mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-24 14:30:43 -08:00
2056 lines
61 KiB
C
2056 lines
61 KiB
C
/* String search routines for GNU Emacs.
|
||
Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include <config.h>
|
||
#include "lisp.h"
|
||
#include "syntax.h"
|
||
#include "buffer.h"
|
||
#include "region-cache.h"
|
||
#include "commands.h"
|
||
#include "blockinput.h"
|
||
|
||
#include <sys/types.h>
|
||
#include "regex.h"
|
||
|
||
#define REGEXP_CACHE_SIZE 5
|
||
|
||
/* If the regexp is non-nil, then the buffer contains the compiled form
|
||
of that regexp, suitable for searching. */
|
||
struct regexp_cache {
|
||
struct regexp_cache *next;
|
||
Lisp_Object regexp;
|
||
struct re_pattern_buffer buf;
|
||
char fastmap[0400];
|
||
/* Nonzero means regexp was compiled to do full POSIX backtracking. */
|
||
char posix;
|
||
};
|
||
|
||
/* The instances of that struct. */
|
||
struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
|
||
|
||
/* The head of the linked list; points to the most recently used buffer. */
|
||
struct regexp_cache *searchbuf_head;
|
||
|
||
|
||
/* Every call to re_match, etc., must pass &search_regs as the regs
|
||
argument unless you can show it is unnecessary (i.e., if re_match
|
||
is certainly going to be called again before region-around-match
|
||
can be called).
|
||
|
||
Since the registers are now dynamically allocated, we need to make
|
||
sure not to refer to the Nth register before checking that it has
|
||
been allocated by checking search_regs.num_regs.
|
||
|
||
The regex code keeps track of whether it has allocated the search
|
||
buffer using bits in the re_pattern_buffer. This means that whenever
|
||
you compile a new pattern, it completely forgets whether it has
|
||
allocated any registers, and will allocate new registers the next
|
||
time you call a searching or matching function. Therefore, we need
|
||
to call re_set_registers after compiling a new pattern or after
|
||
setting the match registers, so that the regex functions will be
|
||
able to free or re-allocate it properly. */
|
||
static struct re_registers search_regs;
|
||
|
||
/* The buffer in which the last search was performed, or
|
||
Qt if the last search was done in a string;
|
||
Qnil if no searching has been done yet. */
|
||
static Lisp_Object last_thing_searched;
|
||
|
||
/* error condition signalled when regexp compile_pattern fails */
|
||
|
||
Lisp_Object Qinvalid_regexp;
|
||
|
||
static void set_search_regs ();
|
||
static void save_search_regs ();
|
||
|
||
static int search_buffer ();
|
||
|
||
static void
|
||
matcher_overflow ()
|
||
{
|
||
error ("Stack overflow in regexp matcher");
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
#define CONST const
|
||
#else
|
||
#define CONST
|
||
#endif
|
||
|
||
/* Compile a regexp and signal a Lisp error if anything goes wrong.
|
||
PATTERN is the pattern to compile.
|
||
CP is the place to put the result.
|
||
TRANSLATE is a translation table for ignoring case, or NULL for none.
|
||
REGP is the structure that says where to store the "register"
|
||
values that will result from matching this pattern.
|
||
If it is 0, we should compile the pattern not to record any
|
||
subexpression bounds.
|
||
POSIX is nonzero if we want full backtracking (POSIX style)
|
||
for this pattern. 0 means backtrack only enough to get a valid match. */
|
||
|
||
static void
|
||
compile_pattern_1 (cp, pattern, translate, regp, posix)
|
||
struct regexp_cache *cp;
|
||
Lisp_Object pattern;
|
||
char *translate;
|
||
struct re_registers *regp;
|
||
int posix;
|
||
{
|
||
CONST char *val;
|
||
reg_syntax_t old;
|
||
|
||
cp->regexp = Qnil;
|
||
cp->buf.translate = translate;
|
||
cp->posix = posix;
|
||
BLOCK_INPUT;
|
||
old = re_set_syntax (RE_SYNTAX_EMACS
|
||
| (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
|
||
val = (CONST char *) re_compile_pattern ((char *) XSTRING (pattern)->data,
|
||
XSTRING (pattern)->size, &cp->buf);
|
||
re_set_syntax (old);
|
||
UNBLOCK_INPUT;
|
||
if (val)
|
||
Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
|
||
|
||
cp->regexp = Fcopy_sequence (pattern);
|
||
}
|
||
|
||
/* Compile a regexp if necessary, but first check to see if there's one in
|
||
the cache.
|
||
PATTERN is the pattern to compile.
|
||
TRANSLATE is a translation table for ignoring case, or NULL for none.
|
||
REGP is the structure that says where to store the "register"
|
||
values that will result from matching this pattern.
|
||
If it is 0, we should compile the pattern not to record any
|
||
subexpression bounds.
|
||
POSIX is nonzero if we want full backtracking (POSIX style)
|
||
for this pattern. 0 means backtrack only enough to get a valid match. */
|
||
|
||
struct re_pattern_buffer *
|
||
compile_pattern (pattern, regp, translate, posix)
|
||
Lisp_Object pattern;
|
||
struct re_registers *regp;
|
||
char *translate;
|
||
int posix;
|
||
{
|
||
struct regexp_cache *cp, **cpp;
|
||
|
||
for (cpp = &searchbuf_head; ; cpp = &cp->next)
|
||
{
|
||
cp = *cpp;
|
||
if (!NILP (Fstring_equal (cp->regexp, pattern))
|
||
&& cp->buf.translate == translate
|
||
&& cp->posix == posix)
|
||
break;
|
||
|
||
/* If we're at the end of the cache, compile into the last cell. */
|
||
if (cp->next == 0)
|
||
{
|
||
compile_pattern_1 (cp, pattern, translate, regp, posix);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* When we get here, cp (aka *cpp) contains the compiled pattern,
|
||
either because we found it in the cache or because we just compiled it.
|
||
Move it to the front of the queue to mark it as most recently used. */
|
||
*cpp = cp->next;
|
||
cp->next = searchbuf_head;
|
||
searchbuf_head = cp;
|
||
|
||
/* Advise the searching functions about the space we have allocated
|
||
for register data. */
|
||
if (regp)
|
||
re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
|
||
|
||
return &cp->buf;
|
||
}
|
||
|
||
/* Error condition used for failing searches */
|
||
Lisp_Object Qsearch_failed;
|
||
|
||
Lisp_Object
|
||
signal_failure (arg)
|
||
Lisp_Object arg;
|
||
{
|
||
Fsignal (Qsearch_failed, Fcons (arg, Qnil));
|
||
return Qnil;
|
||
}
|
||
|
||
static Lisp_Object
|
||
looking_at_1 (string, posix)
|
||
Lisp_Object string;
|
||
int posix;
|
||
{
|
||
Lisp_Object val;
|
||
unsigned char *p1, *p2;
|
||
int s1, s2;
|
||
register int i;
|
||
struct re_pattern_buffer *bufp;
|
||
|
||
if (running_asynch_code)
|
||
save_search_regs ();
|
||
|
||
CHECK_STRING (string, 0);
|
||
bufp = compile_pattern (string, &search_regs,
|
||
(!NILP (current_buffer->case_fold_search)
|
||
? DOWNCASE_TABLE : 0),
|
||
posix);
|
||
|
||
immediate_quit = 1;
|
||
QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
|
||
|
||
/* Get pointers and sizes of the two strings
|
||
that make up the visible portion of the buffer. */
|
||
|
||
p1 = BEGV_ADDR;
|
||
s1 = GPT - BEGV;
|
||
p2 = GAP_END_ADDR;
|
||
s2 = ZV - GPT;
|
||
if (s1 < 0)
|
||
{
|
||
p2 = p1;
|
||
s2 = ZV - BEGV;
|
||
s1 = 0;
|
||
}
|
||
if (s2 < 0)
|
||
{
|
||
s1 = ZV - BEGV;
|
||
s2 = 0;
|
||
}
|
||
|
||
i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
|
||
point - BEGV, &search_regs,
|
||
ZV - BEGV);
|
||
if (i == -2)
|
||
matcher_overflow ();
|
||
|
||
val = (0 <= i ? Qt : Qnil);
|
||
for (i = 0; i < search_regs.num_regs; i++)
|
||
if (search_regs.start[i] >= 0)
|
||
{
|
||
search_regs.start[i] += BEGV;
|
||
search_regs.end[i] += BEGV;
|
||
}
|
||
XSETBUFFER (last_thing_searched, current_buffer);
|
||
immediate_quit = 0;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
|
||
"Return t if text after point matches regular expression PAT.\n\
|
||
This function modifies the match data that `match-beginning',\n\
|
||
`match-end' and `match-data' access; save and restore the match\n\
|
||
data if you want to preserve them.")
|
||
(string)
|
||
Lisp_Object string;
|
||
{
|
||
return looking_at_1 (string, 0);
|
||
}
|
||
|
||
DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
|
||
"Return t if text after point matches regular expression PAT.\n\
|
||
Find the longest match, in accord with Posix regular expression rules.\n\
|
||
This function modifies the match data that `match-beginning',\n\
|
||
`match-end' and `match-data' access; save and restore the match\n\
|
||
data if you want to preserve them.")
|
||
(string)
|
||
Lisp_Object string;
|
||
{
|
||
return looking_at_1 (string, 1);
|
||
}
|
||
|
||
static Lisp_Object
|
||
string_match_1 (regexp, string, start, posix)
|
||
Lisp_Object regexp, string, start;
|
||
int posix;
|
||
{
|
||
int val;
|
||
int s;
|
||
struct re_pattern_buffer *bufp;
|
||
|
||
if (running_asynch_code)
|
||
save_search_regs ();
|
||
|
||
CHECK_STRING (regexp, 0);
|
||
CHECK_STRING (string, 1);
|
||
|
||
if (NILP (start))
|
||
s = 0;
|
||
else
|
||
{
|
||
int len = XSTRING (string)->size;
|
||
|
||
CHECK_NUMBER (start, 2);
|
||
s = XINT (start);
|
||
if (s < 0 && -s <= len)
|
||
s = len + s;
|
||
else if (0 > s || s > len)
|
||
args_out_of_range (string, start);
|
||
}
|
||
|
||
bufp = compile_pattern (regexp, &search_regs,
|
||
(!NILP (current_buffer->case_fold_search)
|
||
? DOWNCASE_TABLE : 0),
|
||
0);
|
||
immediate_quit = 1;
|
||
val = re_search (bufp, (char *) XSTRING (string)->data,
|
||
XSTRING (string)->size, s, XSTRING (string)->size - s,
|
||
&search_regs);
|
||
immediate_quit = 0;
|
||
last_thing_searched = Qt;
|
||
if (val == -2)
|
||
matcher_overflow ();
|
||
if (val < 0) return Qnil;
|
||
return make_number (val);
|
||
}
|
||
|
||
DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
|
||
"Return index of start of first match for REGEXP in STRING, or nil.\n\
|
||
If third arg START is non-nil, start search at that index in STRING.\n\
|
||
For index of first char beyond the match, do (match-end 0).\n\
|
||
`match-end' and `match-beginning' also give indices of substrings\n\
|
||
matched by parenthesis constructs in the pattern.")
|
||
(regexp, string, start)
|
||
Lisp_Object regexp, string, start;
|
||
{
|
||
return string_match_1 (regexp, string, start, 0);
|
||
}
|
||
|
||
DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
|
||
"Return index of start of first match for REGEXP in STRING, or nil.\n\
|
||
Find the longest match, in accord with Posix regular expression rules.\n\
|
||
If third arg START is non-nil, start search at that index in STRING.\n\
|
||
For index of first char beyond the match, do (match-end 0).\n\
|
||
`match-end' and `match-beginning' also give indices of substrings\n\
|
||
matched by parenthesis constructs in the pattern.")
|
||
(regexp, string, start)
|
||
Lisp_Object regexp, string, start;
|
||
{
|
||
return string_match_1 (regexp, string, start, 1);
|
||
}
|
||
|
||
/* Match REGEXP against STRING, searching all of STRING,
|
||
and return the index of the match, or negative on failure.
|
||
This does not clobber the match data. */
|
||
|
||
int
|
||
fast_string_match (regexp, string)
|
||
Lisp_Object regexp, string;
|
||
{
|
||
int val;
|
||
struct re_pattern_buffer *bufp;
|
||
|
||
bufp = compile_pattern (regexp, 0, 0, 0);
|
||
immediate_quit = 1;
|
||
val = re_search (bufp, (char *) XSTRING (string)->data,
|
||
XSTRING (string)->size, 0, XSTRING (string)->size,
|
||
0);
|
||
immediate_quit = 0;
|
||
return val;
|
||
}
|
||
|
||
/* max and min. */
|
||
|
||
static int
|
||
max (a, b)
|
||
int a, b;
|
||
{
|
||
return ((a > b) ? a : b);
|
||
}
|
||
|
||
static int
|
||
min (a, b)
|
||
int a, b;
|
||
{
|
||
return ((a < b) ? a : b);
|
||
}
|
||
|
||
|
||
/* The newline cache: remembering which sections of text have no newlines. */
|
||
|
||
/* If the user has requested newline caching, make sure it's on.
|
||
Otherwise, make sure it's off.
|
||
This is our cheezy way of associating an action with the change of
|
||
state of a buffer-local variable. */
|
||
static void
|
||
newline_cache_on_off (buf)
|
||
struct buffer *buf;
|
||
{
|
||
if (NILP (buf->cache_long_line_scans))
|
||
{
|
||
/* It should be off. */
|
||
if (buf->newline_cache)
|
||
{
|
||
free_region_cache (buf->newline_cache);
|
||
buf->newline_cache = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It should be on. */
|
||
if (buf->newline_cache == 0)
|
||
buf->newline_cache = new_region_cache ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Search for COUNT instances of the character TARGET between START and END.
|
||
|
||
If COUNT is positive, search forwards; END must be >= START.
|
||
If COUNT is negative, search backwards for the -COUNTth instance;
|
||
END must be <= START.
|
||
If COUNT is zero, do anything you please; run rogue, for all I care.
|
||
|
||
If END is zero, use BEGV or ZV instead, as appropriate for the
|
||
direction indicated by COUNT.
|
||
|
||
If we find COUNT instances, set *SHORTAGE to zero, and return the
|
||
position after the COUNTth match. Note that for reverse motion
|
||
this is not the same as the usual convention for Emacs motion commands.
|
||
|
||
If we don't find COUNT instances before reaching END, set *SHORTAGE
|
||
to the number of TARGETs left unfound, and return END.
|
||
|
||
If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
|
||
except when inside redisplay. */
|
||
|
||
scan_buffer (target, start, end, count, shortage, allow_quit)
|
||
register int target;
|
||
int start, end;
|
||
int count;
|
||
int *shortage;
|
||
int allow_quit;
|
||
{
|
||
struct region_cache *newline_cache;
|
||
int direction;
|
||
|
||
if (count > 0)
|
||
{
|
||
direction = 1;
|
||
if (! end) end = ZV;
|
||
}
|
||
else
|
||
{
|
||
direction = -1;
|
||
if (! end) end = BEGV;
|
||
}
|
||
|
||
newline_cache_on_off (current_buffer);
|
||
newline_cache = current_buffer->newline_cache;
|
||
|
||
if (shortage != 0)
|
||
*shortage = 0;
|
||
|
||
immediate_quit = allow_quit;
|
||
|
||
if (count > 0)
|
||
while (start != end)
|
||
{
|
||
/* Our innermost scanning loop is very simple; it doesn't know
|
||
about gaps, buffer ends, or the newline cache. ceiling is
|
||
the position of the last character before the next such
|
||
obstacle --- the last character the dumb search loop should
|
||
examine. */
|
||
register int ceiling = end - 1;
|
||
|
||
/* If we're looking for a newline, consult the newline cache
|
||
to see where we can avoid some scanning. */
|
||
if (target == '\n' && newline_cache)
|
||
{
|
||
int next_change;
|
||
immediate_quit = 0;
|
||
while (region_cache_forward
|
||
(current_buffer, newline_cache, start, &next_change))
|
||
start = next_change;
|
||
immediate_quit = allow_quit;
|
||
|
||
/* start should never be after end. */
|
||
if (start >= end)
|
||
start = end - 1;
|
||
|
||
/* Now the text after start is an unknown region, and
|
||
next_change is the position of the next known region. */
|
||
ceiling = min (next_change - 1, ceiling);
|
||
}
|
||
|
||
/* The dumb loop can only scan text stored in contiguous
|
||
bytes. BUFFER_CEILING_OF returns the last character
|
||
position that is contiguous, so the ceiling is the
|
||
position after that. */
|
||
ceiling = min (BUFFER_CEILING_OF (start), ceiling);
|
||
|
||
{
|
||
/* The termination address of the dumb loop. */
|
||
register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling) + 1;
|
||
register unsigned char *cursor = &FETCH_CHAR (start);
|
||
unsigned char *base = cursor;
|
||
|
||
while (cursor < ceiling_addr)
|
||
{
|
||
unsigned char *scan_start = cursor;
|
||
|
||
/* The dumb loop. */
|
||
while (*cursor != target && ++cursor < ceiling_addr)
|
||
;
|
||
|
||
/* If we're looking for newlines, cache the fact that
|
||
the region from start to cursor is free of them. */
|
||
if (target == '\n' && newline_cache)
|
||
know_region_cache (current_buffer, newline_cache,
|
||
start + scan_start - base,
|
||
start + cursor - base);
|
||
|
||
/* Did we find the target character? */
|
||
if (cursor < ceiling_addr)
|
||
{
|
||
if (--count == 0)
|
||
{
|
||
immediate_quit = 0;
|
||
return (start + cursor - base + 1);
|
||
}
|
||
cursor++;
|
||
}
|
||
}
|
||
|
||
start += cursor - base;
|
||
}
|
||
}
|
||
else
|
||
while (start > end)
|
||
{
|
||
/* The last character to check before the next obstacle. */
|
||
register int ceiling = end;
|
||
|
||
/* Consult the newline cache, if appropriate. */
|
||
if (target == '\n' && newline_cache)
|
||
{
|
||
int next_change;
|
||
immediate_quit = 0;
|
||
while (region_cache_backward
|
||
(current_buffer, newline_cache, start, &next_change))
|
||
start = next_change;
|
||
immediate_quit = allow_quit;
|
||
|
||
/* Start should never be at or before end. */
|
||
if (start <= end)
|
||
start = end + 1;
|
||
|
||
/* Now the text before start is an unknown region, and
|
||
next_change is the position of the next known region. */
|
||
ceiling = max (next_change, ceiling);
|
||
}
|
||
|
||
/* Stop scanning before the gap. */
|
||
ceiling = max (BUFFER_FLOOR_OF (start - 1), ceiling);
|
||
|
||
{
|
||
/* The termination address of the dumb loop. */
|
||
register unsigned char *ceiling_addr = &FETCH_CHAR (ceiling);
|
||
register unsigned char *cursor = &FETCH_CHAR (start - 1);
|
||
unsigned char *base = cursor;
|
||
|
||
while (cursor >= ceiling_addr)
|
||
{
|
||
unsigned char *scan_start = cursor;
|
||
|
||
while (*cursor != target && --cursor >= ceiling_addr)
|
||
;
|
||
|
||
/* If we're looking for newlines, cache the fact that
|
||
the region from after the cursor to start is free of them. */
|
||
if (target == '\n' && newline_cache)
|
||
know_region_cache (current_buffer, newline_cache,
|
||
start + cursor - base,
|
||
start + scan_start - base);
|
||
|
||
/* Did we find the target character? */
|
||
if (cursor >= ceiling_addr)
|
||
{
|
||
if (++count >= 0)
|
||
{
|
||
immediate_quit = 0;
|
||
return (start + cursor - base);
|
||
}
|
||
cursor--;
|
||
}
|
||
}
|
||
|
||
start += cursor - base;
|
||
}
|
||
}
|
||
|
||
immediate_quit = 0;
|
||
if (shortage != 0)
|
||
*shortage = count * direction;
|
||
return start;
|
||
}
|
||
|
||
int
|
||
find_next_newline_no_quit (from, cnt)
|
||
register int from, cnt;
|
||
{
|
||
return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
|
||
}
|
||
|
||
int
|
||
find_next_newline (from, cnt)
|
||
register int from, cnt;
|
||
{
|
||
return scan_buffer ('\n', from, 0, cnt, (int *) 0, 1);
|
||
}
|
||
|
||
|
||
/* Like find_next_newline, but returns position before the newline,
|
||
not after, and only search up to TO. This isn't just
|
||
find_next_newline (...)-1, because you might hit TO. */
|
||
int
|
||
find_before_next_newline (from, to, cnt)
|
||
int from, to, cnt;
|
||
{
|
||
int shortage;
|
||
int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
|
||
|
||
if (shortage == 0)
|
||
pos--;
|
||
|
||
return pos;
|
||
}
|
||
|
||
Lisp_Object skip_chars ();
|
||
|
||
DEFUN ("skip-chars-forward", Fskip_chars_forward, Sskip_chars_forward, 1, 2, 0,
|
||
"Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
|
||
STRING is like the inside of a `[...]' in a regular expression\n\
|
||
except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
|
||
Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
|
||
With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
|
||
Returns the distance traveled, either zero or positive.")
|
||
(string, lim)
|
||
Lisp_Object string, lim;
|
||
{
|
||
return skip_chars (1, 0, string, lim);
|
||
}
|
||
|
||
DEFUN ("skip-chars-backward", Fskip_chars_backward, Sskip_chars_backward, 1, 2, 0,
|
||
"Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
|
||
See `skip-chars-forward' for details.\n\
|
||
Returns the distance traveled, either zero or negative.")
|
||
(string, lim)
|
||
Lisp_Object string, lim;
|
||
{
|
||
return skip_chars (0, 0, string, lim);
|
||
}
|
||
|
||
DEFUN ("skip-syntax-forward", Fskip_syntax_forward, Sskip_syntax_forward, 1, 2, 0,
|
||
"Move point forward across chars in specified syntax classes.\n\
|
||
SYNTAX is a string of syntax code characters.\n\
|
||
Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
|
||
If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
|
||
This function returns the distance traveled, either zero or positive.")
|
||
(syntax, lim)
|
||
Lisp_Object syntax, lim;
|
||
{
|
||
return skip_chars (1, 1, syntax, lim);
|
||
}
|
||
|
||
DEFUN ("skip-syntax-backward", Fskip_syntax_backward, Sskip_syntax_backward, 1, 2, 0,
|
||
"Move point backward across chars in specified syntax classes.\n\
|
||
SYNTAX is a string of syntax code characters.\n\
|
||
Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
|
||
If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
|
||
This function returns the distance traveled, either zero or negative.")
|
||
(syntax, lim)
|
||
Lisp_Object syntax, lim;
|
||
{
|
||
return skip_chars (0, 1, syntax, lim);
|
||
}
|
||
|
||
Lisp_Object
|
||
skip_chars (forwardp, syntaxp, string, lim)
|
||
int forwardp, syntaxp;
|
||
Lisp_Object string, lim;
|
||
{
|
||
register unsigned char *p, *pend;
|
||
register unsigned char c;
|
||
unsigned char fastmap[0400];
|
||
int negate = 0;
|
||
register int i;
|
||
|
||
CHECK_STRING (string, 0);
|
||
|
||
if (NILP (lim))
|
||
XSETINT (lim, forwardp ? ZV : BEGV);
|
||
else
|
||
CHECK_NUMBER_COERCE_MARKER (lim, 1);
|
||
|
||
/* In any case, don't allow scan outside bounds of buffer. */
|
||
/* jla turned this off, for no known reason.
|
||
bfox turned the ZV part on, and rms turned the
|
||
BEGV part back on. */
|
||
if (XINT (lim) > ZV)
|
||
XSETFASTINT (lim, ZV);
|
||
if (XINT (lim) < BEGV)
|
||
XSETFASTINT (lim, BEGV);
|
||
|
||
p = XSTRING (string)->data;
|
||
pend = p + XSTRING (string)->size;
|
||
bzero (fastmap, sizeof fastmap);
|
||
|
||
if (p != pend && *p == '^')
|
||
{
|
||
negate = 1; p++;
|
||
}
|
||
|
||
/* Find the characters specified and set their elements of fastmap.
|
||
If syntaxp, each character counts as itself.
|
||
Otherwise, handle backslashes and ranges specially */
|
||
|
||
while (p != pend)
|
||
{
|
||
c = *p++;
|
||
if (syntaxp)
|
||
fastmap[c] = 1;
|
||
else
|
||
{
|
||
if (c == '\\')
|
||
{
|
||
if (p == pend) break;
|
||
c = *p++;
|
||
}
|
||
if (p != pend && *p == '-')
|
||
{
|
||
p++;
|
||
if (p == pend) break;
|
||
while (c <= *p)
|
||
{
|
||
fastmap[c] = 1;
|
||
c++;
|
||
}
|
||
p++;
|
||
}
|
||
else
|
||
fastmap[c] = 1;
|
||
}
|
||
}
|
||
|
||
if (syntaxp && fastmap['-'] != 0)
|
||
fastmap[' '] = 1;
|
||
|
||
/* If ^ was the first character, complement the fastmap. */
|
||
|
||
if (negate)
|
||
for (i = 0; i < sizeof fastmap; i++)
|
||
fastmap[i] ^= 1;
|
||
|
||
{
|
||
int start_point = point;
|
||
|
||
immediate_quit = 1;
|
||
if (syntaxp)
|
||
{
|
||
|
||
if (forwardp)
|
||
{
|
||
while (point < XINT (lim)
|
||
&& fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point))]])
|
||
SET_PT (point + 1);
|
||
}
|
||
else
|
||
{
|
||
while (point > XINT (lim)
|
||
&& fastmap[(unsigned char) syntax_code_spec[(int) SYNTAX (FETCH_CHAR (point - 1))]])
|
||
SET_PT (point - 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (forwardp)
|
||
{
|
||
while (point < XINT (lim) && fastmap[FETCH_CHAR (point)])
|
||
SET_PT (point + 1);
|
||
}
|
||
else
|
||
{
|
||
while (point > XINT (lim) && fastmap[FETCH_CHAR (point - 1)])
|
||
SET_PT (point - 1);
|
||
}
|
||
}
|
||
immediate_quit = 0;
|
||
|
||
return make_number (point - start_point);
|
||
}
|
||
}
|
||
|
||
/* Subroutines of Lisp buffer search functions. */
|
||
|
||
static Lisp_Object
|
||
search_command (string, bound, noerror, count, direction, RE, posix)
|
||
Lisp_Object string, bound, noerror, count;
|
||
int direction;
|
||
int RE;
|
||
int posix;
|
||
{
|
||
register int np;
|
||
int lim;
|
||
int n = direction;
|
||
|
||
if (!NILP (count))
|
||
{
|
||
CHECK_NUMBER (count, 3);
|
||
n *= XINT (count);
|
||
}
|
||
|
||
CHECK_STRING (string, 0);
|
||
if (NILP (bound))
|
||
lim = n > 0 ? ZV : BEGV;
|
||
else
|
||
{
|
||
CHECK_NUMBER_COERCE_MARKER (bound, 1);
|
||
lim = XINT (bound);
|
||
if (n > 0 ? lim < point : lim > point)
|
||
error ("Invalid search bound (wrong side of point)");
|
||
if (lim > ZV)
|
||
lim = ZV;
|
||
if (lim < BEGV)
|
||
lim = BEGV;
|
||
}
|
||
|
||
np = search_buffer (string, point, lim, n, RE,
|
||
(!NILP (current_buffer->case_fold_search)
|
||
? XSTRING (current_buffer->case_canon_table)->data : 0),
|
||
(!NILP (current_buffer->case_fold_search)
|
||
? XSTRING (current_buffer->case_eqv_table)->data : 0),
|
||
posix);
|
||
if (np <= 0)
|
||
{
|
||
if (NILP (noerror))
|
||
return signal_failure (string);
|
||
if (!EQ (noerror, Qt))
|
||
{
|
||
if (lim < BEGV || lim > ZV)
|
||
abort ();
|
||
SET_PT (lim);
|
||
return Qnil;
|
||
#if 0 /* This would be clean, but maybe programs depend on
|
||
a value of nil here. */
|
||
np = lim;
|
||
#endif
|
||
}
|
||
else
|
||
return Qnil;
|
||
}
|
||
|
||
if (np < BEGV || np > ZV)
|
||
abort ();
|
||
|
||
SET_PT (np);
|
||
|
||
return make_number (np);
|
||
}
|
||
|
||
static int
|
||
trivial_regexp_p (regexp)
|
||
Lisp_Object regexp;
|
||
{
|
||
int len = XSTRING (regexp)->size;
|
||
unsigned char *s = XSTRING (regexp)->data;
|
||
unsigned char c;
|
||
while (--len >= 0)
|
||
{
|
||
switch (*s++)
|
||
{
|
||
case '.': case '*': case '+': case '?': case '[': case '^': case '$':
|
||
return 0;
|
||
case '\\':
|
||
if (--len < 0)
|
||
return 0;
|
||
switch (*s++)
|
||
{
|
||
case '|': case '(': case ')': case '`': case '\'': case 'b':
|
||
case 'B': case '<': case '>': case 'w': case 'W': case 's':
|
||
case 'S': case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Search for the n'th occurrence of STRING in the current buffer,
|
||
starting at position POS and stopping at position LIM,
|
||
treating STRING as a literal string if RE is false or as
|
||
a regular expression if RE is true.
|
||
|
||
If N is positive, searching is forward and LIM must be greater than POS.
|
||
If N is negative, searching is backward and LIM must be less than POS.
|
||
|
||
Returns -x if only N-x occurrences found (x > 0),
|
||
or else the position at the beginning of the Nth occurrence
|
||
(if searching backward) or the end (if searching forward).
|
||
|
||
POSIX is nonzero if we want full backtracking (POSIX style)
|
||
for this pattern. 0 means backtrack only enough to get a valid match. */
|
||
|
||
static int
|
||
search_buffer (string, pos, lim, n, RE, trt, inverse_trt, posix)
|
||
Lisp_Object string;
|
||
int pos;
|
||
int lim;
|
||
int n;
|
||
int RE;
|
||
register unsigned char *trt;
|
||
register unsigned char *inverse_trt;
|
||
int posix;
|
||
{
|
||
int len = XSTRING (string)->size;
|
||
unsigned char *base_pat = XSTRING (string)->data;
|
||
register int *BM_tab;
|
||
int *BM_tab_base;
|
||
register int direction = ((n > 0) ? 1 : -1);
|
||
register int dirlen;
|
||
int infinity, limit, k, stride_for_teases;
|
||
register unsigned char *pat, *cursor, *p_limit;
|
||
register int i, j;
|
||
unsigned char *p1, *p2;
|
||
int s1, s2;
|
||
|
||
if (running_asynch_code)
|
||
save_search_regs ();
|
||
|
||
/* Null string is found at starting position. */
|
||
if (len == 0)
|
||
{
|
||
set_search_regs (pos, 0);
|
||
return pos;
|
||
}
|
||
|
||
/* Searching 0 times means don't move. */
|
||
if (n == 0)
|
||
return pos;
|
||
|
||
if (RE && !trivial_regexp_p (string))
|
||
{
|
||
struct re_pattern_buffer *bufp;
|
||
|
||
bufp = compile_pattern (string, &search_regs, (char *) trt, posix);
|
||
|
||
immediate_quit = 1; /* Quit immediately if user types ^G,
|
||
because letting this function finish
|
||
can take too long. */
|
||
QUIT; /* Do a pending quit right away,
|
||
to avoid paradoxical behavior */
|
||
/* Get pointers and sizes of the two strings
|
||
that make up the visible portion of the buffer. */
|
||
|
||
p1 = BEGV_ADDR;
|
||
s1 = GPT - BEGV;
|
||
p2 = GAP_END_ADDR;
|
||
s2 = ZV - GPT;
|
||
if (s1 < 0)
|
||
{
|
||
p2 = p1;
|
||
s2 = ZV - BEGV;
|
||
s1 = 0;
|
||
}
|
||
if (s2 < 0)
|
||
{
|
||
s1 = ZV - BEGV;
|
||
s2 = 0;
|
||
}
|
||
while (n < 0)
|
||
{
|
||
int val;
|
||
val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
|
||
pos - BEGV, lim - pos, &search_regs,
|
||
/* Don't allow match past current point */
|
||
pos - BEGV);
|
||
if (val == -2)
|
||
{
|
||
matcher_overflow ();
|
||
}
|
||
if (val >= 0)
|
||
{
|
||
j = BEGV;
|
||
for (i = 0; i < search_regs.num_regs; i++)
|
||
if (search_regs.start[i] >= 0)
|
||
{
|
||
search_regs.start[i] += j;
|
||
search_regs.end[i] += j;
|
||
}
|
||
XSETBUFFER (last_thing_searched, current_buffer);
|
||
/* Set pos to the new position. */
|
||
pos = search_regs.start[0];
|
||
}
|
||
else
|
||
{
|
||
immediate_quit = 0;
|
||
return (n);
|
||
}
|
||
n++;
|
||
}
|
||
while (n > 0)
|
||
{
|
||
int val;
|
||
val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
|
||
pos - BEGV, lim - pos, &search_regs,
|
||
lim - BEGV);
|
||
if (val == -2)
|
||
{
|
||
matcher_overflow ();
|
||
}
|
||
if (val >= 0)
|
||
{
|
||
j = BEGV;
|
||
for (i = 0; i < search_regs.num_regs; i++)
|
||
if (search_regs.start[i] >= 0)
|
||
{
|
||
search_regs.start[i] += j;
|
||
search_regs.end[i] += j;
|
||
}
|
||
XSETBUFFER (last_thing_searched, current_buffer);
|
||
pos = search_regs.end[0];
|
||
}
|
||
else
|
||
{
|
||
immediate_quit = 0;
|
||
return (0 - n);
|
||
}
|
||
n--;
|
||
}
|
||
immediate_quit = 0;
|
||
return (pos);
|
||
}
|
||
else /* non-RE case */
|
||
{
|
||
#ifdef C_ALLOCA
|
||
int BM_tab_space[0400];
|
||
BM_tab = &BM_tab_space[0];
|
||
#else
|
||
BM_tab = (int *) alloca (0400 * sizeof (int));
|
||
#endif
|
||
{
|
||
unsigned char *patbuf = (unsigned char *) alloca (len);
|
||
pat = patbuf;
|
||
while (--len >= 0)
|
||
{
|
||
/* If we got here and the RE flag is set, it's because we're
|
||
dealing with a regexp known to be trivial, so the backslash
|
||
just quotes the next character. */
|
||
if (RE && *base_pat == '\\')
|
||
{
|
||
len--;
|
||
base_pat++;
|
||
}
|
||
*pat++ = (trt ? trt[*base_pat++] : *base_pat++);
|
||
}
|
||
len = pat - patbuf;
|
||
pat = base_pat = patbuf;
|
||
}
|
||
/* The general approach is that we are going to maintain that we know */
|
||
/* the first (closest to the present position, in whatever direction */
|
||
/* we're searching) character that could possibly be the last */
|
||
/* (furthest from present position) character of a valid match. We */
|
||
/* advance the state of our knowledge by looking at that character */
|
||
/* and seeing whether it indeed matches the last character of the */
|
||
/* pattern. If it does, we take a closer look. If it does not, we */
|
||
/* move our pointer (to putative last characters) as far as is */
|
||
/* logically possible. This amount of movement, which I call a */
|
||
/* stride, will be the length of the pattern if the actual character */
|
||
/* appears nowhere in the pattern, otherwise it will be the distance */
|
||
/* from the last occurrence of that character to the end of the */
|
||
/* pattern. */
|
||
/* As a coding trick, an enormous stride is coded into the table for */
|
||
/* characters that match the last character. This allows use of only */
|
||
/* a single test, a test for having gone past the end of the */
|
||
/* permissible match region, to test for both possible matches (when */
|
||
/* the stride goes past the end immediately) and failure to */
|
||
/* match (where you get nudged past the end one stride at a time). */
|
||
|
||
/* Here we make a "mickey mouse" BM table. The stride of the search */
|
||
/* is determined only by the last character of the putative match. */
|
||
/* If that character does not match, we will stride the proper */
|
||
/* distance to propose a match that superimposes it on the last */
|
||
/* instance of a character that matches it (per trt), or misses */
|
||
/* it entirely if there is none. */
|
||
|
||
dirlen = len * direction;
|
||
infinity = dirlen - (lim + pos + len + len) * direction;
|
||
if (direction < 0)
|
||
pat = (base_pat += len - 1);
|
||
BM_tab_base = BM_tab;
|
||
BM_tab += 0400;
|
||
j = dirlen; /* to get it in a register */
|
||
/* A character that does not appear in the pattern induces a */
|
||
/* stride equal to the pattern length. */
|
||
while (BM_tab_base != BM_tab)
|
||
{
|
||
*--BM_tab = j;
|
||
*--BM_tab = j;
|
||
*--BM_tab = j;
|
||
*--BM_tab = j;
|
||
}
|
||
i = 0;
|
||
while (i != infinity)
|
||
{
|
||
j = pat[i]; i += direction;
|
||
if (i == dirlen) i = infinity;
|
||
if ((int) trt)
|
||
{
|
||
k = (j = trt[j]);
|
||
if (i == infinity)
|
||
stride_for_teases = BM_tab[j];
|
||
BM_tab[j] = dirlen - i;
|
||
/* A translation table is accompanied by its inverse -- see */
|
||
/* comment following downcase_table for details */
|
||
while ((j = inverse_trt[j]) != k)
|
||
BM_tab[j] = dirlen - i;
|
||
}
|
||
else
|
||
{
|
||
if (i == infinity)
|
||
stride_for_teases = BM_tab[j];
|
||
BM_tab[j] = dirlen - i;
|
||
}
|
||
/* stride_for_teases tells how much to stride if we get a */
|
||
/* match on the far character but are subsequently */
|
||
/* disappointed, by recording what the stride would have been */
|
||
/* for that character if the last character had been */
|
||
/* different. */
|
||
}
|
||
infinity = dirlen - infinity;
|
||
pos += dirlen - ((direction > 0) ? direction : 0);
|
||
/* loop invariant - pos points at where last char (first char if reverse)
|
||
of pattern would align in a possible match. */
|
||
while (n != 0)
|
||
{
|
||
/* It's been reported that some (broken) compiler thinks that
|
||
Boolean expressions in an arithmetic context are unsigned.
|
||
Using an explicit ?1:0 prevents this. */
|
||
if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
|
||
return (n * (0 - direction));
|
||
/* First we do the part we can by pointers (maybe nothing) */
|
||
QUIT;
|
||
pat = base_pat;
|
||
limit = pos - dirlen + direction;
|
||
limit = ((direction > 0)
|
||
? BUFFER_CEILING_OF (limit)
|
||
: BUFFER_FLOOR_OF (limit));
|
||
/* LIMIT is now the last (not beyond-last!) value
|
||
POS can take on without hitting edge of buffer or the gap. */
|
||
limit = ((direction > 0)
|
||
? min (lim - 1, min (limit, pos + 20000))
|
||
: max (lim, max (limit, pos - 20000)));
|
||
if ((limit - pos) * direction > 20)
|
||
{
|
||
p_limit = &FETCH_CHAR (limit);
|
||
p2 = (cursor = &FETCH_CHAR (pos));
|
||
/* In this loop, pos + cursor - p2 is the surrogate for pos */
|
||
while (1) /* use one cursor setting as long as i can */
|
||
{
|
||
if (direction > 0) /* worth duplicating */
|
||
{
|
||
/* Use signed comparison if appropriate
|
||
to make cursor+infinity sure to be > p_limit.
|
||
Assuming that the buffer lies in a range of addresses
|
||
that are all "positive" (as ints) or all "negative",
|
||
either kind of comparison will work as long
|
||
as we don't step by infinity. So pick the kind
|
||
that works when we do step by infinity. */
|
||
if ((int) (p_limit + infinity) > (int) p_limit)
|
||
while ((int) cursor <= (int) p_limit)
|
||
cursor += BM_tab[*cursor];
|
||
else
|
||
while ((unsigned int) cursor <= (unsigned int) p_limit)
|
||
cursor += BM_tab[*cursor];
|
||
}
|
||
else
|
||
{
|
||
if ((int) (p_limit + infinity) < (int) p_limit)
|
||
while ((int) cursor >= (int) p_limit)
|
||
cursor += BM_tab[*cursor];
|
||
else
|
||
while ((unsigned int) cursor >= (unsigned int) p_limit)
|
||
cursor += BM_tab[*cursor];
|
||
}
|
||
/* If you are here, cursor is beyond the end of the searched region. */
|
||
/* This can happen if you match on the far character of the pattern, */
|
||
/* because the "stride" of that character is infinity, a number able */
|
||
/* to throw you well beyond the end of the search. It can also */
|
||
/* happen if you fail to match within the permitted region and would */
|
||
/* otherwise try a character beyond that region */
|
||
if ((cursor - p_limit) * direction <= len)
|
||
break; /* a small overrun is genuine */
|
||
cursor -= infinity; /* large overrun = hit */
|
||
i = dirlen - direction;
|
||
if ((int) trt)
|
||
{
|
||
while ((i -= direction) + direction != 0)
|
||
if (pat[i] != trt[*(cursor -= direction)])
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
while ((i -= direction) + direction != 0)
|
||
if (pat[i] != *(cursor -= direction))
|
||
break;
|
||
}
|
||
cursor += dirlen - i - direction; /* fix cursor */
|
||
if (i + direction == 0)
|
||
{
|
||
cursor -= direction;
|
||
|
||
set_search_regs (pos + cursor - p2 + ((direction > 0)
|
||
? 1 - len : 0),
|
||
len);
|
||
|
||
if ((n -= direction) != 0)
|
||
cursor += dirlen; /* to resume search */
|
||
else
|
||
return ((direction > 0)
|
||
? search_regs.end[0] : search_regs.start[0]);
|
||
}
|
||
else
|
||
cursor += stride_for_teases; /* <sigh> we lose - */
|
||
}
|
||
pos += cursor - p2;
|
||
}
|
||
else
|
||
/* Now we'll pick up a clump that has to be done the hard */
|
||
/* way because it covers a discontinuity */
|
||
{
|
||
limit = ((direction > 0)
|
||
? BUFFER_CEILING_OF (pos - dirlen + 1)
|
||
: BUFFER_FLOOR_OF (pos - dirlen - 1));
|
||
limit = ((direction > 0)
|
||
? min (limit + len, lim - 1)
|
||
: max (limit - len, lim));
|
||
/* LIMIT is now the last value POS can have
|
||
and still be valid for a possible match. */
|
||
while (1)
|
||
{
|
||
/* This loop can be coded for space rather than */
|
||
/* speed because it will usually run only once. */
|
||
/* (the reach is at most len + 21, and typically */
|
||
/* does not exceed len) */
|
||
while ((limit - pos) * direction >= 0)
|
||
pos += BM_tab[FETCH_CHAR(pos)];
|
||
/* now run the same tests to distinguish going off the */
|
||
/* end, a match or a phony match. */
|
||
if ((pos - limit) * direction <= len)
|
||
break; /* ran off the end */
|
||
/* Found what might be a match.
|
||
Set POS back to last (first if reverse) char pos. */
|
||
pos -= infinity;
|
||
i = dirlen - direction;
|
||
while ((i -= direction) + direction != 0)
|
||
{
|
||
pos -= direction;
|
||
if (pat[i] != (((int) trt)
|
||
? trt[FETCH_CHAR(pos)]
|
||
: FETCH_CHAR (pos)))
|
||
break;
|
||
}
|
||
/* Above loop has moved POS part or all the way
|
||
back to the first char pos (last char pos if reverse).
|
||
Set it once again at the last (first if reverse) char. */
|
||
pos += dirlen - i- direction;
|
||
if (i + direction == 0)
|
||
{
|
||
pos -= direction;
|
||
|
||
set_search_regs (pos + ((direction > 0) ? 1 - len : 0),
|
||
len);
|
||
|
||
if ((n -= direction) != 0)
|
||
pos += dirlen; /* to resume search */
|
||
else
|
||
return ((direction > 0)
|
||
? search_regs.end[0] : search_regs.start[0]);
|
||
}
|
||
else
|
||
pos += stride_for_teases;
|
||
}
|
||
}
|
||
/* We have done one clump. Can we continue? */
|
||
if ((lim - pos) * direction < 0)
|
||
return ((0 - n) * direction);
|
||
}
|
||
return pos;
|
||
}
|
||
}
|
||
|
||
/* Record beginning BEG and end BEG + LEN
|
||
for a match just found in the current buffer. */
|
||
|
||
static void
|
||
set_search_regs (beg, len)
|
||
int beg, len;
|
||
{
|
||
/* Make sure we have registers in which to store
|
||
the match position. */
|
||
if (search_regs.num_regs == 0)
|
||
{
|
||
search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
|
||
search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
|
||
search_regs.num_regs = 2;
|
||
}
|
||
|
||
search_regs.start[0] = beg;
|
||
search_regs.end[0] = beg + len;
|
||
XSETBUFFER (last_thing_searched, current_buffer);
|
||
}
|
||
|
||
/* Given a string of words separated by word delimiters,
|
||
compute a regexp that matches those exact words
|
||
separated by arbitrary punctuation. */
|
||
|
||
static Lisp_Object
|
||
wordify (string)
|
||
Lisp_Object string;
|
||
{
|
||
register unsigned char *p, *o;
|
||
register int i, len, punct_count = 0, word_count = 0;
|
||
Lisp_Object val;
|
||
|
||
CHECK_STRING (string, 0);
|
||
p = XSTRING (string)->data;
|
||
len = XSTRING (string)->size;
|
||
|
||
for (i = 0; i < len; i++)
|
||
if (SYNTAX (p[i]) != Sword)
|
||
{
|
||
punct_count++;
|
||
if (i > 0 && SYNTAX (p[i-1]) == Sword) word_count++;
|
||
}
|
||
if (SYNTAX (p[len-1]) == Sword) word_count++;
|
||
if (!word_count) return build_string ("");
|
||
|
||
val = make_string (p, len - punct_count + 5 * (word_count - 1) + 4);
|
||
|
||
o = XSTRING (val)->data;
|
||
*o++ = '\\';
|
||
*o++ = 'b';
|
||
|
||
for (i = 0; i < len; i++)
|
||
if (SYNTAX (p[i]) == Sword)
|
||
*o++ = p[i];
|
||
else if (i > 0 && SYNTAX (p[i-1]) == Sword && --word_count)
|
||
{
|
||
*o++ = '\\';
|
||
*o++ = 'W';
|
||
*o++ = '\\';
|
||
*o++ = 'W';
|
||
*o++ = '*';
|
||
}
|
||
|
||
*o++ = '\\';
|
||
*o++ = 'b';
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
|
||
"sSearch backward: ",
|
||
"Search backward from point for STRING.\n\
|
||
Set point to the beginning of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend before that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, position at limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(string, bound, noerror, count)
|
||
Lisp_Object string, bound, noerror, count;
|
||
{
|
||
return search_command (string, bound, noerror, count, -1, 0, 0);
|
||
}
|
||
|
||
DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "sSearch: ",
|
||
"Search forward from point for STRING.\n\
|
||
Set point to the end of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend after that position. nil is equivalent\n\
|
||
to (point-max).\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(string, bound, noerror, count)
|
||
Lisp_Object string, bound, noerror, count;
|
||
{
|
||
return search_command (string, bound, noerror, count, 1, 0, 0);
|
||
}
|
||
|
||
DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
|
||
"sWord search backward: ",
|
||
"Search backward from point for STRING, ignoring differences in punctuation.\n\
|
||
Set point to the beginning of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend before that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.")
|
||
(string, bound, noerror, count)
|
||
Lisp_Object string, bound, noerror, count;
|
||
{
|
||
return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
|
||
}
|
||
|
||
DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
|
||
"sWord search: ",
|
||
"Search forward from point for STRING, ignoring differences in punctuation.\n\
|
||
Set point to the end of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend after that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.")
|
||
(string, bound, noerror, count)
|
||
Lisp_Object string, bound, noerror, count;
|
||
{
|
||
return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
|
||
}
|
||
|
||
DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
|
||
"sRE search backward: ",
|
||
"Search backward from point for match for regular expression REGEXP.\n\
|
||
Set point to the beginning of the match, and return point.\n\
|
||
The match found is the one starting last in the buffer\n\
|
||
and yet ending before the origin of the search.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must start at or after that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(regexp, bound, noerror, count)
|
||
Lisp_Object regexp, bound, noerror, count;
|
||
{
|
||
return search_command (regexp, bound, noerror, count, -1, 1, 0);
|
||
}
|
||
|
||
DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
|
||
"sRE search: ",
|
||
"Search forward from point for regular expression REGEXP.\n\
|
||
Set point to the end of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend after that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(regexp, bound, noerror, count)
|
||
Lisp_Object regexp, bound, noerror, count;
|
||
{
|
||
return search_command (regexp, bound, noerror, count, 1, 1, 0);
|
||
}
|
||
|
||
DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
|
||
"sPosix search backward: ",
|
||
"Search backward from point for match for regular expression REGEXP.\n\
|
||
Find the longest match in accord with Posix regular expression rules.\n\
|
||
Set point to the beginning of the match, and return point.\n\
|
||
The match found is the one starting last in the buffer\n\
|
||
and yet ending before the origin of the search.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must start at or after that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(regexp, bound, noerror, count)
|
||
Lisp_Object regexp, bound, noerror, count;
|
||
{
|
||
return search_command (regexp, bound, noerror, count, -1, 1, 1);
|
||
}
|
||
|
||
DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
|
||
"sPosix search: ",
|
||
"Search forward from point for regular expression REGEXP.\n\
|
||
Find the longest match in accord with Posix regular expression rules.\n\
|
||
Set point to the end of the occurrence found, and return point.\n\
|
||
An optional second argument bounds the search; it is a buffer position.\n\
|
||
The match found must not extend after that position.\n\
|
||
Optional third argument, if t, means if fail just return nil (no error).\n\
|
||
If not nil and not t, move to limit of search and return nil.\n\
|
||
Optional fourth argument is repeat count--search for successive occurrences.\n\
|
||
See also the functions `match-beginning', `match-end' and `replace-match'.")
|
||
(regexp, bound, noerror, count)
|
||
Lisp_Object regexp, bound, noerror, count;
|
||
{
|
||
return search_command (regexp, bound, noerror, count, 1, 1, 1);
|
||
}
|
||
|
||
DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 4, 0,
|
||
"Replace text matched by last search with NEWTEXT.\n\
|
||
If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
|
||
Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
|
||
based on the replaced text.\n\
|
||
If the replaced text has only capital letters\n\
|
||
and has at least one multiletter word, convert NEWTEXT to all caps.\n\
|
||
If the replaced text has at least one word starting with a capital letter,\n\
|
||
then capitalize each word in NEWTEXT.\n\n\
|
||
If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
|
||
Otherwise treat `\\' as special:\n\
|
||
`\\&' in NEWTEXT means substitute original matched text.\n\
|
||
`\\N' means substitute what matched the Nth `\\(...\\)'.\n\
|
||
If Nth parens didn't match, substitute nothing.\n\
|
||
`\\\\' means insert one `\\'.\n\
|
||
FIXEDCASE and LITERAL are optional arguments.\n\
|
||
Leaves point at end of replacement text.\n\
|
||
\n\
|
||
The optional fourth argument STRING can be a string to modify.\n\
|
||
In that case, this function creates and returns a new string\n\
|
||
which is made by replacing the part of STRING that was matched.")
|
||
(newtext, fixedcase, literal, string)
|
||
Lisp_Object newtext, fixedcase, literal, string;
|
||
{
|
||
enum { nochange, all_caps, cap_initial } case_action;
|
||
register int pos, last;
|
||
int some_multiletter_word;
|
||
int some_lowercase;
|
||
int some_uppercase;
|
||
int some_nonuppercase_initial;
|
||
register int c, prevc;
|
||
int inslen;
|
||
|
||
CHECK_STRING (newtext, 0);
|
||
|
||
if (! NILP (string))
|
||
CHECK_STRING (string, 4);
|
||
|
||
case_action = nochange; /* We tried an initialization */
|
||
/* but some C compilers blew it */
|
||
|
||
if (search_regs.num_regs <= 0)
|
||
error ("replace-match called before any match found");
|
||
|
||
if (NILP (string))
|
||
{
|
||
if (search_regs.start[0] < BEGV
|
||
|| search_regs.start[0] > search_regs.end[0]
|
||
|| search_regs.end[0] > ZV)
|
||
args_out_of_range (make_number (search_regs.start[0]),
|
||
make_number (search_regs.end[0]));
|
||
}
|
||
else
|
||
{
|
||
if (search_regs.start[0] < 0
|
||
|| search_regs.start[0] > search_regs.end[0]
|
||
|| search_regs.end[0] > XSTRING (string)->size)
|
||
args_out_of_range (make_number (search_regs.start[0]),
|
||
make_number (search_regs.end[0]));
|
||
}
|
||
|
||
if (NILP (fixedcase))
|
||
{
|
||
/* Decide how to casify by examining the matched text. */
|
||
|
||
last = search_regs.end[0];
|
||
prevc = '\n';
|
||
case_action = all_caps;
|
||
|
||
/* some_multiletter_word is set nonzero if any original word
|
||
is more than one letter long. */
|
||
some_multiletter_word = 0;
|
||
some_lowercase = 0;
|
||
some_nonuppercase_initial = 0;
|
||
some_uppercase = 0;
|
||
|
||
for (pos = search_regs.start[0]; pos < last; pos++)
|
||
{
|
||
if (NILP (string))
|
||
c = FETCH_CHAR (pos);
|
||
else
|
||
c = XSTRING (string)->data[pos];
|
||
|
||
if (LOWERCASEP (c))
|
||
{
|
||
/* Cannot be all caps if any original char is lower case */
|
||
|
||
some_lowercase = 1;
|
||
if (SYNTAX (prevc) != Sword)
|
||
some_nonuppercase_initial = 1;
|
||
else
|
||
some_multiletter_word = 1;
|
||
}
|
||
else if (!NOCASEP (c))
|
||
{
|
||
some_uppercase = 1;
|
||
if (SYNTAX (prevc) != Sword)
|
||
;
|
||
else
|
||
some_multiletter_word = 1;
|
||
}
|
||
else
|
||
{
|
||
/* If the initial is a caseless word constituent,
|
||
treat that like a lowercase initial. */
|
||
if (SYNTAX (prevc) != Sword)
|
||
some_nonuppercase_initial = 1;
|
||
}
|
||
|
||
prevc = c;
|
||
}
|
||
|
||
/* Convert to all caps if the old text is all caps
|
||
and has at least one multiletter word. */
|
||
if (! some_lowercase && some_multiletter_word)
|
||
case_action = all_caps;
|
||
/* Capitalize each word, if the old text has all capitalized words. */
|
||
else if (!some_nonuppercase_initial && some_multiletter_word)
|
||
case_action = cap_initial;
|
||
else if (!some_nonuppercase_initial && some_uppercase)
|
||
/* Should x -> yz, operating on X, give Yz or YZ?
|
||
We'll assume the latter. */
|
||
case_action = all_caps;
|
||
else
|
||
case_action = nochange;
|
||
}
|
||
|
||
/* Do replacement in a string. */
|
||
if (!NILP (string))
|
||
{
|
||
Lisp_Object before, after;
|
||
|
||
before = Fsubstring (string, make_number (0),
|
||
make_number (search_regs.start[0]));
|
||
after = Fsubstring (string, make_number (search_regs.end[0]), Qnil);
|
||
|
||
/* Do case substitution into NEWTEXT if desired. */
|
||
if (NILP (literal))
|
||
{
|
||
int lastpos = -1;
|
||
/* We build up the substituted string in ACCUM. */
|
||
Lisp_Object accum;
|
||
Lisp_Object middle;
|
||
|
||
accum = Qnil;
|
||
|
||
for (pos = 0; pos < XSTRING (newtext)->size; pos++)
|
||
{
|
||
int substart = -1;
|
||
int subend;
|
||
|
||
c = XSTRING (newtext)->data[pos];
|
||
if (c == '\\')
|
||
{
|
||
c = XSTRING (newtext)->data[++pos];
|
||
if (c == '&')
|
||
{
|
||
substart = search_regs.start[0];
|
||
subend = search_regs.end[0];
|
||
}
|
||
else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
|
||
{
|
||
if (search_regs.start[c - '0'] >= 1)
|
||
{
|
||
substart = search_regs.start[c - '0'];
|
||
subend = search_regs.end[c - '0'];
|
||
}
|
||
}
|
||
}
|
||
if (substart >= 0)
|
||
{
|
||
if (pos - 1 != lastpos + 1)
|
||
middle = Fsubstring (newtext, lastpos + 1, pos - 1);
|
||
else
|
||
middle = Qnil;
|
||
accum = concat3 (accum, middle,
|
||
Fsubstring (string, make_number (substart),
|
||
make_number (subend)));
|
||
lastpos = pos;
|
||
}
|
||
}
|
||
|
||
if (pos != lastpos + 1)
|
||
middle = Fsubstring (newtext, lastpos + 1, pos);
|
||
else
|
||
middle = Qnil;
|
||
|
||
newtext = concat2 (accum, middle);
|
||
}
|
||
|
||
if (case_action == all_caps)
|
||
newtext = Fupcase (newtext);
|
||
else if (case_action == cap_initial)
|
||
newtext = upcase_initials (newtext);
|
||
|
||
return concat3 (before, newtext, after);
|
||
}
|
||
|
||
/* We insert the replacement text before the old text, and then
|
||
delete the original text. This means that markers at the
|
||
beginning or end of the original will float to the corresponding
|
||
position in the replacement. */
|
||
SET_PT (search_regs.start[0]);
|
||
if (!NILP (literal))
|
||
Finsert_and_inherit (1, &newtext);
|
||
else
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (newtext);
|
||
|
||
for (pos = 0; pos < XSTRING (newtext)->size; pos++)
|
||
{
|
||
int offset = point - search_regs.start[0];
|
||
|
||
c = XSTRING (newtext)->data[pos];
|
||
if (c == '\\')
|
||
{
|
||
c = XSTRING (newtext)->data[++pos];
|
||
if (c == '&')
|
||
Finsert_buffer_substring
|
||
(Fcurrent_buffer (),
|
||
make_number (search_regs.start[0] + offset),
|
||
make_number (search_regs.end[0] + offset));
|
||
else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
|
||
{
|
||
if (search_regs.start[c - '0'] >= 1)
|
||
Finsert_buffer_substring
|
||
(Fcurrent_buffer (),
|
||
make_number (search_regs.start[c - '0'] + offset),
|
||
make_number (search_regs.end[c - '0'] + offset));
|
||
}
|
||
else
|
||
insert_char (c);
|
||
}
|
||
else
|
||
insert_char (c);
|
||
}
|
||
UNGCPRO;
|
||
}
|
||
|
||
inslen = point - (search_regs.start[0]);
|
||
del_range (search_regs.start[0] + inslen, search_regs.end[0] + inslen);
|
||
|
||
if (case_action == all_caps)
|
||
Fupcase_region (make_number (point - inslen), make_number (point));
|
||
else if (case_action == cap_initial)
|
||
upcase_initials_region (make_number (point - inslen), make_number (point));
|
||
return Qnil;
|
||
}
|
||
|
||
static Lisp_Object
|
||
match_limit (num, beginningp)
|
||
Lisp_Object num;
|
||
int beginningp;
|
||
{
|
||
register int n;
|
||
|
||
CHECK_NUMBER (num, 0);
|
||
n = XINT (num);
|
||
if (n < 0 || n >= search_regs.num_regs)
|
||
args_out_of_range (num, make_number (search_regs.num_regs));
|
||
if (search_regs.num_regs <= 0
|
||
|| search_regs.start[n] < 0)
|
||
return Qnil;
|
||
return (make_number ((beginningp) ? search_regs.start[n]
|
||
: search_regs.end[n]));
|
||
}
|
||
|
||
DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
|
||
"Return position of start of text matched by last search.\n\
|
||
NUM specifies which parenthesized expression in the last regexp.\n\
|
||
Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
|
||
Zero means the entire text matched by the whole regexp or whole string.")
|
||
(num)
|
||
Lisp_Object num;
|
||
{
|
||
return match_limit (num, 1);
|
||
}
|
||
|
||
DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
|
||
"Return position of end of text matched by last search.\n\
|
||
ARG, a number, specifies which parenthesized expression in the last regexp.\n\
|
||
Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
|
||
Zero means the entire text matched by the whole regexp or whole string.")
|
||
(num)
|
||
Lisp_Object num;
|
||
{
|
||
return match_limit (num, 0);
|
||
}
|
||
|
||
DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 0, 0,
|
||
"Return a list containing all info on what the last search matched.\n\
|
||
Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
|
||
All the elements are markers or nil (nil if the Nth pair didn't match)\n\
|
||
if the last match was on a buffer; integers or nil if a string was matched.\n\
|
||
Use `store-match-data' to reinstate the data in this list.")
|
||
()
|
||
{
|
||
Lisp_Object *data;
|
||
int i, len;
|
||
|
||
if (NILP (last_thing_searched))
|
||
error ("match-data called before any match found");
|
||
|
||
data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
|
||
* sizeof (Lisp_Object));
|
||
|
||
len = -1;
|
||
for (i = 0; i < search_regs.num_regs; i++)
|
||
{
|
||
int start = search_regs.start[i];
|
||
if (start >= 0)
|
||
{
|
||
if (EQ (last_thing_searched, Qt))
|
||
{
|
||
XSETFASTINT (data[2 * i], start);
|
||
XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
|
||
}
|
||
else if (BUFFERP (last_thing_searched))
|
||
{
|
||
data[2 * i] = Fmake_marker ();
|
||
Fset_marker (data[2 * i],
|
||
make_number (start),
|
||
last_thing_searched);
|
||
data[2 * i + 1] = Fmake_marker ();
|
||
Fset_marker (data[2 * i + 1],
|
||
make_number (search_regs.end[i]),
|
||
last_thing_searched);
|
||
}
|
||
else
|
||
/* last_thing_searched must always be Qt, a buffer, or Qnil. */
|
||
abort ();
|
||
|
||
len = i;
|
||
}
|
||
else
|
||
data[2 * i] = data [2 * i + 1] = Qnil;
|
||
}
|
||
return Flist (2 * len + 2, data);
|
||
}
|
||
|
||
|
||
DEFUN ("store-match-data", Fstore_match_data, Sstore_match_data, 1, 1, 0,
|
||
"Set internal data on last search match from elements of LIST.\n\
|
||
LIST should have been created by calling `match-data' previously.")
|
||
(list)
|
||
register Lisp_Object list;
|
||
{
|
||
register int i;
|
||
register Lisp_Object marker;
|
||
|
||
if (running_asynch_code)
|
||
save_search_regs ();
|
||
|
||
if (!CONSP (list) && !NILP (list))
|
||
list = wrong_type_argument (Qconsp, list);
|
||
|
||
/* Unless we find a marker with a buffer in LIST, assume that this
|
||
match data came from a string. */
|
||
last_thing_searched = Qt;
|
||
|
||
/* Allocate registers if they don't already exist. */
|
||
{
|
||
int length = XFASTINT (Flength (list)) / 2;
|
||
|
||
if (length > search_regs.num_regs)
|
||
{
|
||
if (search_regs.num_regs == 0)
|
||
{
|
||
search_regs.start
|
||
= (regoff_t *) xmalloc (length * sizeof (regoff_t));
|
||
search_regs.end
|
||
= (regoff_t *) xmalloc (length * sizeof (regoff_t));
|
||
}
|
||
else
|
||
{
|
||
search_regs.start
|
||
= (regoff_t *) xrealloc (search_regs.start,
|
||
length * sizeof (regoff_t));
|
||
search_regs.end
|
||
= (regoff_t *) xrealloc (search_regs.end,
|
||
length * sizeof (regoff_t));
|
||
}
|
||
|
||
search_regs.num_regs = length;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < search_regs.num_regs; i++)
|
||
{
|
||
marker = Fcar (list);
|
||
if (NILP (marker))
|
||
{
|
||
search_regs.start[i] = -1;
|
||
list = Fcdr (list);
|
||
}
|
||
else
|
||
{
|
||
if (MARKERP (marker))
|
||
{
|
||
if (XMARKER (marker)->buffer == 0)
|
||
XSETFASTINT (marker, 0);
|
||
else
|
||
XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
|
||
}
|
||
|
||
CHECK_NUMBER_COERCE_MARKER (marker, 0);
|
||
search_regs.start[i] = XINT (marker);
|
||
list = Fcdr (list);
|
||
|
||
marker = Fcar (list);
|
||
if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
|
||
XSETFASTINT (marker, 0);
|
||
|
||
CHECK_NUMBER_COERCE_MARKER (marker, 0);
|
||
search_regs.end[i] = XINT (marker);
|
||
}
|
||
list = Fcdr (list);
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
/* If non-zero the match data have been saved in saved_search_regs
|
||
during the execution of a sentinel or filter. */
|
||
static int search_regs_saved;
|
||
static struct re_registers saved_search_regs;
|
||
|
||
/* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
|
||
if asynchronous code (filter or sentinel) is running. */
|
||
static void
|
||
save_search_regs ()
|
||
{
|
||
if (!search_regs_saved)
|
||
{
|
||
saved_search_regs.num_regs = search_regs.num_regs;
|
||
saved_search_regs.start = search_regs.start;
|
||
saved_search_regs.end = search_regs.end;
|
||
search_regs.num_regs = 0;
|
||
search_regs.start = 0;
|
||
search_regs.end = 0;
|
||
|
||
search_regs_saved = 1;
|
||
}
|
||
}
|
||
|
||
/* Called upon exit from filters and sentinels. */
|
||
void
|
||
restore_match_data ()
|
||
{
|
||
if (search_regs_saved)
|
||
{
|
||
if (search_regs.num_regs > 0)
|
||
{
|
||
xfree (search_regs.start);
|
||
xfree (search_regs.end);
|
||
}
|
||
search_regs.num_regs = saved_search_regs.num_regs;
|
||
search_regs.start = saved_search_regs.start;
|
||
search_regs.end = saved_search_regs.end;
|
||
|
||
search_regs_saved = 0;
|
||
}
|
||
}
|
||
|
||
/* Quote a string to inactivate reg-expr chars */
|
||
|
||
DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
|
||
"Return a regexp string which matches exactly STRING and nothing else.")
|
||
(str)
|
||
Lisp_Object str;
|
||
{
|
||
register unsigned char *in, *out, *end;
|
||
register unsigned char *temp;
|
||
|
||
CHECK_STRING (str, 0);
|
||
|
||
temp = (unsigned char *) alloca (XSTRING (str)->size * 2);
|
||
|
||
/* Now copy the data into the new string, inserting escapes. */
|
||
|
||
in = XSTRING (str)->data;
|
||
end = in + XSTRING (str)->size;
|
||
out = temp;
|
||
|
||
for (; in != end; in++)
|
||
{
|
||
if (*in == '[' || *in == ']'
|
||
|| *in == '*' || *in == '.' || *in == '\\'
|
||
|| *in == '?' || *in == '+'
|
||
|| *in == '^' || *in == '$')
|
||
*out++ = '\\';
|
||
*out++ = *in;
|
||
}
|
||
|
||
return make_string (temp, out - temp);
|
||
}
|
||
|
||
syms_of_search ()
|
||
{
|
||
register int i;
|
||
|
||
for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
|
||
{
|
||
searchbufs[i].buf.allocated = 100;
|
||
searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
|
||
searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
|
||
searchbufs[i].regexp = Qnil;
|
||
staticpro (&searchbufs[i].regexp);
|
||
searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
|
||
}
|
||
searchbuf_head = &searchbufs[0];
|
||
|
||
Qsearch_failed = intern ("search-failed");
|
||
staticpro (&Qsearch_failed);
|
||
Qinvalid_regexp = intern ("invalid-regexp");
|
||
staticpro (&Qinvalid_regexp);
|
||
|
||
Fput (Qsearch_failed, Qerror_conditions,
|
||
Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
|
||
Fput (Qsearch_failed, Qerror_message,
|
||
build_string ("Search failed"));
|
||
|
||
Fput (Qinvalid_regexp, Qerror_conditions,
|
||
Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
|
||
Fput (Qinvalid_regexp, Qerror_message,
|
||
build_string ("Invalid regexp"));
|
||
|
||
last_thing_searched = Qnil;
|
||
staticpro (&last_thing_searched);
|
||
|
||
defsubr (&Slooking_at);
|
||
defsubr (&Sposix_looking_at);
|
||
defsubr (&Sstring_match);
|
||
defsubr (&Sposix_string_match);
|
||
defsubr (&Sskip_chars_forward);
|
||
defsubr (&Sskip_chars_backward);
|
||
defsubr (&Sskip_syntax_forward);
|
||
defsubr (&Sskip_syntax_backward);
|
||
defsubr (&Ssearch_forward);
|
||
defsubr (&Ssearch_backward);
|
||
defsubr (&Sword_search_forward);
|
||
defsubr (&Sword_search_backward);
|
||
defsubr (&Sre_search_forward);
|
||
defsubr (&Sre_search_backward);
|
||
defsubr (&Sposix_search_forward);
|
||
defsubr (&Sposix_search_backward);
|
||
defsubr (&Sreplace_match);
|
||
defsubr (&Smatch_beginning);
|
||
defsubr (&Smatch_end);
|
||
defsubr (&Smatch_data);
|
||
defsubr (&Sstore_match_data);
|
||
defsubr (&Sregexp_quote);
|
||
}
|