mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-24 06:20:43 -08:00
341 lines
8.8 KiB
C
341 lines
8.8 KiB
C
/* vmo1.c: VIRTUAL MEMORY MAPPING FOR DIGITAL UNIX
|
|
*
|
|
* $Id$
|
|
* Copyright (c) 2001 Ravenbrook Limited. See end of file for license.
|
|
*
|
|
* .design: <design/vm/>, <design/vmo1/>
|
|
*
|
|
* .status: A bit hacky, but probably working.
|
|
*
|
|
* .assume.mmap.err: ENOMEM is the only error we really expect to
|
|
* get from mmap. The others are either caused by invalid params
|
|
* or features we don't use. See mmap(2) for details.
|
|
*
|
|
* .assume.off_t: We assume that the Size type (defined by the MM) fits
|
|
* in the off_t type (define by the system (POSIX?)). In fact we test
|
|
* the more stringent requirement that they are the same size. This
|
|
* assumption is made in VMUnmap.
|
|
*/
|
|
|
|
#include "mpm.h"
|
|
|
|
#ifndef MPS_OS_O1
|
|
#error "vmo1.c is DEC UNIX / OSF1 specific, but MPS_OS_O1 is not set"
|
|
#endif
|
|
|
|
/* open sesame magic, see standards(5) */
|
|
#define _POSIX_C_SOURCE 199309L
|
|
#define _XOPEN_SOURCE_EXTENDED 1
|
|
|
|
/* for open(2) */
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <fcntl.h>
|
|
|
|
/* for mmap(2),munmap(2) */
|
|
#include <sys/mman.h>
|
|
|
|
/* for errno(2) */
|
|
#include <errno.h>
|
|
|
|
/* for getpagesize(2),close(2) */
|
|
#include <unistd.h>
|
|
|
|
SRCID(vmo1, "$Id$");
|
|
|
|
|
|
/* Fix unprototyped system calls
|
|
*
|
|
* For some bizarre reason DEC go out of their way to not prototype
|
|
* these calls when using gcc. See /usr/include/standards.h and
|
|
* /usr/include/unistd.h for the very gory details.
|
|
*/
|
|
#ifdef MPS_BUILD_GC
|
|
extern int close(int);
|
|
extern int getpagesize(void);
|
|
#endif
|
|
|
|
|
|
/* VMStruct -- virtual memory structure */
|
|
|
|
#define VMSig ((Sig)0x519B3999) /* SIGnature VM */
|
|
|
|
typedef struct VMStruct {
|
|
Sig sig; /* <design/sig/> */
|
|
Align align; /* page size */
|
|
Addr base, limit; /* boundaries of reserved space */
|
|
Size reserved; /* total reserved address space */
|
|
Size mapped; /* total mapped memory */
|
|
int none_fd; /* fildes for reserved memory */
|
|
} VMStruct;
|
|
|
|
|
|
/* VMAlign -- return the page size */
|
|
|
|
Align VMAlign(VM vm)
|
|
{
|
|
AVERT(VM, vm);
|
|
|
|
return vm->align;
|
|
}
|
|
|
|
|
|
/* VMCheck -- check a VM structure */
|
|
|
|
Bool VMCheck(VM vm)
|
|
{
|
|
CHECKS(VM, vm);
|
|
CHECKL(vm->none_fd >= 0);
|
|
CHECKL(vm->base != 0);
|
|
CHECKL(vm->limit != 0);
|
|
CHECKL(vm->base < vm->limit);
|
|
CHECKL(vm->mapped <= vm->reserved);
|
|
CHECKL(SizeIsP2(vm->align));
|
|
CHECKL(AddrIsAligned(vm->base, vm->align));
|
|
CHECKL(AddrIsAligned(vm->limit, vm->align));
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* VMCreate -- reserve some virtual address space, and create a VM structure */
|
|
|
|
Res VMCreate(VM *vmReturn, Size size)
|
|
{
|
|
void *addr;
|
|
Align align;
|
|
int none_fd;
|
|
VM vm;
|
|
Res res;
|
|
|
|
AVER(vmReturn != NULL);
|
|
|
|
align = (Align)getpagesize();
|
|
AVER(SizeIsP2(align));
|
|
size = SizeAlignUp(size, align);
|
|
if ((size == 0) || (size > (Size)(size_t)-1))
|
|
return ResRESOURCE;
|
|
|
|
none_fd = open("/etc/passwd", O_RDONLY);
|
|
if (none_fd == -1) {
|
|
return ResFAIL;
|
|
}
|
|
|
|
/* Map in a page to store the descriptor on. */
|
|
addr = mmap(0, (size_t)SizeAlignUp(sizeof(VMStruct), align),
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_VARIABLE,
|
|
-1, 0);
|
|
if (addr == (void *)-1) {
|
|
int e = errno;
|
|
AVER(e == ENOMEM); /* .assume.mmap.err */
|
|
res = (e == ENOMEM) ? ResMEMORY : ResFAIL;
|
|
goto failVMMap;
|
|
}
|
|
vm = (VM)addr;
|
|
|
|
vm->none_fd = none_fd;
|
|
vm->align = align;
|
|
|
|
/* See .assume.not-last. */
|
|
addr = mmap(0, (size_t)size,
|
|
PROT_NONE, MAP_FILE | MAP_SHARED | MAP_VARIABLE,
|
|
none_fd, 0);
|
|
if (addr == (void *)-1) {
|
|
int e = errno;
|
|
AVER(e == ENOMEM); /* .assume.mmap.err */
|
|
res = (e == ENOMEM) ? ResRESOURCE : ResFAIL;
|
|
goto failReserve;
|
|
}
|
|
|
|
vm->base = (Addr)addr;
|
|
vm->limit = AddrAdd(vm->base, size);
|
|
vm->reserved = size;
|
|
vm->mapped = (Size)0;
|
|
|
|
vm->sig = VMSig;
|
|
AVERT(VM, vm);
|
|
EVENT_PAA(VMCreate, vm, vm->base, vm->limit);
|
|
*vmReturn = vm;
|
|
return ResOK;
|
|
|
|
failReserve:
|
|
(void)munmap((void *)vm, (size_t)SizeAlignUp(sizeof(VMStruct), align));
|
|
failVMMap:
|
|
(void)close(none_fd); /* see .close.fail */
|
|
return res;
|
|
}
|
|
|
|
|
|
/* VMDestroy -- destroy the VM structure */
|
|
|
|
void VMDestroy(VM vm)
|
|
{
|
|
int r;
|
|
int none_fd;
|
|
|
|
AVERT(VM, vm);
|
|
AVER(vm->mapped == (Size)0);
|
|
|
|
/* This appears to be pretty pointless, since the space descriptor */
|
|
/* page is about to vanish completely. However, munmap might fail */
|
|
/* for some reason, and this would ensure that it was still */
|
|
/* discovered if sigs were being checked. */
|
|
vm->sig = SigInvalid;
|
|
|
|
none_fd = vm->none_fd;
|
|
r = munmap((void *)vm->base, (size_t)AddrOffset(vm->base, vm->limit));
|
|
AVER(r == 0);
|
|
r = munmap((void *)vm, (size_t)SizeAlignUp(sizeof(VMStruct), vm->align));
|
|
AVER(r == 0);
|
|
/* .close.fail: We ignore failure from close() as there's very */
|
|
/* little we can do anyway. */
|
|
(void)close(none_fd);
|
|
|
|
EVENT_P(VMDestroy, vm);
|
|
}
|
|
|
|
|
|
/* VMBase -- return the base address of the memory reserved */
|
|
|
|
Addr VMBase(VM vm)
|
|
{
|
|
AVERT(VM, vm);
|
|
|
|
return vm->base;
|
|
}
|
|
|
|
|
|
/* VMLimit -- return the limit address of the memory reserved */
|
|
|
|
Addr VMLimit(VM vm)
|
|
{
|
|
AVERT(VM, vm);
|
|
|
|
return vm->limit;
|
|
}
|
|
|
|
|
|
/* VMReserved -- return the amount of address space reserved */
|
|
|
|
Size VMReserved(VM vm)
|
|
{
|
|
AVERT(VM, vm);
|
|
|
|
return vm->reserved;
|
|
}
|
|
|
|
|
|
/* VMMapped -- return the amount of memory actually mapped */
|
|
|
|
Size VMMapped(VM vm)
|
|
{
|
|
AVERT(VM, vm);
|
|
|
|
return vm->mapped;
|
|
}
|
|
|
|
|
|
/* VMMap -- map the given range of memory */
|
|
|
|
Res VMMap(VM vm, Addr base, Addr limit)
|
|
{
|
|
Size size;
|
|
|
|
AVERT(VM, vm);
|
|
AVER(sizeof(void *) == sizeof(Addr));
|
|
AVER(base < limit);
|
|
AVER(base >= vm->base);
|
|
AVER(limit <= vm->limit);
|
|
AVER(AddrIsAligned(base, vm->align));
|
|
AVER(AddrIsAligned(limit, vm->align));
|
|
|
|
size = AddrOffset(base, limit);
|
|
|
|
if (mmap((void *)base, (size_t)size,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED,
|
|
-1, 0)
|
|
== (void *)-1) {
|
|
AVER(errno == ENOMEM); /* .assume.mmap.err */
|
|
return ResMEMORY;
|
|
}
|
|
|
|
vm->mapped += size;
|
|
|
|
EVENT_PAA(VMMap, vm, base, limit);
|
|
return ResOK;
|
|
}
|
|
|
|
|
|
/* VMUnmap -- unmap the given range of memory
|
|
*
|
|
* See <design/vmo1/#fun.unmap>.
|
|
*/
|
|
|
|
void VMUnmap(VM vm, Addr base, Addr limit)
|
|
{
|
|
Size size;
|
|
void *addr;
|
|
|
|
AVERT(VM, vm);
|
|
AVER(base < limit);
|
|
AVER(base >= vm->base);
|
|
AVER(limit <= vm->limit);
|
|
AVER(AddrIsAligned(base, vm->align));
|
|
AVER(AddrIsAligned(limit, vm->align));
|
|
AVER(sizeof(off_t) == sizeof(Size)); /* .assume.off_t */
|
|
|
|
size = AddrOffset(base, limit);
|
|
|
|
/* see <design/vmo1/#fun.unmap.offset> */
|
|
addr = mmap((void *)base, (size_t)size,
|
|
PROT_NONE, MAP_FILE | MAP_SHARED | MAP_FIXED,
|
|
vm->none_fd, (off_t)AddrOffset(vm->base, base));
|
|
AVER(addr == (void *)base);
|
|
|
|
vm->mapped -= size;
|
|
|
|
EVENT_PAA(VMUnmap, vm, base, limit);
|
|
}
|
|
|
|
|
|
/* C. COPYRIGHT AND LICENSE
|
|
*
|
|
* Copyright (C) 2001-2002 Ravenbrook Limited <http://www.ravenbrook.com/>.
|
|
* All rights reserved. This is an open source license. Contact
|
|
* Ravenbrook for commercial licensing options.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Redistributions in any form must be accompanied by information on how
|
|
* to obtain complete source code for this software and any accompanying
|
|
* software that uses this software. The source code must either be
|
|
* included in the distribution or be available for no more than the cost
|
|
* of distribution plus a nominal fee, and must be freely redistributable
|
|
* under reasonable conditions. For an executable file, complete source
|
|
* code means the source code for all modules it contains. It does not
|
|
* include source code for modules or files that typically accompany the
|
|
* major components of the operating system on which the executable file
|
|
* runs.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
|
* PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|