (Qnil);
|
||
}
|
||
|
||
DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
|
||
"Insert a description of contents of VECTOR.\n\
|
||
This is text showing the elements of vector matched against indices.")
|
||
(vector)
|
||
Lisp_Object vector;
|
||
{
|
||
int count = specpdl_ptr - specpdl;
|
||
|
||
specbind (Qstandard_output, Fcurrent_buffer ());
|
||
CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
|
||
describe_vector (vector, Qnil, describe_vector_princ, 0,
|
||
Qnil, Qnil, (int *)0, 0);
|
||
|
||
return unbind_to (count, Qnil);
|
||
}
|
||
|
||
/* Insert in the current buffer a description of the contents of VECTOR.
|
||
We call ELT_DESCRIBER to insert the description of one value found
|
||
in VECTOR.
|
||
|
||
ELT_PREFIX describes what "comes before" the keys or indices defined
|
||
by this vector. This is a human-readable string whose size
|
||
is not necessarily related to the situation.
|
||
|
||
If the vector is in a keymap, ELT_PREFIX is a prefix key which
|
||
leads to this keymap.
|
||
|
||
If the vector is a chartable, ELT_PREFIX is the vector
|
||
of bytes that lead to the character set or portion of a character
|
||
set described by this chartable.
|
||
|
||
If PARTIAL is nonzero, it means do not mention suppressed commands
|
||
(that assumes the vector is in a keymap).
|
||
|
||
SHADOW is a list of keymaps that shadow this map.
|
||
If it is non-nil, then we look up the key in those maps
|
||
and we don't mention it now if it is defined by any of them.
|
||
|
||
ENTIRE_MAP is the keymap in which this vector appears.
|
||
If the definition in effect in the whole map does not match
|
||
the one in this vector, we ignore this one.
|
||
|
||
When describing a sub-char-table, INDICES is a list of
|
||
indices at higher levels in this char-table,
|
||
and CHAR_TABLE_DEPTH says how many levels down we have gone. */
|
||
|
||
void
|
||
describe_vector (vector, elt_prefix, elt_describer,
|
||
partial, shadow, entire_map,
|
||
indices, char_table_depth)
|
||
register Lisp_Object vector;
|
||
Lisp_Object elt_prefix;
|
||
void (*elt_describer) P_ ((Lisp_Object));
|
||
int partial;
|
||
Lisp_Object shadow;
|
||
Lisp_Object entire_map;
|
||
int *indices;
|
||
int char_table_depth;
|
||
{
|
||
Lisp_Object definition;
|
||
Lisp_Object tem2;
|
||
register int i;
|
||
Lisp_Object suppress;
|
||
Lisp_Object kludge;
|
||
int first = 1;
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
||
/* Range of elements to be handled. */
|
||
int from, to;
|
||
/* A flag to tell if a leaf in this level of char-table is not a
|
||
generic character (i.e. a complete multibyte character). */
|
||
int complete_char;
|
||
int character;
|
||
int starting_i;
|
||
|
||
if (indices == 0)
|
||
indices = (int *) alloca (3 * sizeof (int));
|
||
|
||
definition = Qnil;
|
||
|
||
/* This vector gets used to present single keys to Flookup_key. Since
|
||
that is done once per vector element, we don't want to cons up a
|
||
fresh vector every time. */
|
||
kludge = Fmake_vector (make_number (1), Qnil);
|
||
GCPRO3 (elt_prefix, definition, kludge);
|
||
|
||
if (partial)
|
||
suppress = intern ("suppress-keymap");
|
||
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
if (char_table_depth == 0)
|
||
{
|
||
/* VECTOR is a top level char-table. */
|
||
complete_char = 1;
|
||
from = 0;
|
||
to = CHAR_TABLE_ORDINARY_SLOTS;
|
||
}
|
||
else
|
||
{
|
||
/* VECTOR is a sub char-table. */
|
||
if (char_table_depth >= 3)
|
||
/* A char-table is never that deep. */
|
||
error ("Too deep char table");
|
||
|
||
complete_char
|
||
= (CHARSET_VALID_P (indices[0])
|
||
&& ((CHARSET_DIMENSION (indices[0]) == 1
|
||
&& char_table_depth == 1)
|
||
|| char_table_depth == 2));
|
||
|
||
/* Meaningful elements are from 32th to 127th. */
|
||
from = 32;
|
||
to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This does the right thing for ordinary vectors. */
|
||
|
||
complete_char = 1;
|
||
from = 0;
|
||
to = XVECTOR (vector)->size;
|
||
}
|
||
|
||
for (i = from; i < to; i++)
|
||
{
|
||
QUIT;
|
||
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
|
||
complete_char = 0;
|
||
|
||
if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
|
||
&& !CHARSET_DEFINED_P (i - 128))
|
||
continue;
|
||
|
||
definition
|
||
= get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
|
||
}
|
||
else
|
||
definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
|
||
|
||
if (NILP (definition)) continue;
|
||
|
||
/* Don't mention suppressed commands. */
|
||
if (SYMBOLP (definition) && partial)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = Fget (definition, suppress);
|
||
|
||
if (!NILP (tem)) continue;
|
||
}
|
||
|
||
/* Set CHARACTER to the character this entry describes, if any.
|
||
Also update *INDICES. */
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
indices[char_table_depth] = i;
|
||
|
||
if (char_table_depth == 0)
|
||
{
|
||
character = i;
|
||
indices[0] = i - 128;
|
||
}
|
||
else if (complete_char)
|
||
{
|
||
character
|
||
= MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
|
||
}
|
||
else
|
||
character = 0;
|
||
}
|
||
else
|
||
character = i;
|
||
|
||
/* If this binding is shadowed by some other map, ignore it. */
|
||
if (!NILP (shadow) && complete_char)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
XVECTOR (kludge)->contents[0] = make_number (character);
|
||
tem = shadow_lookup (shadow, kludge, Qt);
|
||
|
||
if (!NILP (tem)) continue;
|
||
}
|
||
|
||
/* Ignore this definition if it is shadowed by an earlier
|
||
one in the same keymap. */
|
||
if (!NILP (entire_map) && complete_char)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
XVECTOR (kludge)->contents[0] = make_number (character);
|
||
tem = Flookup_key (entire_map, kludge, Qt);
|
||
|
||
if (! EQ (tem, definition))
|
||
continue;
|
||
}
|
||
|
||
if (first)
|
||
{
|
||
if (char_table_depth == 0)
|
||
insert ("\n", 1);
|
||
first = 0;
|
||
}
|
||
|
||
/* For a sub char-table, show the depth by indentation.
|
||
CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
|
||
if (char_table_depth > 0)
|
||
insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
|
||
|
||
/* Output the prefix that applies to every entry in this map. */
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
|
||
/* Insert or describe the character this slot is for,
|
||
or a description of what it is for. */
|
||
if (SUB_CHAR_TABLE_P (vector))
|
||
{
|
||
if (complete_char)
|
||
insert_char (character);
|
||
else
|
||
{
|
||
/* We need an octal representation for this block of
|
||
characters. */
|
||
char work[16];
|
||
sprintf (work, "(row %d)", i);
|
||
insert (work, strlen (work));
|
||
}
|
||
}
|
||
else if (CHAR_TABLE_P (vector))
|
||
{
|
||
if (complete_char)
|
||
insert1 (Fsingle_key_description (make_number (character)));
|
||
else
|
||
{
|
||
/* Print the information for this character set. */
|
||
insert_string ("<");
|
||
tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
|
||
if (STRINGP (tem2))
|
||
insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
|
||
XSTRING (tem2)->size_byte, 0);
|
||
else
|
||
insert ("?", 1);
|
||
insert (">", 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
insert1 (Fsingle_key_description (make_number (character)));
|
||
}
|
||
|
||
/* If we find a sub char-table within a char-table,
|
||
scan it recursively; it defines the details for
|
||
a character set or a portion of a character set. */
|
||
if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
|
||
{
|
||
insert ("\n", 1);
|
||
describe_vector (definition, elt_prefix, elt_describer,
|
||
partial, shadow, entire_map,
|
||
indices, char_table_depth + 1);
|
||
continue;
|
||
}
|
||
|
||
starting_i = i;
|
||
|
||
/* Find all consecutive characters or rows that have the same
|
||
definition. But, for elements of a top level char table, if
|
||
they are for charsets, we had better describe one by one even
|
||
if they have the same definition. */
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
int limit = to;
|
||
|
||
if (char_table_depth == 0)
|
||
limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
|
||
|
||
while (i + 1 < limit
|
||
&& (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
|
||
!NILP (tem2))
|
||
&& !NILP (Fequal (tem2, definition)))
|
||
i++;
|
||
}
|
||
else
|
||
while (i + 1 < to
|
||
&& (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
|
||
!NILP (tem2))
|
||
&& !NILP (Fequal (tem2, definition)))
|
||
i++;
|
||
|
||
|
||
/* If we have a range of more than one character,
|
||
print where the range reaches to. */
|
||
|
||
if (i != starting_i)
|
||
{
|
||
insert (" .. ", 4);
|
||
|
||
if (!NILP (elt_prefix))
|
||
insert1 (elt_prefix);
|
||
|
||
if (CHAR_TABLE_P (vector))
|
||
{
|
||
if (char_table_depth == 0)
|
||
{
|
||
insert1 (Fsingle_key_description (make_number (i)));
|
||
}
|
||
else if (complete_char)
|
||
{
|
||
indices[char_table_depth] = i;
|
||
character
|
||
= MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
|
||
insert_char (character);
|
||
}
|
||
else
|
||
{
|
||
/* We need an octal representation for this block of
|
||
characters. */
|
||
char work[16];
|
||
sprintf (work, "(row %d)", i);
|
||
insert (work, strlen (work));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
insert1 (Fsingle_key_description (make_number (i)));
|
||
}
|
||
}
|
||
|
||
/* Print a description of the definition of this character.
|
||
elt_describer will take care of spacing out far enough
|
||
for alignment purposes. */
|
||
(*elt_describer) (definition);
|
||
}
|
||
|
||
/* For (sub) char-table, print `defalt' slot at last. */
|
||
if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
|
||
{
|
||
insert (" ", char_table_depth * 2);
|
||
insert_string ("<<default>>");
|
||
(*elt_describer) (XCHAR_TABLE (vector)->defalt);
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
/* Apropos - finding all symbols whose names match a regexp. */
|
||
Lisp_Object apropos_predicate;
|
||
Lisp_Object apropos_accumulate;
|
||
|
||
static void
|
||
apropos_accum (symbol, string)
|
||
Lisp_Object symbol, string;
|
||
{
|
||
register Lisp_Object tem;
|
||
|
||
tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
|
||
if (!NILP (tem) && !NILP (apropos_predicate))
|
||
tem = call1 (apropos_predicate, symbol);
|
||
if (!NILP (tem))
|
||
apropos_accumulate = Fcons (symbol, apropos_accumulate);
|
||
}
|
||
|
||
DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
|
||
"Show all symbols whose names contain match for REGEXP.\n\
|
||
If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
|
||
for each symbol and a symbol is mentioned only if that returns non-nil.\n\
|
||
Return list of symbols found.")
|
||
(regexp, predicate)
|
||
Lisp_Object regexp, predicate;
|
||
{
|
||
struct gcpro gcpro1, gcpro2;
|
||
CHECK_STRING (regexp, 0);
|
||
apropos_predicate = predicate;
|
||
GCPRO2 (apropos_predicate, apropos_accumulate);
|
||
apropos_accumulate = Qnil;
|
||
map_obarray (Vobarray, apropos_accum, regexp);
|
||
apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
|
||
UNGCPRO;
|
||
return apropos_accumulate;
|
||
}
|
||
|
||
syms_of_keymap ()
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
Qkeymap = intern ("keymap");
|
||
staticpro (&Qkeymap);
|
||
|
||
/* Now we are ready to set up this property, so we can
|
||
create char tables. */
|
||
Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
|
||
|
||
/* Initialize the keymaps standardly used.
|
||
Each one is the value of a Lisp variable, and is also
|
||
pointed to by a C variable */
|
||
|
||
global_map = Fmake_keymap (Qnil);
|
||
Fset (intern ("global-map"), global_map);
|
||
|
||
current_global_map = global_map;
|
||
staticpro (&global_map);
|
||
staticpro (¤t_global_map);
|
||
|
||
meta_map = Fmake_keymap (Qnil);
|
||
Fset (intern ("esc-map"), meta_map);
|
||
Ffset (intern ("ESC-prefix"), meta_map);
|
||
|
||
control_x_map = Fmake_keymap (Qnil);
|
||
Fset (intern ("ctl-x-map"), control_x_map);
|
||
Ffset (intern ("Control-X-prefix"), control_x_map);
|
||
|
||
DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
|
||
"List of commands given new key bindings recently.\n\
|
||
This is used for internal purposes during Emacs startup;\n\
|
||
don't alter it yourself.");
|
||
Vdefine_key_rebound_commands = Qt;
|
||
|
||
DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
|
||
"Default keymap to use when reading from the minibuffer.");
|
||
Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
|
||
"Local keymap for the minibuffer when spaces are not allowed.");
|
||
Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
|
||
"Local keymap for minibuffer input with completion.");
|
||
Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
|
||
"Local keymap for minibuffer input with completion, for exact match.");
|
||
Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
|
||
"Alist of keymaps to use for minor modes.\n\
|
||
Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
|
||
key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
|
||
If two active keymaps bind the same key, the keymap appearing earlier\n\
|
||
in the list takes precedence.");
|
||
Vminor_mode_map_alist = Qnil;
|
||
|
||
DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
|
||
"Alist of keymaps to use for minor modes, in current major mode.\n\
|
||
This variable is a alist just like `minor-mode-map-alist', and it is\n\
|
||
used the same way (and before `minor-mode-map-alist'); however,\n\
|
||
it is provided for major modes to bind locally.");
|
||
Vminor_mode_overriding_map_alist = Qnil;
|
||
|
||
DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
|
||
"Keymap mapping ASCII function key sequences onto their preferred forms.\n\
|
||
This allows Emacs to recognize function keys sent from ASCII\n\
|
||
terminals at any point in a key sequence.\n\
|
||
\n\
|
||
The `read-key-sequence' function replaces any subsequence bound by\n\
|
||
`function-key-map' with its binding. More precisely, when the active\n\
|
||
keymaps have no binding for the current key sequence but\n\
|
||
`function-key-map' binds a suffix of the sequence to a vector or string,\n\
|
||
`read-key-sequence' replaces the matching suffix with its binding, and\n\
|
||
continues with the new sequence.\n\
|
||
\n\
|
||
The events that come from bindings in `function-key-map' are not\n\
|
||
themselves looked up in `function-key-map'.\n\
|
||
\n\
|
||
For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
|
||
Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
|
||
`C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
|
||
key, typing `ESC O P x' would return [f1 x].");
|
||
Vfunction_key_map = Fmake_sparse_keymap (Qnil);
|
||
|
||
DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
|
||
"Keymap of key translations that can override keymaps.\n\
|
||
This keymap works like `function-key-map', but comes after that,\n\
|
||
and applies even for keys that have ordinary bindings.");
|
||
Vkey_translation_map = Qnil;
|
||
|
||
Qsingle_key_description = intern ("single-key-description");
|
||
staticpro (&Qsingle_key_description);
|
||
|
||
Qkey_description = intern ("key-description");
|
||
staticpro (&Qkey_description);
|
||
|
||
Qkeymapp = intern ("keymapp");
|
||
staticpro (&Qkeymapp);
|
||
|
||
Qnon_ascii = intern ("non-ascii");
|
||
staticpro (&Qnon_ascii);
|
||
|
||
defsubr (&Skeymapp);
|
||
defsubr (&Skeymap_parent);
|
||
defsubr (&Sset_keymap_parent);
|
||
defsubr (&Smake_keymap);
|
||
defsubr (&Smake_sparse_keymap);
|
||
defsubr (&Scopy_keymap);
|
||
defsubr (&Skey_binding);
|
||
defsubr (&Slocal_key_binding);
|
||
defsubr (&Sglobal_key_binding);
|
||
defsubr (&Sminor_mode_key_binding);
|
||
defsubr (&Sdefine_key);
|
||
defsubr (&Slookup_key);
|
||
defsubr (&Sdefine_prefix_command);
|
||
defsubr (&Suse_global_map);
|
||
defsubr (&Suse_local_map);
|
||
defsubr (&Scurrent_local_map);
|
||
defsubr (&Scurrent_global_map);
|
||
defsubr (&Scurrent_minor_mode_maps);
|
||
defsubr (&Saccessible_keymaps);
|
||
defsubr (&Skey_description);
|
||
defsubr (&Sdescribe_vector);
|
||
defsubr (&Ssingle_key_description);
|
||
defsubr (&Stext_char_description);
|
||
defsubr (&Swhere_is_internal);
|
||
defsubr (&Sdescribe_bindings);
|
||
defsubr (&Sapropos_internal);
|
||
}
|
||
|
||
keys_of_keymap ()
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
initial_define_key (global_map, 033, "ESC-prefix");
|
||
initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
|
||
}
|