mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-25 15:00:45 -08:00
1081 lines
27 KiB
C
1081 lines
27 KiB
C
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
|
||
Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
|
||
2005, 2006, 2007 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
|
||
/* ANSI C requires only these float functions:
|
||
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
|
||
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
|
||
|
||
Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
|
||
Define HAVE_CBRT if you have cbrt.
|
||
Define HAVE_RINT if you have a working rint.
|
||
If you don't define these, then the appropriate routines will be simulated.
|
||
|
||
Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
|
||
(This should happen automatically.)
|
||
|
||
Define FLOAT_CHECK_ERRNO if the float library routines set errno.
|
||
This has no effect if HAVE_MATHERR is defined.
|
||
|
||
Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
|
||
(What systems actually do this? Please let us know.)
|
||
|
||
Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
|
||
either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
|
||
range checking will happen before calling the float routines. This has
|
||
no effect if HAVE_MATHERR is defined (since matherr will be called when
|
||
a domain error occurs.)
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <signal.h>
|
||
#include "lisp.h"
|
||
#include "syssignal.h"
|
||
|
||
#if STDC_HEADERS
|
||
#include <float.h>
|
||
#endif
|
||
|
||
/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
|
||
#ifndef IEEE_FLOATING_POINT
|
||
#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
|
||
&& FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
|
||
#define IEEE_FLOATING_POINT 1
|
||
#else
|
||
#define IEEE_FLOATING_POINT 0
|
||
#endif
|
||
#endif
|
||
|
||
/* Work around a problem that happens because math.h on hpux 7
|
||
defines two static variables--which, in Emacs, are not really static,
|
||
because `static' is defined as nothing. The problem is that they are
|
||
defined both here and in lread.c.
|
||
These macros prevent the name conflict. */
|
||
#if defined (HPUX) && !defined (HPUX8)
|
||
#define _MAXLDBL floatfns_maxldbl
|
||
#define _NMAXLDBL floatfns_nmaxldbl
|
||
#endif
|
||
|
||
#include <math.h>
|
||
|
||
/* This declaration is omitted on some systems, like Ultrix. */
|
||
#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
|
||
extern double logb ();
|
||
#endif /* not HPUX and HAVE_LOGB and no logb macro */
|
||
|
||
#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
|
||
/* If those are defined, then this is probably a `matherr' machine. */
|
||
# ifndef HAVE_MATHERR
|
||
# define HAVE_MATHERR
|
||
# endif
|
||
#endif
|
||
|
||
#ifdef NO_MATHERR
|
||
#undef HAVE_MATHERR
|
||
#endif
|
||
|
||
#ifdef HAVE_MATHERR
|
||
# ifdef FLOAT_CHECK_ERRNO
|
||
# undef FLOAT_CHECK_ERRNO
|
||
# endif
|
||
# ifdef FLOAT_CHECK_DOMAIN
|
||
# undef FLOAT_CHECK_DOMAIN
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef NO_FLOAT_CHECK_ERRNO
|
||
#define FLOAT_CHECK_ERRNO
|
||
#endif
|
||
|
||
#ifdef FLOAT_CHECK_ERRNO
|
||
# include <errno.h>
|
||
|
||
#ifndef USE_CRT_DLL
|
||
extern int errno;
|
||
#endif
|
||
#endif
|
||
|
||
/* Avoid traps on VMS from sinh and cosh.
|
||
All the other functions set errno instead. */
|
||
|
||
#ifdef VMS
|
||
#undef cosh
|
||
#undef sinh
|
||
#define cosh(x) ((exp(x)+exp(-x))*0.5)
|
||
#define sinh(x) ((exp(x)-exp(-x))*0.5)
|
||
#endif /* VMS */
|
||
|
||
#ifdef FLOAT_CATCH_SIGILL
|
||
static SIGTYPE float_error ();
|
||
#endif
|
||
|
||
/* Nonzero while executing in floating point.
|
||
This tells float_error what to do. */
|
||
|
||
static int in_float;
|
||
|
||
/* If an argument is out of range for a mathematical function,
|
||
here is the actual argument value to use in the error message.
|
||
These variables are used only across the floating point library call
|
||
so there is no need to staticpro them. */
|
||
|
||
static Lisp_Object float_error_arg, float_error_arg2;
|
||
|
||
static char *float_error_fn_name;
|
||
|
||
/* Evaluate the floating point expression D, recording NUM
|
||
as the original argument for error messages.
|
||
D is normally an assignment expression.
|
||
Handle errors which may result in signals or may set errno.
|
||
|
||
Note that float_error may be declared to return void, so you can't
|
||
just cast the zero after the colon to (SIGTYPE) to make the types
|
||
check properly. */
|
||
|
||
#ifdef FLOAT_CHECK_ERRNO
|
||
#define IN_FLOAT(d, name, num) \
|
||
do { \
|
||
float_error_arg = num; \
|
||
float_error_fn_name = name; \
|
||
in_float = 1; errno = 0; (d); in_float = 0; \
|
||
switch (errno) { \
|
||
case 0: break; \
|
||
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
|
||
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
|
||
default: arith_error (float_error_fn_name, float_error_arg); \
|
||
} \
|
||
} while (0)
|
||
#define IN_FLOAT2(d, name, num, num2) \
|
||
do { \
|
||
float_error_arg = num; \
|
||
float_error_arg2 = num2; \
|
||
float_error_fn_name = name; \
|
||
in_float = 1; errno = 0; (d); in_float = 0; \
|
||
switch (errno) { \
|
||
case 0: break; \
|
||
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
|
||
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
|
||
default: arith_error (float_error_fn_name, float_error_arg); \
|
||
} \
|
||
} while (0)
|
||
#else
|
||
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
|
||
#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
|
||
#endif
|
||
|
||
/* Convert float to Lisp_Int if it fits, else signal a range error
|
||
using the given arguments. */
|
||
#define FLOAT_TO_INT(x, i, name, num) \
|
||
do \
|
||
{ \
|
||
if (FIXNUM_OVERFLOW_P (x)) \
|
||
range_error (name, num); \
|
||
XSETINT (i, (EMACS_INT)(x)); \
|
||
} \
|
||
while (0)
|
||
#define FLOAT_TO_INT2(x, i, name, num1, num2) \
|
||
do \
|
||
{ \
|
||
if (FIXNUM_OVERFLOW_P (x)) \
|
||
range_error2 (name, num1, num2); \
|
||
XSETINT (i, (EMACS_INT)(x)); \
|
||
} \
|
||
while (0)
|
||
|
||
#define arith_error(op,arg) \
|
||
xsignal2 (Qarith_error, build_string ((op)), (arg))
|
||
#define range_error(op,arg) \
|
||
xsignal2 (Qrange_error, build_string ((op)), (arg))
|
||
#define range_error2(op,a1,a2) \
|
||
xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
|
||
#define domain_error(op,arg) \
|
||
xsignal2 (Qdomain_error, build_string ((op)), (arg))
|
||
#define domain_error2(op,a1,a2) \
|
||
xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
|
||
|
||
/* Extract a Lisp number as a `double', or signal an error. */
|
||
|
||
double
|
||
extract_float (num)
|
||
Lisp_Object num;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (num);
|
||
|
||
if (FLOATP (num))
|
||
return XFLOAT_DATA (num);
|
||
return (double) XINT (num);
|
||
}
|
||
|
||
/* Trig functions. */
|
||
|
||
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
|
||
doc: /* Return the inverse cosine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 1.0 || d < -1.0)
|
||
domain_error ("acos", arg);
|
||
#endif
|
||
IN_FLOAT (d = acos (d), "acos", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
|
||
doc: /* Return the inverse sine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 1.0 || d < -1.0)
|
||
domain_error ("asin", arg);
|
||
#endif
|
||
IN_FLOAT (d = asin (d), "asin", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atan", Fatan, Satan, 1, 2, 0,
|
||
doc: /* Return the inverse tangent of the arguments.
|
||
If only one argument Y is given, return the inverse tangent of Y.
|
||
If two arguments Y and X are given, return the inverse tangent of Y
|
||
divided by X, i.e. the angle in radians between the vector (X, Y)
|
||
and the x-axis. */)
|
||
(y, x)
|
||
register Lisp_Object y, x;
|
||
{
|
||
double d = extract_float (y);
|
||
|
||
if (NILP (x))
|
||
IN_FLOAT (d = atan (d), "atan", y);
|
||
else
|
||
{
|
||
double d2 = extract_float (x);
|
||
|
||
IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
|
||
doc: /* Return the cosine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = cos (d), "cos", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
|
||
doc: /* Return the sine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = sin (d), "sin", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
|
||
doc: /* Return the tangent of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
double c = cos (d);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (c == 0.0)
|
||
domain_error ("tan", arg);
|
||
#endif
|
||
IN_FLOAT (d = sin (d) / c, "tan", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
#if 0 /* Leave these out unless we find there's a reason for them. */
|
||
|
||
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
|
||
doc: /* Return the bessel function j0 of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = j0 (d), "bessel-j0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
|
||
doc: /* Return the bessel function j1 of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = j1 (d), "bessel-j1", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
|
||
doc: /* Return the order N bessel function output jn of ARG.
|
||
The first arg (the order) is truncated to an integer. */)
|
||
(n, arg)
|
||
register Lisp_Object n, arg;
|
||
{
|
||
int i1 = extract_float (n);
|
||
double f2 = extract_float (arg);
|
||
|
||
IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
|
||
return make_float (f2);
|
||
}
|
||
|
||
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
|
||
doc: /* Return the bessel function y0 of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = y0 (d), "bessel-y0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
|
||
doc: /* Return the bessel function y1 of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = y1 (d), "bessel-y0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
|
||
doc: /* Return the order N bessel function output yn of ARG.
|
||
The first arg (the order) is truncated to an integer. */)
|
||
(n, arg)
|
||
register Lisp_Object n, arg;
|
||
{
|
||
int i1 = extract_float (n);
|
||
double f2 = extract_float (arg);
|
||
|
||
IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
|
||
return make_float (f2);
|
||
}
|
||
|
||
#endif
|
||
|
||
#if 0 /* Leave these out unless we see they are worth having. */
|
||
|
||
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
|
||
doc: /* Return the mathematical error function of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = erf (d), "erf", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
|
||
doc: /* Return the complementary error function of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = erfc (d), "erfc", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
|
||
doc: /* Return the log gamma of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = lgamma (d), "log-gamma", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
|
||
doc: /* Return the cube root of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef HAVE_CBRT
|
||
IN_FLOAT (d = cbrt (d), "cube-root", arg);
|
||
#else
|
||
if (d >= 0.0)
|
||
IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
|
||
else
|
||
IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
#endif
|
||
|
||
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
|
||
doc: /* Return the exponential base e of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 709.7827) /* Assume IEEE doubles here */
|
||
range_error ("exp", arg);
|
||
else if (d < -709.0)
|
||
return make_float (0.0);
|
||
else
|
||
#endif
|
||
IN_FLOAT (d = exp (d), "exp", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
|
||
doc: /* Return the exponential ARG1 ** ARG2. */)
|
||
(arg1, arg2)
|
||
register Lisp_Object arg1, arg2;
|
||
{
|
||
double f1, f2;
|
||
|
||
CHECK_NUMBER_OR_FLOAT (arg1);
|
||
CHECK_NUMBER_OR_FLOAT (arg2);
|
||
if (INTEGERP (arg1) /* common lisp spec */
|
||
&& INTEGERP (arg2) /* don't promote, if both are ints, and */
|
||
&& 0 <= XINT (arg2)) /* we are sure the result is not fractional */
|
||
{ /* this can be improved by pre-calculating */
|
||
EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
|
||
Lisp_Object val;
|
||
|
||
x = XINT (arg1);
|
||
y = XINT (arg2);
|
||
acc = 1;
|
||
|
||
if (y < 0)
|
||
{
|
||
if (x == 1)
|
||
acc = 1;
|
||
else if (x == -1)
|
||
acc = (y & 1) ? -1 : 1;
|
||
else
|
||
acc = 0;
|
||
}
|
||
else
|
||
{
|
||
while (y > 0)
|
||
{
|
||
if (y & 1)
|
||
acc *= x;
|
||
x *= x;
|
||
y = (unsigned)y >> 1;
|
||
}
|
||
}
|
||
XSETINT (val, acc);
|
||
return val;
|
||
}
|
||
f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
|
||
f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
|
||
/* Really should check for overflow, too */
|
||
if (f1 == 0.0 && f2 == 0.0)
|
||
f1 = 1.0;
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
|
||
domain_error2 ("expt", arg1, arg2);
|
||
#endif
|
||
IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
|
||
return make_float (f1);
|
||
}
|
||
|
||
DEFUN ("log", Flog, Slog, 1, 2, 0,
|
||
doc: /* Return the natural logarithm of ARG.
|
||
If the optional argument BASE is given, return log ARG using that base. */)
|
||
(arg, base)
|
||
register Lisp_Object arg, base;
|
||
{
|
||
double d = extract_float (arg);
|
||
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d <= 0.0)
|
||
domain_error2 ("log", arg, base);
|
||
#endif
|
||
if (NILP (base))
|
||
IN_FLOAT (d = log (d), "log", arg);
|
||
else
|
||
{
|
||
double b = extract_float (base);
|
||
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (b <= 0.0 || b == 1.0)
|
||
domain_error2 ("log", arg, base);
|
||
#endif
|
||
if (b == 10.0)
|
||
IN_FLOAT2 (d = log10 (d), "log", arg, base);
|
||
else
|
||
IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
|
||
doc: /* Return the logarithm base 10 of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d <= 0.0)
|
||
domain_error ("log10", arg);
|
||
#endif
|
||
IN_FLOAT (d = log10 (d), "log10", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
|
||
doc: /* Return the square root of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d < 0.0)
|
||
domain_error ("sqrt", arg);
|
||
#endif
|
||
IN_FLOAT (d = sqrt (d), "sqrt", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
#if 0 /* Not clearly worth adding. */
|
||
|
||
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
|
||
doc: /* Return the inverse hyperbolic cosine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d < 1.0)
|
||
domain_error ("acosh", arg);
|
||
#endif
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = acosh (d), "acosh", arg);
|
||
#else
|
||
IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
|
||
doc: /* Return the inverse hyperbolic sine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = asinh (d), "asinh", arg);
|
||
#else
|
||
IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
|
||
doc: /* Return the inverse hyperbolic tangent of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d >= 1.0 || d <= -1.0)
|
||
domain_error ("atanh", arg);
|
||
#endif
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = atanh (d), "atanh", arg);
|
||
#else
|
||
IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
|
||
doc: /* Return the hyperbolic cosine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 710.0 || d < -710.0)
|
||
range_error ("cosh", arg);
|
||
#endif
|
||
IN_FLOAT (d = cosh (d), "cosh", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
|
||
doc: /* Return the hyperbolic sine of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 710.0 || d < -710.0)
|
||
range_error ("sinh", arg);
|
||
#endif
|
||
IN_FLOAT (d = sinh (d), "sinh", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
|
||
doc: /* Return the hyperbolic tangent of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = tanh (d), "tanh", arg);
|
||
return make_float (d);
|
||
}
|
||
#endif
|
||
|
||
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
|
||
doc: /* Return the absolute value of ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (FLOATP (arg))
|
||
IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
|
||
else if (XINT (arg) < 0)
|
||
XSETINT (arg, - XINT (arg));
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
|
||
doc: /* Return the floating point number equal to ARG. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (INTEGERP (arg))
|
||
return make_float ((double) XINT (arg));
|
||
else /* give 'em the same float back */
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
|
||
doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
|
||
This is the same as the exponent of a float. */)
|
||
(arg)
|
||
Lisp_Object arg;
|
||
{
|
||
Lisp_Object val;
|
||
EMACS_INT value;
|
||
double f = extract_float (arg);
|
||
|
||
if (f == 0.0)
|
||
value = MOST_NEGATIVE_FIXNUM;
|
||
else
|
||
{
|
||
#ifdef HAVE_LOGB
|
||
IN_FLOAT (value = logb (f), "logb", arg);
|
||
#else
|
||
#ifdef HAVE_FREXP
|
||
int ivalue;
|
||
IN_FLOAT (frexp (f, &ivalue), "logb", arg);
|
||
value = ivalue - 1;
|
||
#else
|
||
int i;
|
||
double d;
|
||
if (f < 0.0)
|
||
f = -f;
|
||
value = -1;
|
||
while (f < 0.5)
|
||
{
|
||
for (i = 1, d = 0.5; d * d >= f; i += i)
|
||
d *= d;
|
||
f /= d;
|
||
value -= i;
|
||
}
|
||
while (f >= 1.0)
|
||
{
|
||
for (i = 1, d = 2.0; d * d <= f; i += i)
|
||
d *= d;
|
||
f /= d;
|
||
value += i;
|
||
}
|
||
#endif
|
||
#endif
|
||
}
|
||
XSETINT (val, value);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* the rounding functions */
|
||
|
||
static Lisp_Object
|
||
rounding_driver (arg, divisor, double_round, int_round2, name)
|
||
register Lisp_Object arg, divisor;
|
||
double (*double_round) ();
|
||
EMACS_INT (*int_round2) ();
|
||
char *name;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg);
|
||
|
||
if (! NILP (divisor))
|
||
{
|
||
EMACS_INT i1, i2;
|
||
|
||
CHECK_NUMBER_OR_FLOAT (divisor);
|
||
|
||
if (FLOATP (arg) || FLOATP (divisor))
|
||
{
|
||
double f1, f2;
|
||
|
||
f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
|
||
f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
|
||
if (! IEEE_FLOATING_POINT && f2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
|
||
IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
|
||
FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
|
||
return arg;
|
||
}
|
||
|
||
i1 = XINT (arg);
|
||
i2 = XINT (divisor);
|
||
|
||
if (i2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
|
||
XSETINT (arg, (*int_round2) (i1, i2));
|
||
return arg;
|
||
}
|
||
|
||
if (FLOATP (arg))
|
||
{
|
||
double d;
|
||
|
||
IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
|
||
FLOAT_TO_INT (d, arg, name, arg);
|
||
}
|
||
|
||
return arg;
|
||
}
|
||
|
||
/* With C's /, the result is implementation-defined if either operand
|
||
is negative, so take care with negative operands in the following
|
||
integer functions. */
|
||
|
||
static EMACS_INT
|
||
ceiling2 (i1, i2)
|
||
EMACS_INT i1, i2;
|
||
{
|
||
return (i2 < 0
|
||
? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
|
||
: (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
|
||
}
|
||
|
||
static EMACS_INT
|
||
floor2 (i1, i2)
|
||
EMACS_INT i1, i2;
|
||
{
|
||
return (i2 < 0
|
||
? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
|
||
: (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
|
||
}
|
||
|
||
static EMACS_INT
|
||
truncate2 (i1, i2)
|
||
EMACS_INT i1, i2;
|
||
{
|
||
return (i2 < 0
|
||
? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
|
||
: (i1 < 0 ? - (-i1 / i2) : i1 / i2));
|
||
}
|
||
|
||
static EMACS_INT
|
||
round2 (i1, i2)
|
||
EMACS_INT i1, i2;
|
||
{
|
||
/* The C language's division operator gives us one remainder R, but
|
||
we want the remainder R1 on the other side of 0 if R1 is closer
|
||
to 0 than R is; because we want to round to even, we also want R1
|
||
if R and R1 are the same distance from 0 and if C's quotient is
|
||
odd. */
|
||
EMACS_INT q = i1 / i2;
|
||
EMACS_INT r = i1 % i2;
|
||
EMACS_INT abs_r = r < 0 ? -r : r;
|
||
EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
|
||
return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
|
||
}
|
||
|
||
/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
|
||
if `rint' exists but does not work right. */
|
||
#ifdef HAVE_RINT
|
||
#define emacs_rint rint
|
||
#else
|
||
static double
|
||
emacs_rint (d)
|
||
double d;
|
||
{
|
||
return floor (d + 0.5);
|
||
}
|
||
#endif
|
||
|
||
static double
|
||
double_identity (d)
|
||
double d;
|
||
{
|
||
return d;
|
||
}
|
||
|
||
DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
|
||
doc: /* Return the smallest integer no less than ARG.
|
||
This rounds the value towards +inf.
|
||
With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
|
||
(arg, divisor)
|
||
Lisp_Object arg, divisor;
|
||
{
|
||
return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
|
||
}
|
||
|
||
DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
|
||
doc: /* Return the largest integer no greater than ARG.
|
||
This rounds the value towards -inf.
|
||
With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
|
||
(arg, divisor)
|
||
Lisp_Object arg, divisor;
|
||
{
|
||
return rounding_driver (arg, divisor, floor, floor2, "floor");
|
||
}
|
||
|
||
DEFUN ("round", Fround, Sround, 1, 2, 0,
|
||
doc: /* Return the nearest integer to ARG.
|
||
With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
|
||
|
||
Rounding a value equidistant between two integers may choose the
|
||
integer closer to zero, or it may prefer an even integer, depending on
|
||
your machine. For example, \(round 2.5\) can return 3 on some
|
||
systems, but 2 on others. */)
|
||
(arg, divisor)
|
||
Lisp_Object arg, divisor;
|
||
{
|
||
return rounding_driver (arg, divisor, emacs_rint, round2, "round");
|
||
}
|
||
|
||
DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
|
||
doc: /* Truncate a floating point number to an int.
|
||
Rounds ARG toward zero.
|
||
With optional DIVISOR, truncate ARG/DIVISOR. */)
|
||
(arg, divisor)
|
||
Lisp_Object arg, divisor;
|
||
{
|
||
return rounding_driver (arg, divisor, double_identity, truncate2,
|
||
"truncate");
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
fmod_float (x, y)
|
||
register Lisp_Object x, y;
|
||
{
|
||
double f1, f2;
|
||
|
||
f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
|
||
f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
|
||
|
||
if (! IEEE_FLOATING_POINT && f2 == 0)
|
||
xsignal0 (Qarith_error);
|
||
|
||
/* If the "remainder" comes out with the wrong sign, fix it. */
|
||
IN_FLOAT2 ((f1 = fmod (f1, f2),
|
||
f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
|
||
"mod", x, y);
|
||
return make_float (f1);
|
||
}
|
||
|
||
/* It's not clear these are worth adding. */
|
||
|
||
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
|
||
doc: /* Return the smallest integer no less than ARG, as a float.
|
||
\(Round toward +inf.\) */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = ceil (d), "fceiling", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
|
||
doc: /* Return the largest integer no greater than ARG, as a float.
|
||
\(Round towards -inf.\) */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = floor (d), "ffloor", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
|
||
doc: /* Return the nearest integer to ARG, as a float. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = emacs_rint (d), "fround", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
|
||
doc: /* Truncate a floating point number to an integral float value.
|
||
Rounds the value toward zero. */)
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
if (d >= 0.0)
|
||
IN_FLOAT (d = floor (d), "ftruncate", arg);
|
||
else
|
||
IN_FLOAT (d = ceil (d), "ftruncate", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
#ifdef FLOAT_CATCH_SIGILL
|
||
static SIGTYPE
|
||
float_error (signo)
|
||
int signo;
|
||
{
|
||
if (! in_float)
|
||
fatal_error_signal (signo);
|
||
|
||
#ifdef BSD_SYSTEM
|
||
#ifdef BSD4_1
|
||
sigrelse (SIGILL);
|
||
#else /* not BSD4_1 */
|
||
sigsetmask (SIGEMPTYMASK);
|
||
#endif /* not BSD4_1 */
|
||
#else
|
||
/* Must reestablish handler each time it is called. */
|
||
signal (SIGILL, float_error);
|
||
#endif /* BSD_SYSTEM */
|
||
|
||
SIGNAL_THREAD_CHECK (signo);
|
||
in_float = 0;
|
||
|
||
xsignal1 (Qarith_error, float_error_arg);
|
||
}
|
||
|
||
/* Another idea was to replace the library function `infnan'
|
||
where SIGILL is signaled. */
|
||
|
||
#endif /* FLOAT_CATCH_SIGILL */
|
||
|
||
#ifdef HAVE_MATHERR
|
||
int
|
||
matherr (x)
|
||
struct exception *x;
|
||
{
|
||
Lisp_Object args;
|
||
if (! in_float)
|
||
/* Not called from emacs-lisp float routines; do the default thing. */
|
||
return 0;
|
||
if (!strcmp (x->name, "pow"))
|
||
x->name = "expt";
|
||
|
||
args
|
||
= Fcons (build_string (x->name),
|
||
Fcons (make_float (x->arg1),
|
||
((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
|
||
? Fcons (make_float (x->arg2), Qnil)
|
||
: Qnil)));
|
||
switch (x->type)
|
||
{
|
||
case DOMAIN: xsignal (Qdomain_error, args); break;
|
||
case SING: xsignal (Qsingularity_error, args); break;
|
||
case OVERFLOW: xsignal (Qoverflow_error, args); break;
|
||
case UNDERFLOW: xsignal (Qunderflow_error, args); break;
|
||
default: xsignal (Qarith_error, args); break;
|
||
}
|
||
return (1); /* don't set errno or print a message */
|
||
}
|
||
#endif /* HAVE_MATHERR */
|
||
|
||
void
|
||
init_floatfns ()
|
||
{
|
||
#ifdef FLOAT_CATCH_SIGILL
|
||
signal (SIGILL, float_error);
|
||
#endif
|
||
in_float = 0;
|
||
}
|
||
|
||
void
|
||
syms_of_floatfns ()
|
||
{
|
||
defsubr (&Sacos);
|
||
defsubr (&Sasin);
|
||
defsubr (&Satan);
|
||
defsubr (&Scos);
|
||
defsubr (&Ssin);
|
||
defsubr (&Stan);
|
||
#if 0
|
||
defsubr (&Sacosh);
|
||
defsubr (&Sasinh);
|
||
defsubr (&Satanh);
|
||
defsubr (&Scosh);
|
||
defsubr (&Ssinh);
|
||
defsubr (&Stanh);
|
||
defsubr (&Sbessel_y0);
|
||
defsubr (&Sbessel_y1);
|
||
defsubr (&Sbessel_yn);
|
||
defsubr (&Sbessel_j0);
|
||
defsubr (&Sbessel_j1);
|
||
defsubr (&Sbessel_jn);
|
||
defsubr (&Serf);
|
||
defsubr (&Serfc);
|
||
defsubr (&Slog_gamma);
|
||
defsubr (&Scube_root);
|
||
#endif
|
||
defsubr (&Sfceiling);
|
||
defsubr (&Sffloor);
|
||
defsubr (&Sfround);
|
||
defsubr (&Sftruncate);
|
||
defsubr (&Sexp);
|
||
defsubr (&Sexpt);
|
||
defsubr (&Slog);
|
||
defsubr (&Slog10);
|
||
defsubr (&Ssqrt);
|
||
|
||
defsubr (&Sabs);
|
||
defsubr (&Sfloat);
|
||
defsubr (&Slogb);
|
||
defsubr (&Sceiling);
|
||
defsubr (&Sfloor);
|
||
defsubr (&Sround);
|
||
defsubr (&Struncate);
|
||
}
|
||
|
||
/* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
|
||
(do not change this comment) */
|