mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-26 07:11:34 -08:00
2487 lines
66 KiB
C
2487 lines
66 KiB
C
/* CCL (Code Conversion Language) interpreter.
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005,
|
|
2006 Free Software Foundation, Inc.
|
|
Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
|
|
2005, 2006
|
|
National Institute of Advanced Industrial Science and Technology (AIST)
|
|
Registration Number H14PRO021
|
|
|
|
This file is part of GNU Emacs.
|
|
|
|
GNU Emacs is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Emacs is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Emacs; see the file COPYING. If not, write to
|
|
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include <config.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "lisp.h"
|
|
#include "charset.h"
|
|
#include "ccl.h"
|
|
#include "coding.h"
|
|
|
|
/* This contains all code conversion map available to CCL. */
|
|
Lisp_Object Vcode_conversion_map_vector;
|
|
|
|
/* Alist of fontname patterns vs corresponding CCL program. */
|
|
Lisp_Object Vfont_ccl_encoder_alist;
|
|
|
|
/* This symbol is a property which assocates with ccl program vector.
|
|
Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
|
|
Lisp_Object Qccl_program;
|
|
|
|
/* These symbols are properties which associate with code conversion
|
|
map and their ID respectively. */
|
|
Lisp_Object Qcode_conversion_map;
|
|
Lisp_Object Qcode_conversion_map_id;
|
|
|
|
/* Symbols of ccl program have this property, a value of the property
|
|
is an index for Vccl_protram_table. */
|
|
Lisp_Object Qccl_program_idx;
|
|
|
|
/* Table of registered CCL programs. Each element is a vector of
|
|
NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
|
|
name of the program, CCL_PROG (vector) is the compiled code of the
|
|
program, RESOLVEDP (t or nil) is the flag to tell if symbols in
|
|
CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
|
|
or nil) is the flat to tell if the CCL program is updated after it
|
|
was once used. */
|
|
Lisp_Object Vccl_program_table;
|
|
|
|
/* Vector of registered hash tables for translation. */
|
|
Lisp_Object Vtranslation_hash_table_vector;
|
|
|
|
/* Return a hash table of id number ID. */
|
|
#define GET_HASH_TABLE(id) \
|
|
(XHASH_TABLE (XCDR(XVECTOR(Vtranslation_hash_table_vector)->contents[(id)])))
|
|
|
|
/* CCL (Code Conversion Language) is a simple language which has
|
|
operations on one input buffer, one output buffer, and 7 registers.
|
|
The syntax of CCL is described in `ccl.el'. Emacs Lisp function
|
|
`ccl-compile' compiles a CCL program and produces a CCL code which
|
|
is a vector of integers. The structure of this vector is as
|
|
follows: The 1st element: buffer-magnification, a factor for the
|
|
size of output buffer compared with the size of input buffer. The
|
|
2nd element: address of CCL code to be executed when encountered
|
|
with end of input stream. The 3rd and the remaining elements: CCL
|
|
codes. */
|
|
|
|
/* Header of CCL compiled code */
|
|
#define CCL_HEADER_BUF_MAG 0
|
|
#define CCL_HEADER_EOF 1
|
|
#define CCL_HEADER_MAIN 2
|
|
|
|
/* CCL code is a sequence of 28-bit non-negative integers (i.e. the
|
|
MSB is always 0), each contains CCL command and/or arguments in the
|
|
following format:
|
|
|
|
|----------------- integer (28-bit) ------------------|
|
|
|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
|--constant argument--|-register-|-register-|-command-|
|
|
ccccccccccccccccc RRR rrr XXXXX
|
|
or
|
|
|------- relative address -------|-register-|-command-|
|
|
cccccccccccccccccccc rrr XXXXX
|
|
or
|
|
|------------- constant or other args ----------------|
|
|
cccccccccccccccccccccccccccc
|
|
|
|
where, `cc...c' is a non-negative integer indicating constant value
|
|
(the left most `c' is always 0) or an absolute jump address, `RRR'
|
|
and `rrr' are CCL register number, `XXXXX' is one of the following
|
|
CCL commands. */
|
|
|
|
/* CCL commands
|
|
|
|
Each comment fields shows one or more lines for command syntax and
|
|
the following lines for semantics of the command. In semantics, IC
|
|
stands for Instruction Counter. */
|
|
|
|
#define CCL_SetRegister 0x00 /* Set register a register value:
|
|
1:00000000000000000RRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = reg[RRR];
|
|
*/
|
|
|
|
#define CCL_SetShortConst 0x01 /* Set register a short constant value:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = CCCCCCCCCCCCCCCCCCC;
|
|
*/
|
|
|
|
#define CCL_SetConst 0x02 /* Set register a constant value:
|
|
1:00000000000000000000rrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] = CONSTANT;
|
|
IC++;
|
|
*/
|
|
|
|
#define CCL_SetArray 0x03 /* Set register an element of array:
|
|
1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
|
|
2:ELEMENT[0]
|
|
3:ELEMENT[1]
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[RRR] < CC..C)
|
|
reg[rrr] = ELEMENT[reg[RRR]];
|
|
IC += CC..C;
|
|
*/
|
|
|
|
#define CCL_Jump 0x04 /* Jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
------------------------------
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
/* Note: If CC..C is greater than 0, the second code is omitted. */
|
|
|
|
#define CCL_JumpCond 0x05 /* Jump conditional:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
------------------------------
|
|
if (!reg[rrr])
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
|
|
#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
------------------------------
|
|
write (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
write (reg[rrr]);
|
|
IC++;
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
second code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_WriteConstJump 0x08 /* Write constant and jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
2:CONST
|
|
------------------------------
|
|
write (CONST);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:CONST
|
|
3:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
write (CONST);
|
|
IC += 2;
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
second code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_WriteStringJump 0x0A /* Write string and jump:
|
|
1:A--D--D--R--E--S--S-000XXXXX
|
|
2:LENGTH
|
|
3:0000STRIN[0]STRIN[1]STRIN[2]
|
|
...
|
|
------------------------------
|
|
write_string (STRING, LENGTH);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:LENGTH
|
|
3:ELEMENET[0]
|
|
4:ELEMENET[1]
|
|
...
|
|
N:A--D--D--R--E--S--S-rrrYYYYY
|
|
------------------------------
|
|
if (0 <= reg[rrr] < LENGTH)
|
|
write (ELEMENT[reg[rrr]]);
|
|
IC += LENGTH + 2; (... pointing at N+1)
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
/* Note: If read is suspended, the resumed execution starts from the
|
|
Nth code (YYYYY == CCL_ReadJump). */
|
|
|
|
#define CCL_ReadJump 0x0C /* Read and jump:
|
|
1:A--D--D--R--E--S--S-rrrYYYYY
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
IC += ADDRESS;
|
|
*/
|
|
|
|
#define CCL_Branch 0x0D /* Jump by branch table:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:A--D--D--R--E-S-S[0]000XXXXX
|
|
3:A--D--D--R--E-S-S[1]000XXXXX
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[rrr] < CC..C)
|
|
IC += ADDRESS[reg[rrr]];
|
|
else
|
|
IC += ADDRESS[CC..C];
|
|
*/
|
|
|
|
#define CCL_ReadRegister 0x0E /* Read bytes into registers:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
...
|
|
------------------------------
|
|
while (CCC--)
|
|
read (reg[rrr]);
|
|
*/
|
|
|
|
#define CCL_WriteExprConst 0x0F /* write result of expression:
|
|
1:00000OPERATION000RRR000XXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
write (reg[RRR] OPERATION CONSTANT);
|
|
IC++;
|
|
*/
|
|
|
|
/* Note: If the Nth read is suspended, the resumed execution starts
|
|
from the Nth code. */
|
|
|
|
#define CCL_ReadBranch 0x10 /* Read one byte into a register,
|
|
and jump by branch table:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:A--D--D--R--E-S-S[0]000XXXXX
|
|
3:A--D--D--R--E-S-S[1]000XXXXX
|
|
...
|
|
------------------------------
|
|
read (read[rrr]);
|
|
if (0 <= reg[rrr] < CC..C)
|
|
IC += ADDRESS[reg[rrr]];
|
|
else
|
|
IC += ADDRESS[CC..C];
|
|
*/
|
|
|
|
#define CCL_WriteRegister 0x11 /* Write registers:
|
|
1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
...
|
|
------------------------------
|
|
while (CCC--)
|
|
write (reg[rrr]);
|
|
...
|
|
*/
|
|
|
|
/* Note: If the Nth write is suspended, the resumed execution
|
|
starts from the Nth code. */
|
|
|
|
#define CCL_WriteExprRegister 0x12 /* Write result of expression
|
|
1:00000OPERATIONRrrRRR000XXXXX
|
|
------------------------------
|
|
write (reg[RRR] OPERATION reg[Rrr]);
|
|
*/
|
|
|
|
#define CCL_Call 0x13 /* Call the CCL program whose ID is
|
|
CC..C or cc..c.
|
|
1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
|
|
[2:00000000cccccccccccccccccccc]
|
|
------------------------------
|
|
if (FFF)
|
|
call (cc..c)
|
|
IC++;
|
|
else
|
|
call (CC..C)
|
|
*/
|
|
|
|
#define CCL_WriteConstString 0x14 /* Write a constant or a string:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
[2:0000STRIN[0]STRIN[1]STRIN[2]]
|
|
[...]
|
|
-----------------------------
|
|
if (!rrr)
|
|
write (CC..C)
|
|
else
|
|
write_string (STRING, CC..C);
|
|
IC += (CC..C + 2) / 3;
|
|
*/
|
|
|
|
#define CCL_WriteArray 0x15 /* Write an element of array:
|
|
1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
2:ELEMENT[0]
|
|
3:ELEMENT[1]
|
|
...
|
|
------------------------------
|
|
if (0 <= reg[rrr] < CC..C)
|
|
write (ELEMENT[reg[rrr]]);
|
|
IC += CC..C;
|
|
*/
|
|
|
|
#define CCL_End 0x16 /* Terminate:
|
|
1:00000000000000000000000XXXXX
|
|
------------------------------
|
|
terminate ();
|
|
*/
|
|
|
|
/* The following two codes execute an assignment arithmetic/logical
|
|
operation. The form of the operation is like REG OP= OPERAND. */
|
|
|
|
#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
|
|
1:00000OPERATION000000rrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] OPERATION= CONSTANT;
|
|
*/
|
|
|
|
#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
|
|
1:00000OPERATION000RRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] OPERATION= reg[RRR];
|
|
*/
|
|
|
|
/* The following codes execute an arithmetic/logical operation. The
|
|
form of the operation is like REG_X = REG_Y OP OPERAND2. */
|
|
|
|
#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
|
|
1:00000OPERATION000RRRrrrXXXXX
|
|
2:CONSTANT
|
|
------------------------------
|
|
reg[rrr] = reg[RRR] OPERATION CONSTANT;
|
|
IC++;
|
|
*/
|
|
|
|
#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
|
|
1:00000OPERATIONRrrRRRrrrXXXXX
|
|
------------------------------
|
|
reg[rrr] = reg[RRR] OPERATION reg[Rrr];
|
|
*/
|
|
|
|
#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
|
|
an operation on constant:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:CONSTANT
|
|
-----------------------------
|
|
reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
if (!(reg[7]))
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2
|
|
*/
|
|
|
|
#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
|
|
an operation on register:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:RRR
|
|
-----------------------------
|
|
reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
|
|
to an operation on constant:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:CONSTANT
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
|
|
to an operation on register:
|
|
1:A--D--D--R--E--S--S-rrrXXXXX
|
|
2:OPERATION
|
|
3:RRR
|
|
-----------------------------
|
|
read (reg[rrr]);
|
|
reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
if (!reg[7])
|
|
IC += ADDRESS;
|
|
else
|
|
IC += 2;
|
|
*/
|
|
|
|
#define CCL_Extension 0x1F /* Extended CCL code
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
2:ARGUEMENT
|
|
3:...
|
|
------------------------------
|
|
extended_command (rrr,RRR,Rrr,ARGS)
|
|
*/
|
|
|
|
/*
|
|
Here after, Extended CCL Instructions.
|
|
Bit length of extended command is 14.
|
|
Therefore, the instruction code range is 0..16384(0x3fff).
|
|
*/
|
|
|
|
/* Read a multibyte characeter.
|
|
A code point is stored into reg[rrr]. A charset ID is stored into
|
|
reg[RRR]. */
|
|
|
|
#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
|
|
/* Write a multibyte character.
|
|
Write a character whose code point is reg[rrr] and the charset ID
|
|
is reg[RRR]. */
|
|
|
|
#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
|
|
/* Translate a character whose code point is reg[rrr] and the charset
|
|
ID is reg[RRR] by a translation table whose ID is reg[Rrr].
|
|
|
|
A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
(charset ID). */
|
|
|
|
#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
|
|
/* Translate a character whose code point is reg[rrr] and the charset
|
|
ID is reg[RRR] by a translation table whose ID is ARGUMENT.
|
|
|
|
A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
(charset ID). */
|
|
|
|
#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
2:ARGUMENT(Translation Table ID)
|
|
*/
|
|
|
|
/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
|
|
reg[RRR]) MAP until some value is found.
|
|
|
|
Each MAP is a Lisp vector whose element is number, nil, t, or
|
|
lambda.
|
|
If the element is nil, ignore the map and proceed to the next map.
|
|
If the element is t or lambda, finish without changing reg[rrr].
|
|
If the element is a number, set reg[rrr] to the number and finish.
|
|
|
|
Detail of the map structure is descibed in the comment for
|
|
CCL_MapMultiple below. */
|
|
|
|
#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:NUMBER of MAPs
|
|
3:MAP-ID1
|
|
4:MAP-ID2
|
|
...
|
|
*/
|
|
|
|
/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
|
|
reg[RRR]) map.
|
|
|
|
MAPs are supplied in the succeeding CCL codes as follows:
|
|
|
|
When CCL program gives this nested structure of map to this command:
|
|
((MAP-ID11
|
|
MAP-ID12
|
|
(MAP-ID121 MAP-ID122 MAP-ID123)
|
|
MAP-ID13)
|
|
(MAP-ID21
|
|
(MAP-ID211 (MAP-ID2111) MAP-ID212)
|
|
MAP-ID22)),
|
|
the compiled CCL codes has this sequence:
|
|
CCL_MapMultiple (CCL code of this command)
|
|
16 (total number of MAPs and SEPARATORs)
|
|
-7 (1st SEPARATOR)
|
|
MAP-ID11
|
|
MAP-ID12
|
|
-3 (2nd SEPARATOR)
|
|
MAP-ID121
|
|
MAP-ID122
|
|
MAP-ID123
|
|
MAP-ID13
|
|
-7 (3rd SEPARATOR)
|
|
MAP-ID21
|
|
-4 (4th SEPARATOR)
|
|
MAP-ID211
|
|
-1 (5th SEPARATOR)
|
|
MAP_ID2111
|
|
MAP-ID212
|
|
MAP-ID22
|
|
|
|
A value of each SEPARATOR follows this rule:
|
|
MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
|
|
SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
|
|
|
|
(*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
|
|
|
|
When some map fails to map (i.e. it doesn't have a value for
|
|
reg[rrr]), the mapping is treated as identity.
|
|
|
|
The mapping is iterated for all maps in each map set (set of maps
|
|
separated by SEPARATOR) except in the case that lambda is
|
|
encountered. More precisely, the mapping proceeds as below:
|
|
|
|
At first, VAL0 is set to reg[rrr], and it is translated by the
|
|
first map to VAL1. Then, VAL1 is translated by the next map to
|
|
VAL2. This mapping is iterated until the last map is used. The
|
|
result of the mapping is the last value of VAL?. When the mapping
|
|
process reached to the end of the map set, it moves to the next
|
|
map set. If the next does not exit, the mapping process terminates,
|
|
and regard the last value as a result.
|
|
|
|
But, when VALm is mapped to VALn and VALn is not a number, the
|
|
mapping proceed as below:
|
|
|
|
If VALn is nil, the lastest map is ignored and the mapping of VALm
|
|
proceed to the next map.
|
|
|
|
In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
|
|
proceed to the next map.
|
|
|
|
If VALn is lambda, move to the next map set like reaching to the
|
|
end of the current map set.
|
|
|
|
If VALn is a symbol, call the CCL program refered by it.
|
|
Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
|
|
Such special values are regarded as nil, t, and lambda respectively.
|
|
|
|
Each map is a Lisp vector of the following format (a) or (b):
|
|
(a)......[STARTPOINT VAL1 VAL2 ...]
|
|
(b)......[t VAL STARTPOINT ENDPOINT],
|
|
where
|
|
STARTPOINT is an offset to be used for indexing a map,
|
|
ENDPOINT is a maximum index number of a map,
|
|
VAL and VALn is a number, nil, t, or lambda.
|
|
|
|
Valid index range of a map of type (a) is:
|
|
STARTPOINT <= index < STARTPOINT + map_size - 1
|
|
Valid index range of a map of type (b) is:
|
|
STARTPOINT <= index < ENDPOINT */
|
|
|
|
#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:N-2
|
|
3:SEPARATOR_1 (< 0)
|
|
4:MAP-ID_1
|
|
5:MAP-ID_2
|
|
...
|
|
M:SEPARATOR_x (< 0)
|
|
M+1:MAP-ID_y
|
|
...
|
|
N:SEPARATOR_z (< 0)
|
|
*/
|
|
|
|
#define MAX_MAP_SET_LEVEL 30
|
|
|
|
typedef struct
|
|
{
|
|
int rest_length;
|
|
int orig_val;
|
|
} tr_stack;
|
|
|
|
static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
|
|
static tr_stack *mapping_stack_pointer;
|
|
|
|
/* If this variable is non-zero, it indicates the stack_idx
|
|
of immediately called by CCL_MapMultiple. */
|
|
static int stack_idx_of_map_multiple;
|
|
|
|
#define PUSH_MAPPING_STACK(restlen, orig) \
|
|
do \
|
|
{ \
|
|
mapping_stack_pointer->rest_length = (restlen); \
|
|
mapping_stack_pointer->orig_val = (orig); \
|
|
mapping_stack_pointer++; \
|
|
} \
|
|
while (0)
|
|
|
|
#define POP_MAPPING_STACK(restlen, orig) \
|
|
do \
|
|
{ \
|
|
mapping_stack_pointer--; \
|
|
(restlen) = mapping_stack_pointer->rest_length; \
|
|
(orig) = mapping_stack_pointer->orig_val; \
|
|
} \
|
|
while (0)
|
|
|
|
#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
|
|
do \
|
|
{ \
|
|
struct ccl_program called_ccl; \
|
|
if (stack_idx >= 256 \
|
|
|| (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
|
|
{ \
|
|
if (stack_idx > 0) \
|
|
{ \
|
|
ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
|
|
ic = ccl_prog_stack_struct[0].ic; \
|
|
eof_ic = ccl_prog_stack_struct[0].eof_ic; \
|
|
} \
|
|
CCL_INVALID_CMD; \
|
|
} \
|
|
ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
|
|
ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
|
|
ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
|
|
stack_idx++; \
|
|
ccl_prog = called_ccl.prog; \
|
|
ic = CCL_HEADER_MAIN; \
|
|
eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
|
|
goto ccl_repeat; \
|
|
} \
|
|
while (0)
|
|
|
|
#define CCL_MapSingle 0x12 /* Map by single code conversion map
|
|
1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
2:MAP-ID
|
|
------------------------------
|
|
Map reg[rrr] by MAP-ID.
|
|
If some valid mapping is found,
|
|
set reg[rrr] to the result,
|
|
else
|
|
set reg[RRR] to -1.
|
|
*/
|
|
|
|
#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
|
|
integer key. Afterwards R7 set
|
|
to 1 iff lookup succeeded.
|
|
1:ExtendedCOMMNDRrrRRRXXXXXXXX
|
|
2:ARGUMENT(Hash table ID) */
|
|
|
|
#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
|
|
character key. Afterwards R7 set
|
|
to 1 iff lookup succeeded.
|
|
1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
2:ARGUMENT(Hash table ID) */
|
|
|
|
/* CCL arithmetic/logical operators. */
|
|
#define CCL_PLUS 0x00 /* X = Y + Z */
|
|
#define CCL_MINUS 0x01 /* X = Y - Z */
|
|
#define CCL_MUL 0x02 /* X = Y * Z */
|
|
#define CCL_DIV 0x03 /* X = Y / Z */
|
|
#define CCL_MOD 0x04 /* X = Y % Z */
|
|
#define CCL_AND 0x05 /* X = Y & Z */
|
|
#define CCL_OR 0x06 /* X = Y | Z */
|
|
#define CCL_XOR 0x07 /* X = Y ^ Z */
|
|
#define CCL_LSH 0x08 /* X = Y << Z */
|
|
#define CCL_RSH 0x09 /* X = Y >> Z */
|
|
#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
|
|
#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
|
|
#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
|
|
#define CCL_LS 0x10 /* X = (X < Y) */
|
|
#define CCL_GT 0x11 /* X = (X > Y) */
|
|
#define CCL_EQ 0x12 /* X = (X == Y) */
|
|
#define CCL_LE 0x13 /* X = (X <= Y) */
|
|
#define CCL_GE 0x14 /* X = (X >= Y) */
|
|
#define CCL_NE 0x15 /* X = (X != Y) */
|
|
|
|
#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
|
|
r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
|
|
#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
|
|
r[7] = LOWER_BYTE (SJIS (Y, Z) */
|
|
|
|
/* Terminate CCL program successfully. */
|
|
#define CCL_SUCCESS \
|
|
do \
|
|
{ \
|
|
ccl->status = CCL_STAT_SUCCESS; \
|
|
goto ccl_finish; \
|
|
} \
|
|
while(0)
|
|
|
|
/* Suspend CCL program because of reading from empty input buffer or
|
|
writing to full output buffer. When this program is resumed, the
|
|
same I/O command is executed. */
|
|
#define CCL_SUSPEND(stat) \
|
|
do \
|
|
{ \
|
|
ic--; \
|
|
ccl->status = stat; \
|
|
goto ccl_finish; \
|
|
} \
|
|
while (0)
|
|
|
|
/* Terminate CCL program because of invalid command. Should not occur
|
|
in the normal case. */
|
|
#ifndef CCL_DEBUG
|
|
|
|
#define CCL_INVALID_CMD \
|
|
do \
|
|
{ \
|
|
ccl->status = CCL_STAT_INVALID_CMD; \
|
|
goto ccl_error_handler; \
|
|
} \
|
|
while(0)
|
|
|
|
#else
|
|
|
|
#define CCL_INVALID_CMD \
|
|
do \
|
|
{ \
|
|
ccl_debug_hook (this_ic); \
|
|
ccl->status = CCL_STAT_INVALID_CMD; \
|
|
goto ccl_error_handler; \
|
|
} \
|
|
while(0)
|
|
|
|
#endif
|
|
|
|
/* Encode one character CH to multibyte form and write to the current
|
|
output buffer. If CH is less than 256, CH is written as is. */
|
|
#define CCL_WRITE_CHAR(ch) \
|
|
do { \
|
|
int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
|
|
if (!dst) \
|
|
CCL_INVALID_CMD; \
|
|
else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
|
|
{ \
|
|
if (bytes == 1) \
|
|
{ \
|
|
*dst++ = (ch); \
|
|
if (extra_bytes && (ch) >= 0x80 && (ch) < 0xA0) \
|
|
/* We may have to convert this eight-bit char to \
|
|
multibyte form later. */ \
|
|
extra_bytes++; \
|
|
} \
|
|
else if (CHAR_VALID_P (ch, 0)) \
|
|
dst += CHAR_STRING (ch, dst); \
|
|
else \
|
|
CCL_INVALID_CMD; \
|
|
} \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
|
|
} while (0)
|
|
|
|
/* Encode one character CH to multibyte form and write to the current
|
|
output buffer. The output bytes always forms a valid multibyte
|
|
sequence. */
|
|
#define CCL_WRITE_MULTIBYTE_CHAR(ch) \
|
|
do { \
|
|
int bytes = CHAR_BYTES (ch); \
|
|
if (!dst) \
|
|
CCL_INVALID_CMD; \
|
|
else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
|
|
{ \
|
|
if (CHAR_VALID_P ((ch), 0)) \
|
|
dst += CHAR_STRING ((ch), dst); \
|
|
else \
|
|
CCL_INVALID_CMD; \
|
|
} \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
|
|
} while (0)
|
|
|
|
/* Write a string at ccl_prog[IC] of length LEN to the current output
|
|
buffer. */
|
|
#define CCL_WRITE_STRING(len) \
|
|
do { \
|
|
if (!dst) \
|
|
CCL_INVALID_CMD; \
|
|
else if (dst + len <= (dst_bytes ? dst_end : src)) \
|
|
for (i = 0; i < len; i++) \
|
|
*dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
|
|
>> ((2 - (i % 3)) * 8)) & 0xFF; \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
|
|
} while (0)
|
|
|
|
/* Read one byte from the current input buffer into REGth register. */
|
|
#define CCL_READ_CHAR(REG) \
|
|
do { \
|
|
if (!src) \
|
|
CCL_INVALID_CMD; \
|
|
else if (src < src_end) \
|
|
{ \
|
|
REG = *src++; \
|
|
if (REG == '\n' \
|
|
&& ccl->eol_type != CODING_EOL_LF) \
|
|
{ \
|
|
/* We are encoding. */ \
|
|
if (ccl->eol_type == CODING_EOL_CRLF) \
|
|
{ \
|
|
if (ccl->cr_consumed) \
|
|
ccl->cr_consumed = 0; \
|
|
else \
|
|
{ \
|
|
ccl->cr_consumed = 1; \
|
|
REG = '\r'; \
|
|
src--; \
|
|
} \
|
|
} \
|
|
else \
|
|
REG = '\r'; \
|
|
} \
|
|
if (REG == LEADING_CODE_8_BIT_CONTROL \
|
|
&& ccl->multibyte) \
|
|
REG = *src++ - 0x20; \
|
|
} \
|
|
else if (ccl->last_block) \
|
|
{ \
|
|
REG = -1; \
|
|
ic = eof_ic; \
|
|
goto ccl_repeat; \
|
|
} \
|
|
else \
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
|
|
} while (0)
|
|
|
|
|
|
/* Set C to the character code made from CHARSET and CODE. This is
|
|
like MAKE_CHAR but check the validity of CHARSET and CODE. If they
|
|
are not valid, set C to (CODE & 0xFF) because that is usually the
|
|
case that CCL_ReadMultibyteChar2 read an invalid code and it set
|
|
CODE to that invalid byte. */
|
|
|
|
#define CCL_MAKE_CHAR(charset, code, c) \
|
|
do { \
|
|
if (charset == CHARSET_ASCII) \
|
|
c = code & 0xFF; \
|
|
else if (CHARSET_DEFINED_P (charset) \
|
|
&& (code & 0x7F) >= 32 \
|
|
&& (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
|
|
{ \
|
|
int c1 = code & 0x7F, c2 = 0; \
|
|
\
|
|
if (code >= 256) \
|
|
c2 = c1, c1 = (code >> 7) & 0x7F; \
|
|
c = MAKE_CHAR (charset, c1, c2); \
|
|
} \
|
|
else \
|
|
c = code & 0xFF; \
|
|
} while (0)
|
|
|
|
|
|
/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
|
|
text goes to a place pointed by DESTINATION, the length of which
|
|
should not exceed DST_BYTES. The bytes actually processed is
|
|
returned as *CONSUMED. The return value is the length of the
|
|
resulting text. As a side effect, the contents of CCL registers
|
|
are updated. If SOURCE or DESTINATION is NULL, only operations on
|
|
registers are permitted. */
|
|
|
|
#ifdef CCL_DEBUG
|
|
#define CCL_DEBUG_BACKTRACE_LEN 256
|
|
int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
|
|
int ccl_backtrace_idx;
|
|
|
|
int
|
|
ccl_debug_hook (int ic)
|
|
{
|
|
return ic;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct ccl_prog_stack
|
|
{
|
|
Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
|
|
int ic; /* Instruction Counter. */
|
|
int eof_ic; /* Instruction Counter to jump on EOF. */
|
|
};
|
|
|
|
/* For the moment, we only support depth 256 of stack. */
|
|
static struct ccl_prog_stack ccl_prog_stack_struct[256];
|
|
|
|
int
|
|
ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
|
|
struct ccl_program *ccl;
|
|
unsigned char *source, *destination;
|
|
int src_bytes, dst_bytes;
|
|
int *consumed;
|
|
{
|
|
register int *reg = ccl->reg;
|
|
register int ic = ccl->ic;
|
|
register int code = 0, field1, field2;
|
|
register Lisp_Object *ccl_prog = ccl->prog;
|
|
unsigned char *src = source, *src_end = src + src_bytes;
|
|
unsigned char *dst = destination, *dst_end = dst + dst_bytes;
|
|
int jump_address;
|
|
int i = 0, j, op;
|
|
int stack_idx = ccl->stack_idx;
|
|
/* Instruction counter of the current CCL code. */
|
|
int this_ic = 0;
|
|
/* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
|
|
each of them will be converted to multibyte form of 2-byte
|
|
sequence. For that conversion, we remember how many more bytes
|
|
we must keep in DESTINATION in this variable. */
|
|
int extra_bytes = ccl->eight_bit_control;
|
|
int eof_ic = ccl->eof_ic;
|
|
int eof_hit = 0;
|
|
|
|
if (ic >= eof_ic)
|
|
ic = CCL_HEADER_MAIN;
|
|
|
|
if (ccl->buf_magnification == 0) /* We can't produce any bytes. */
|
|
dst = NULL;
|
|
|
|
/* Set mapping stack pointer. */
|
|
mapping_stack_pointer = mapping_stack;
|
|
|
|
#ifdef CCL_DEBUG
|
|
ccl_backtrace_idx = 0;
|
|
#endif
|
|
|
|
for (;;)
|
|
{
|
|
ccl_repeat:
|
|
#ifdef CCL_DEBUG
|
|
ccl_backtrace_table[ccl_backtrace_idx++] = ic;
|
|
if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
|
|
ccl_backtrace_idx = 0;
|
|
ccl_backtrace_table[ccl_backtrace_idx] = 0;
|
|
#endif
|
|
|
|
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
|
|
{
|
|
/* We can't just signal Qquit, instead break the loop as if
|
|
the whole data is processed. Don't reset Vquit_flag, it
|
|
must be handled later at a safer place. */
|
|
if (consumed)
|
|
src = source + src_bytes;
|
|
ccl->status = CCL_STAT_QUIT;
|
|
break;
|
|
}
|
|
|
|
this_ic = ic;
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
|
|
#define rrr field2
|
|
#define RRR (field1 & 7)
|
|
#define Rrr ((field1 >> 3) & 7)
|
|
#define ADDR field1
|
|
#define EXCMD (field1 >> 6)
|
|
|
|
switch (code & 0x1F)
|
|
{
|
|
case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
|
|
reg[rrr] = reg[RRR];
|
|
break;
|
|
|
|
case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
reg[rrr] = field1;
|
|
break;
|
|
|
|
case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
|
|
reg[rrr] = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
break;
|
|
|
|
case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = field1 >> 3;
|
|
if ((unsigned int) i < j)
|
|
reg[rrr] = XINT (ccl_prog[ic + i]);
|
|
ic += j;
|
|
break;
|
|
|
|
case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
if (!reg[rrr])
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
ic++;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
CCL_WRITE_CHAR (i);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
CCL_WRITE_CHAR (i);
|
|
ic++;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
j = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
CCL_WRITE_STRING (j);
|
|
ic += ADDR - 1;
|
|
break;
|
|
|
|
case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
j = XINT (ccl_prog[ic]);
|
|
if ((unsigned int) i < j)
|
|
{
|
|
i = XINT (ccl_prog[ic + 1 + i]);
|
|
CCL_WRITE_CHAR (i);
|
|
}
|
|
ic += j + 2;
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR - (j + 2);
|
|
break;
|
|
|
|
case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
ic += ADDR;
|
|
break;
|
|
|
|
case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
/* fall through ... */
|
|
case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
if ((unsigned int) reg[rrr] < field1)
|
|
ic += XINT (ccl_prog[ic + reg[rrr]]);
|
|
else
|
|
ic += XINT (ccl_prog[ic + field1]);
|
|
break;
|
|
|
|
case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
|
|
while (1)
|
|
{
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
if (!field1) break;
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
|
|
rrr = 7;
|
|
i = reg[RRR];
|
|
j = XINT (ccl_prog[ic]);
|
|
op = field1 >> 6;
|
|
jump_address = ic + 1;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
while (1)
|
|
{
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
if (!field1) break;
|
|
code = XINT (ccl_prog[ic]); ic++;
|
|
field1 = code >> 8;
|
|
field2 = (code & 0xFF) >> 5;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
|
|
rrr = 7;
|
|
i = reg[RRR];
|
|
j = reg[Rrr];
|
|
op = field1 >> 6;
|
|
jump_address = ic;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
|
|
{
|
|
Lisp_Object slot;
|
|
int prog_id;
|
|
|
|
/* If FFF is nonzero, the CCL program ID is in the
|
|
following code. */
|
|
if (rrr)
|
|
{
|
|
prog_id = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
}
|
|
else
|
|
prog_id = field1;
|
|
|
|
if (stack_idx >= 256
|
|
|| prog_id < 0
|
|
|| prog_id >= ASIZE (Vccl_program_table)
|
|
|| (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
|
|
|| !VECTORP (AREF (slot, 1)))
|
|
{
|
|
if (stack_idx > 0)
|
|
{
|
|
ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
|
|
ic = ccl_prog_stack_struct[0].ic;
|
|
eof_ic = ccl_prog_stack_struct[0].eof_ic;
|
|
}
|
|
CCL_INVALID_CMD;
|
|
}
|
|
|
|
ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
|
|
ccl_prog_stack_struct[stack_idx].ic = ic;
|
|
ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
|
|
stack_idx++;
|
|
ccl_prog = XVECTOR (AREF (slot, 1))->contents;
|
|
ic = CCL_HEADER_MAIN;
|
|
eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
if (!rrr)
|
|
CCL_WRITE_CHAR (field1);
|
|
else
|
|
{
|
|
CCL_WRITE_STRING (field1);
|
|
ic += (field1 + 2) / 3;
|
|
}
|
|
break;
|
|
|
|
case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
i = reg[rrr];
|
|
if ((unsigned int) i < field1)
|
|
{
|
|
j = XINT (ccl_prog[ic + i]);
|
|
CCL_WRITE_CHAR (j);
|
|
}
|
|
ic += field1;
|
|
break;
|
|
|
|
case CCL_End: /* 0000000000000000000000XXXXX */
|
|
if (stack_idx > 0)
|
|
{
|
|
stack_idx--;
|
|
ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
|
|
ic = ccl_prog_stack_struct[stack_idx].ic;
|
|
eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
|
|
if (eof_hit)
|
|
ic = eof_ic;
|
|
break;
|
|
}
|
|
if (src)
|
|
src = src_end;
|
|
/* ccl->ic should points to this command code again to
|
|
suppress further processing. */
|
|
ic--;
|
|
CCL_SUCCESS;
|
|
|
|
case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
|
|
i = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
op = field1 >> 6;
|
|
goto ccl_expr_self;
|
|
|
|
case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
op = field1 >> 6;
|
|
|
|
ccl_expr_self:
|
|
switch (op)
|
|
{
|
|
case CCL_PLUS: reg[rrr] += i; break;
|
|
case CCL_MINUS: reg[rrr] -= i; break;
|
|
case CCL_MUL: reg[rrr] *= i; break;
|
|
case CCL_DIV: reg[rrr] /= i; break;
|
|
case CCL_MOD: reg[rrr] %= i; break;
|
|
case CCL_AND: reg[rrr] &= i; break;
|
|
case CCL_OR: reg[rrr] |= i; break;
|
|
case CCL_XOR: reg[rrr] ^= i; break;
|
|
case CCL_LSH: reg[rrr] <<= i; break;
|
|
case CCL_RSH: reg[rrr] >>= i; break;
|
|
case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
|
|
case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
|
|
case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
|
|
case CCL_LS: reg[rrr] = reg[rrr] < i; break;
|
|
case CCL_GT: reg[rrr] = reg[rrr] > i; break;
|
|
case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
|
|
case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
|
|
case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
|
|
case CCL_NE: reg[rrr] = reg[rrr] != i; break;
|
|
default: CCL_INVALID_CMD;
|
|
}
|
|
break;
|
|
|
|
case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = XINT (ccl_prog[ic]);
|
|
op = field1 >> 6;
|
|
jump_address = ++ic;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
|
|
i = reg[RRR];
|
|
j = reg[Rrr];
|
|
op = field1 >> 6;
|
|
jump_address = ic;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
i = reg[rrr];
|
|
op = XINT (ccl_prog[ic]);
|
|
jump_address = ic++ + ADDR;
|
|
j = XINT (ccl_prog[ic]);
|
|
ic++;
|
|
rrr = 7;
|
|
goto ccl_set_expr;
|
|
|
|
case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
CCL_READ_CHAR (reg[rrr]);
|
|
case CCL_JumpCondExprReg:
|
|
i = reg[rrr];
|
|
op = XINT (ccl_prog[ic]);
|
|
jump_address = ic++ + ADDR;
|
|
j = reg[XINT (ccl_prog[ic])];
|
|
ic++;
|
|
rrr = 7;
|
|
|
|
ccl_set_expr:
|
|
switch (op)
|
|
{
|
|
case CCL_PLUS: reg[rrr] = i + j; break;
|
|
case CCL_MINUS: reg[rrr] = i - j; break;
|
|
case CCL_MUL: reg[rrr] = i * j; break;
|
|
case CCL_DIV: reg[rrr] = i / j; break;
|
|
case CCL_MOD: reg[rrr] = i % j; break;
|
|
case CCL_AND: reg[rrr] = i & j; break;
|
|
case CCL_OR: reg[rrr] = i | j; break;
|
|
case CCL_XOR: reg[rrr] = i ^ j;; break;
|
|
case CCL_LSH: reg[rrr] = i << j; break;
|
|
case CCL_RSH: reg[rrr] = i >> j; break;
|
|
case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
|
|
case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
|
|
case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
|
|
case CCL_LS: reg[rrr] = i < j; break;
|
|
case CCL_GT: reg[rrr] = i > j; break;
|
|
case CCL_EQ: reg[rrr] = i == j; break;
|
|
case CCL_LE: reg[rrr] = i <= j; break;
|
|
case CCL_GE: reg[rrr] = i >= j; break;
|
|
case CCL_NE: reg[rrr] = i != j; break;
|
|
case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
default: CCL_INVALID_CMD;
|
|
}
|
|
code &= 0x1F;
|
|
if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
|
|
{
|
|
i = reg[rrr];
|
|
CCL_WRITE_CHAR (i);
|
|
ic = jump_address;
|
|
}
|
|
else if (!reg[rrr])
|
|
ic = jump_address;
|
|
break;
|
|
|
|
case CCL_Extension:
|
|
switch (EXCMD)
|
|
{
|
|
case CCL_ReadMultibyteChar2:
|
|
if (!src)
|
|
CCL_INVALID_CMD;
|
|
|
|
if (src >= src_end)
|
|
{
|
|
src++;
|
|
goto ccl_read_multibyte_character_suspend;
|
|
}
|
|
|
|
if (!ccl->multibyte)
|
|
{
|
|
int bytes;
|
|
if (!UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
|
|
{
|
|
reg[RRR] = CHARSET_8_BIT_CONTROL;
|
|
reg[rrr] = *src++;
|
|
break;
|
|
}
|
|
}
|
|
i = *src++;
|
|
if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
|
|
{
|
|
/* We are encoding. */
|
|
if (ccl->eol_type == CODING_EOL_CRLF)
|
|
{
|
|
if (ccl->cr_consumed)
|
|
ccl->cr_consumed = 0;
|
|
else
|
|
{
|
|
ccl->cr_consumed = 1;
|
|
i = '\r';
|
|
src--;
|
|
}
|
|
}
|
|
else
|
|
i = '\r';
|
|
reg[rrr] = i;
|
|
reg[RRR] = CHARSET_ASCII;
|
|
}
|
|
else if (i < 0x80)
|
|
{
|
|
/* ASCII */
|
|
reg[rrr] = i;
|
|
reg[RRR] = CHARSET_ASCII;
|
|
}
|
|
else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
|
|
{
|
|
int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
|
|
|
|
if (dimension == 0)
|
|
{
|
|
/* `i' is a leading code for an undefined charset. */
|
|
reg[RRR] = CHARSET_8_BIT_GRAPHIC;
|
|
reg[rrr] = i;
|
|
}
|
|
else if (src + dimension > src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
else
|
|
{
|
|
reg[RRR] = i;
|
|
i = (*src++ & 0x7F);
|
|
if (dimension == 1)
|
|
reg[rrr] = i;
|
|
else
|
|
reg[rrr] = ((i << 7) | (*src++ & 0x7F));
|
|
}
|
|
}
|
|
else if ((i == LEADING_CODE_PRIVATE_11)
|
|
|| (i == LEADING_CODE_PRIVATE_12))
|
|
{
|
|
if ((src + 1) >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = *src++;
|
|
reg[rrr] = (*src++ & 0x7F);
|
|
}
|
|
else if ((i == LEADING_CODE_PRIVATE_21)
|
|
|| (i == LEADING_CODE_PRIVATE_22))
|
|
{
|
|
if ((src + 2) >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = *src++;
|
|
i = (*src++ & 0x7F);
|
|
reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
src++;
|
|
}
|
|
else if (i == LEADING_CODE_8_BIT_CONTROL)
|
|
{
|
|
if (src >= src_end)
|
|
goto ccl_read_multibyte_character_suspend;
|
|
reg[RRR] = CHARSET_8_BIT_CONTROL;
|
|
reg[rrr] = (*src++ - 0x20);
|
|
}
|
|
else if (i >= 0xA0)
|
|
{
|
|
reg[RRR] = CHARSET_8_BIT_GRAPHIC;
|
|
reg[rrr] = i;
|
|
}
|
|
else
|
|
{
|
|
/* INVALID CODE. Return a single byte character. */
|
|
reg[RRR] = CHARSET_ASCII;
|
|
reg[rrr] = i;
|
|
}
|
|
break;
|
|
|
|
ccl_read_multibyte_character_suspend:
|
|
if (src <= src_end && !ccl->multibyte && ccl->last_block)
|
|
{
|
|
reg[RRR] = CHARSET_8_BIT_CONTROL;
|
|
reg[rrr] = i;
|
|
break;
|
|
}
|
|
src--;
|
|
if (ccl->last_block)
|
|
{
|
|
ic = eof_ic;
|
|
eof_hit = 1;
|
|
goto ccl_repeat;
|
|
}
|
|
else
|
|
CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
|
|
|
|
break;
|
|
|
|
case CCL_WriteMultibyteChar2:
|
|
i = reg[RRR]; /* charset */
|
|
if (i == CHARSET_ASCII
|
|
|| i == CHARSET_8_BIT_CONTROL
|
|
|| i == CHARSET_8_BIT_GRAPHIC)
|
|
i = reg[rrr] & 0xFF;
|
|
else if (CHARSET_DIMENSION (i) == 1)
|
|
i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
|
|
i = ((i - 0x8F) << 14) | reg[rrr];
|
|
else
|
|
i = ((i - 0xE0) << 14) | reg[rrr];
|
|
|
|
CCL_WRITE_MULTIBYTE_CHAR (i);
|
|
|
|
break;
|
|
|
|
case CCL_TranslateCharacter:
|
|
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
|
|
op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
|
|
i, -1, 0, 0);
|
|
SPLIT_CHAR (op, reg[RRR], i, j);
|
|
if (j != -1)
|
|
i = (i << 7) | j;
|
|
|
|
reg[rrr] = i;
|
|
break;
|
|
|
|
case CCL_TranslateCharacterConstTbl:
|
|
op = XINT (ccl_prog[ic]); /* table */
|
|
ic++;
|
|
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
|
|
op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
|
|
SPLIT_CHAR (op, reg[RRR], i, j);
|
|
if (j != -1)
|
|
i = (i << 7) | j;
|
|
|
|
reg[rrr] = i;
|
|
break;
|
|
|
|
case CCL_LookupIntConstTbl:
|
|
op = XINT (ccl_prog[ic]); /* table */
|
|
ic++;
|
|
{
|
|
struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
|
|
|
|
op = hash_lookup (h, make_number (reg[RRR]), NULL);
|
|
if (op >= 0)
|
|
{
|
|
Lisp_Object opl;
|
|
opl = HASH_VALUE (h, op);
|
|
if (!CHAR_VALID_P (XINT (opl), 0))
|
|
CCL_INVALID_CMD;
|
|
SPLIT_CHAR (XINT (opl), reg[RRR], i, j);
|
|
if (j != -1)
|
|
i = (i << 7) | j;
|
|
reg[rrr] = i;
|
|
reg[7] = 1; /* r7 true for success */
|
|
}
|
|
else
|
|
reg[7] = 0;
|
|
}
|
|
break;
|
|
|
|
case CCL_LookupCharConstTbl:
|
|
op = XINT (ccl_prog[ic]); /* table */
|
|
ic++;
|
|
CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
|
|
{
|
|
struct Lisp_Hash_Table *h = GET_HASH_TABLE (op);
|
|
|
|
op = hash_lookup (h, make_number (i), NULL);
|
|
if (op >= 0)
|
|
{
|
|
Lisp_Object opl;
|
|
opl = HASH_VALUE (h, op);
|
|
if (!INTEGERP (opl))
|
|
CCL_INVALID_CMD;
|
|
reg[RRR] = XINT (opl);
|
|
reg[7] = 1; /* r7 true for success */
|
|
}
|
|
else
|
|
reg[7] = 0;
|
|
}
|
|
break;
|
|
|
|
case CCL_IterateMultipleMap:
|
|
{
|
|
Lisp_Object map, content, attrib, value;
|
|
int point, size, fin_ic;
|
|
|
|
j = XINT (ccl_prog[ic++]); /* number of maps. */
|
|
fin_ic = ic + j;
|
|
op = reg[rrr];
|
|
if ((j > reg[RRR]) && (j >= 0))
|
|
{
|
|
ic += reg[RRR];
|
|
i = reg[RRR];
|
|
}
|
|
else
|
|
{
|
|
reg[RRR] = -1;
|
|
ic = fin_ic;
|
|
break;
|
|
}
|
|
|
|
for (;i < j;i++)
|
|
{
|
|
|
|
size = ASIZE (Vcode_conversion_map_vector);
|
|
point = XINT (ccl_prog[ic++]);
|
|
if (point >= size) continue;
|
|
map = AREF (Vcode_conversion_map_vector, point);
|
|
|
|
/* Check map varidity. */
|
|
if (!CONSP (map)) continue;
|
|
map = XCDR (map);
|
|
if (!VECTORP (map)) continue;
|
|
size = ASIZE (map);
|
|
if (size <= 1) continue;
|
|
|
|
content = AREF (map, 0);
|
|
|
|
/* check map type,
|
|
[STARTPOINT VAL1 VAL2 ...] or
|
|
[t ELELMENT STARTPOINT ENDPOINT] */
|
|
if (NUMBERP (content))
|
|
{
|
|
point = XUINT (content);
|
|
point = op - point + 1;
|
|
if (!((point >= 1) && (point < size))) continue;
|
|
content = AREF (map, point);
|
|
}
|
|
else if (EQ (content, Qt))
|
|
{
|
|
if (size != 4) continue;
|
|
if ((op >= XUINT (AREF (map, 2)))
|
|
&& (op < XUINT (AREF (map, 3))))
|
|
content = AREF (map, 1);
|
|
else
|
|
continue;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if (NILP (content))
|
|
continue;
|
|
else if (NUMBERP (content))
|
|
{
|
|
reg[RRR] = i;
|
|
reg[rrr] = XINT(content);
|
|
break;
|
|
}
|
|
else if (EQ (content, Qt) || EQ (content, Qlambda))
|
|
{
|
|
reg[RRR] = i;
|
|
break;
|
|
}
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCAR (content);
|
|
value = XCDR (content);
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
reg[RRR] = i;
|
|
reg[rrr] = XUINT (value);
|
|
break;
|
|
}
|
|
else if (SYMBOLP (content))
|
|
CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
|
|
else
|
|
CCL_INVALID_CMD;
|
|
}
|
|
if (i == j)
|
|
reg[RRR] = -1;
|
|
ic = fin_ic;
|
|
}
|
|
break;
|
|
|
|
case CCL_MapMultiple:
|
|
{
|
|
Lisp_Object map, content, attrib, value;
|
|
int point, size, map_vector_size;
|
|
int map_set_rest_length, fin_ic;
|
|
int current_ic = this_ic;
|
|
|
|
/* inhibit recursive call on MapMultiple. */
|
|
if (stack_idx_of_map_multiple > 0)
|
|
{
|
|
if (stack_idx_of_map_multiple <= stack_idx)
|
|
{
|
|
stack_idx_of_map_multiple = 0;
|
|
mapping_stack_pointer = mapping_stack;
|
|
CCL_INVALID_CMD;
|
|
}
|
|
}
|
|
else
|
|
mapping_stack_pointer = mapping_stack;
|
|
stack_idx_of_map_multiple = 0;
|
|
|
|
map_set_rest_length =
|
|
XINT (ccl_prog[ic++]); /* number of maps and separators. */
|
|
fin_ic = ic + map_set_rest_length;
|
|
op = reg[rrr];
|
|
|
|
if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
|
|
{
|
|
ic += reg[RRR];
|
|
i = reg[RRR];
|
|
map_set_rest_length -= i;
|
|
}
|
|
else
|
|
{
|
|
ic = fin_ic;
|
|
reg[RRR] = -1;
|
|
mapping_stack_pointer = mapping_stack;
|
|
break;
|
|
}
|
|
|
|
if (mapping_stack_pointer <= (mapping_stack + 1))
|
|
{
|
|
/* Set up initial state. */
|
|
mapping_stack_pointer = mapping_stack;
|
|
PUSH_MAPPING_STACK (0, op);
|
|
reg[RRR] = -1;
|
|
}
|
|
else
|
|
{
|
|
/* Recover after calling other ccl program. */
|
|
int orig_op;
|
|
|
|
POP_MAPPING_STACK (map_set_rest_length, orig_op);
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
switch (op)
|
|
{
|
|
case -1:
|
|
/* Regard it as Qnil. */
|
|
op = orig_op;
|
|
i++;
|
|
ic++;
|
|
map_set_rest_length--;
|
|
break;
|
|
case -2:
|
|
/* Regard it as Qt. */
|
|
op = reg[rrr];
|
|
i++;
|
|
ic++;
|
|
map_set_rest_length--;
|
|
break;
|
|
case -3:
|
|
/* Regard it as Qlambda. */
|
|
op = orig_op;
|
|
i += map_set_rest_length;
|
|
ic += map_set_rest_length;
|
|
map_set_rest_length = 0;
|
|
break;
|
|
default:
|
|
/* Regard it as normal mapping. */
|
|
i += map_set_rest_length;
|
|
ic += map_set_rest_length;
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
break;
|
|
}
|
|
}
|
|
map_vector_size = ASIZE (Vcode_conversion_map_vector);
|
|
|
|
do {
|
|
for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
|
|
{
|
|
point = XINT(ccl_prog[ic]);
|
|
if (point < 0)
|
|
{
|
|
/* +1 is for including separator. */
|
|
point = -point + 1;
|
|
if (mapping_stack_pointer
|
|
>= &mapping_stack[MAX_MAP_SET_LEVEL])
|
|
CCL_INVALID_CMD;
|
|
PUSH_MAPPING_STACK (map_set_rest_length - point,
|
|
reg[rrr]);
|
|
map_set_rest_length = point;
|
|
reg[rrr] = op;
|
|
continue;
|
|
}
|
|
|
|
if (point >= map_vector_size) continue;
|
|
map = AREF (Vcode_conversion_map_vector, point);
|
|
|
|
/* Check map varidity. */
|
|
if (!CONSP (map)) continue;
|
|
map = XCDR (map);
|
|
if (!VECTORP (map)) continue;
|
|
size = ASIZE (map);
|
|
if (size <= 1) continue;
|
|
|
|
content = AREF (map, 0);
|
|
|
|
/* check map type,
|
|
[STARTPOINT VAL1 VAL2 ...] or
|
|
[t ELEMENT STARTPOINT ENDPOINT] */
|
|
if (NUMBERP (content))
|
|
{
|
|
point = XUINT (content);
|
|
point = op - point + 1;
|
|
if (!((point >= 1) && (point < size))) continue;
|
|
content = AREF (map, point);
|
|
}
|
|
else if (EQ (content, Qt))
|
|
{
|
|
if (size != 4) continue;
|
|
if ((op >= XUINT (AREF (map, 2))) &&
|
|
(op < XUINT (AREF (map, 3))))
|
|
content = AREF (map, 1);
|
|
else
|
|
continue;
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if (NILP (content))
|
|
continue;
|
|
|
|
reg[RRR] = i;
|
|
if (NUMBERP (content))
|
|
{
|
|
op = XINT (content);
|
|
i += map_set_rest_length - 1;
|
|
ic += map_set_rest_length - 1;
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
map_set_rest_length++;
|
|
}
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCAR (content);
|
|
value = XCDR (content);
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
op = XUINT (value);
|
|
i += map_set_rest_length - 1;
|
|
ic += map_set_rest_length - 1;
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
map_set_rest_length++;
|
|
}
|
|
else if (EQ (content, Qt))
|
|
{
|
|
op = reg[rrr];
|
|
}
|
|
else if (EQ (content, Qlambda))
|
|
{
|
|
i += map_set_rest_length;
|
|
ic += map_set_rest_length;
|
|
break;
|
|
}
|
|
else if (SYMBOLP (content))
|
|
{
|
|
if (mapping_stack_pointer
|
|
>= &mapping_stack[MAX_MAP_SET_LEVEL])
|
|
CCL_INVALID_CMD;
|
|
PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
PUSH_MAPPING_STACK (map_set_rest_length, op);
|
|
stack_idx_of_map_multiple = stack_idx + 1;
|
|
CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
|
|
}
|
|
else
|
|
CCL_INVALID_CMD;
|
|
}
|
|
if (mapping_stack_pointer <= (mapping_stack + 1))
|
|
break;
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
i += map_set_rest_length;
|
|
ic += map_set_rest_length;
|
|
POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
} while (1);
|
|
|
|
ic = fin_ic;
|
|
}
|
|
reg[rrr] = op;
|
|
break;
|
|
|
|
case CCL_MapSingle:
|
|
{
|
|
Lisp_Object map, attrib, value, content;
|
|
int size, point;
|
|
j = XINT (ccl_prog[ic++]); /* map_id */
|
|
op = reg[rrr];
|
|
if (j >= ASIZE (Vcode_conversion_map_vector))
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
map = AREF (Vcode_conversion_map_vector, j);
|
|
if (!CONSP (map))
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
map = XCDR (map);
|
|
if (!VECTORP (map))
|
|
{
|
|
reg[RRR] = -1;
|
|
break;
|
|
}
|
|
size = ASIZE (map);
|
|
point = XUINT (AREF (map, 0));
|
|
point = op - point + 1;
|
|
reg[RRR] = 0;
|
|
if ((size <= 1) ||
|
|
(!((point >= 1) && (point < size))))
|
|
reg[RRR] = -1;
|
|
else
|
|
{
|
|
reg[RRR] = 0;
|
|
content = AREF (map, point);
|
|
if (NILP (content))
|
|
reg[RRR] = -1;
|
|
else if (NUMBERP (content))
|
|
reg[rrr] = XINT (content);
|
|
else if (EQ (content, Qt));
|
|
else if (CONSP (content))
|
|
{
|
|
attrib = XCAR (content);
|
|
value = XCDR (content);
|
|
if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
continue;
|
|
reg[rrr] = XUINT(value);
|
|
break;
|
|
}
|
|
else if (SYMBOLP (content))
|
|
CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
|
|
else
|
|
reg[RRR] = -1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CCL_INVALID_CMD;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
CCL_INVALID_CMD;
|
|
}
|
|
}
|
|
|
|
ccl_error_handler:
|
|
/* The suppress_error member is set when e.g. a CCL-based coding
|
|
system is used for terminal output. */
|
|
if (!ccl->suppress_error && destination)
|
|
{
|
|
/* We can insert an error message only if DESTINATION is
|
|
specified and we still have a room to store the message
|
|
there. */
|
|
char msg[256];
|
|
int msglen;
|
|
|
|
if (!dst)
|
|
dst = destination;
|
|
|
|
switch (ccl->status)
|
|
{
|
|
case CCL_STAT_INVALID_CMD:
|
|
sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
|
|
code & 0x1F, code, this_ic);
|
|
#ifdef CCL_DEBUG
|
|
{
|
|
int i = ccl_backtrace_idx - 1;
|
|
int j;
|
|
|
|
msglen = strlen (msg);
|
|
if (dst + msglen <= (dst_bytes ? dst_end : src))
|
|
{
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
|
|
for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
|
|
{
|
|
if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
|
|
if (ccl_backtrace_table[i] == 0)
|
|
break;
|
|
sprintf(msg, " %d", ccl_backtrace_table[i]);
|
|
msglen = strlen (msg);
|
|
if (dst + msglen > (dst_bytes ? dst_end : src))
|
|
break;
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
goto ccl_finish;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case CCL_STAT_QUIT:
|
|
sprintf(msg, "\nCCL: Quited.");
|
|
break;
|
|
|
|
default:
|
|
sprintf(msg, "\nCCL: Unknown error type (%d)", ccl->status);
|
|
}
|
|
|
|
msglen = strlen (msg);
|
|
if (dst + msglen <= (dst_bytes ? dst_end : src))
|
|
{
|
|
bcopy (msg, dst, msglen);
|
|
dst += msglen;
|
|
}
|
|
|
|
if (ccl->status == CCL_STAT_INVALID_CMD)
|
|
{
|
|
#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
|
|
results in an invalid multibyte sequence. */
|
|
|
|
/* Copy the remaining source data. */
|
|
int i = src_end - src;
|
|
if (dst_bytes && (dst_end - dst) < i)
|
|
i = dst_end - dst;
|
|
bcopy (src, dst, i);
|
|
src += i;
|
|
dst += i;
|
|
#else
|
|
/* Signal that we've consumed everything. */
|
|
src = src_end;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
ccl_finish:
|
|
ccl->ic = ic;
|
|
ccl->stack_idx = stack_idx;
|
|
ccl->prog = ccl_prog;
|
|
ccl->eight_bit_control = (extra_bytes > 1);
|
|
if (consumed)
|
|
*consumed = src - source;
|
|
return (dst ? dst - destination : 0);
|
|
}
|
|
|
|
/* Resolve symbols in the specified CCL code (Lisp vector). This
|
|
function converts symbols of code conversion maps and character
|
|
translation tables embeded in the CCL code into their ID numbers.
|
|
|
|
The return value is a vector (CCL itself or a new vector in which
|
|
all symbols are resolved), Qt if resolving of some symbol failed,
|
|
or nil if CCL contains invalid data. */
|
|
|
|
static Lisp_Object
|
|
resolve_symbol_ccl_program (ccl)
|
|
Lisp_Object ccl;
|
|
{
|
|
int i, veclen, unresolved = 0;
|
|
Lisp_Object result, contents, val;
|
|
|
|
result = ccl;
|
|
veclen = ASIZE (result);
|
|
|
|
for (i = 0; i < veclen; i++)
|
|
{
|
|
contents = AREF (result, i);
|
|
if (INTEGERP (contents))
|
|
continue;
|
|
else if (CONSP (contents)
|
|
&& SYMBOLP (XCAR (contents))
|
|
&& SYMBOLP (XCDR (contents)))
|
|
{
|
|
/* This is the new style for embedding symbols. The form is
|
|
(SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
|
|
an index number. */
|
|
|
|
if (EQ (result, ccl))
|
|
result = Fcopy_sequence (ccl);
|
|
|
|
val = Fget (XCAR (contents), XCDR (contents));
|
|
if (NATNUMP (val))
|
|
AREF (result, i) = val;
|
|
else
|
|
unresolved = 1;
|
|
continue;
|
|
}
|
|
else if (SYMBOLP (contents))
|
|
{
|
|
/* This is the old style for embedding symbols. This style
|
|
may lead to a bug if, for instance, a translation table
|
|
and a code conversion map have the same name. */
|
|
if (EQ (result, ccl))
|
|
result = Fcopy_sequence (ccl);
|
|
|
|
val = Fget (contents, Qtranslation_table_id);
|
|
if (NATNUMP (val))
|
|
AREF (result, i) = val;
|
|
else
|
|
{
|
|
val = Fget (contents, Qcode_conversion_map_id);
|
|
if (NATNUMP (val))
|
|
AREF (result, i) = val;
|
|
else
|
|
{
|
|
val = Fget (contents, Qccl_program_idx);
|
|
if (NATNUMP (val))
|
|
AREF (result, i) = val;
|
|
else
|
|
unresolved = 1;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
return (unresolved ? Qt : result);
|
|
}
|
|
|
|
/* Return the compiled code (vector) of CCL program CCL_PROG.
|
|
CCL_PROG is a name (symbol) of the program or already compiled
|
|
code. If necessary, resolve symbols in the compiled code to index
|
|
numbers. If we failed to get the compiled code or to resolve
|
|
symbols, return Qnil. */
|
|
|
|
static Lisp_Object
|
|
ccl_get_compiled_code (ccl_prog, idx)
|
|
Lisp_Object ccl_prog;
|
|
int *idx;
|
|
{
|
|
Lisp_Object val, slot;
|
|
|
|
if (VECTORP (ccl_prog))
|
|
{
|
|
val = resolve_symbol_ccl_program (ccl_prog);
|
|
*idx = -1;
|
|
return (VECTORP (val) ? val : Qnil);
|
|
}
|
|
if (!SYMBOLP (ccl_prog))
|
|
return Qnil;
|
|
|
|
val = Fget (ccl_prog, Qccl_program_idx);
|
|
if (! NATNUMP (val)
|
|
|| XINT (val) >= ASIZE (Vccl_program_table))
|
|
return Qnil;
|
|
slot = AREF (Vccl_program_table, XINT (val));
|
|
if (! VECTORP (slot)
|
|
|| ASIZE (slot) != 4
|
|
|| ! VECTORP (AREF (slot, 1)))
|
|
return Qnil;
|
|
*idx = XINT (val);
|
|
if (NILP (AREF (slot, 2)))
|
|
{
|
|
val = resolve_symbol_ccl_program (AREF (slot, 1));
|
|
if (! VECTORP (val))
|
|
return Qnil;
|
|
AREF (slot, 1) = val;
|
|
AREF (slot, 2) = Qt;
|
|
}
|
|
return AREF (slot, 1);
|
|
}
|
|
|
|
/* Setup fields of the structure pointed by CCL appropriately for the
|
|
execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
|
|
of the CCL program or the already compiled code (vector).
|
|
Return 0 if we succeed this setup, else return -1.
|
|
|
|
If CCL_PROG is nil, we just reset the structure pointed by CCL. */
|
|
int
|
|
setup_ccl_program (ccl, ccl_prog)
|
|
struct ccl_program *ccl;
|
|
Lisp_Object ccl_prog;
|
|
{
|
|
int i;
|
|
|
|
if (! NILP (ccl_prog))
|
|
{
|
|
struct Lisp_Vector *vp;
|
|
|
|
ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
|
|
if (! VECTORP (ccl_prog))
|
|
return -1;
|
|
vp = XVECTOR (ccl_prog);
|
|
ccl->size = vp->size;
|
|
ccl->prog = vp->contents;
|
|
ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
|
|
ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
|
|
if (ccl->idx >= 0)
|
|
{
|
|
Lisp_Object slot;
|
|
|
|
slot = AREF (Vccl_program_table, ccl->idx);
|
|
ASET (slot, 3, Qnil);
|
|
}
|
|
}
|
|
ccl->ic = CCL_HEADER_MAIN;
|
|
for (i = 0; i < 8; i++)
|
|
ccl->reg[i] = 0;
|
|
ccl->last_block = 0;
|
|
ccl->private_state = 0;
|
|
ccl->status = 0;
|
|
ccl->stack_idx = 0;
|
|
ccl->eol_type = CODING_EOL_LF;
|
|
ccl->suppress_error = 0;
|
|
ccl->eight_bit_control = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Check if CCL is updated or not. If not, re-setup members of CCL. */
|
|
|
|
int
|
|
check_ccl_update (ccl)
|
|
struct ccl_program *ccl;
|
|
{
|
|
Lisp_Object slot, ccl_prog;
|
|
|
|
if (ccl->idx < 0)
|
|
return 0;
|
|
slot = AREF (Vccl_program_table, ccl->idx);
|
|
if (NILP (AREF (slot, 3)))
|
|
return 0;
|
|
ccl_prog = ccl_get_compiled_code (AREF (slot, 0), &ccl->idx);
|
|
if (! VECTORP (ccl_prog))
|
|
return -1;
|
|
ccl->size = ASIZE (ccl_prog);
|
|
ccl->prog = XVECTOR (ccl_prog)->contents;
|
|
ccl->eof_ic = XINT (AREF (ccl_prog, CCL_HEADER_EOF));
|
|
ccl->buf_magnification = XINT (AREF (ccl_prog, CCL_HEADER_BUF_MAG));
|
|
ASET (slot, 3, Qnil);
|
|
return 0;
|
|
}
|
|
|
|
|
|
DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
|
|
doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
|
|
See the documentation of `define-ccl-program' for the detail of CCL program. */)
|
|
(object)
|
|
Lisp_Object object;
|
|
{
|
|
Lisp_Object val;
|
|
|
|
if (VECTORP (object))
|
|
{
|
|
val = resolve_symbol_ccl_program (object);
|
|
return (VECTORP (val) ? Qt : Qnil);
|
|
}
|
|
if (!SYMBOLP (object))
|
|
return Qnil;
|
|
|
|
val = Fget (object, Qccl_program_idx);
|
|
return ((! NATNUMP (val)
|
|
|| XINT (val) >= ASIZE (Vccl_program_table))
|
|
? Qnil : Qt);
|
|
}
|
|
|
|
DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
|
|
doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
|
|
|
|
CCL-PROGRAM is a CCL program name (symbol)
|
|
or compiled code generated by `ccl-compile' (for backward compatibility.
|
|
In the latter case, the execution overhead is bigger than in the former).
|
|
No I/O commands should appear in CCL-PROGRAM.
|
|
|
|
REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
|
|
for the Nth register.
|
|
|
|
As side effect, each element of REGISTERS holds the value of
|
|
the corresponding register after the execution.
|
|
|
|
See the documentation of `define-ccl-program' for a definition of CCL
|
|
programs. */)
|
|
(ccl_prog, reg)
|
|
Lisp_Object ccl_prog, reg;
|
|
{
|
|
struct ccl_program ccl;
|
|
int i;
|
|
|
|
if (setup_ccl_program (&ccl, ccl_prog) < 0)
|
|
error ("Invalid CCL program");
|
|
|
|
CHECK_VECTOR (reg);
|
|
if (ASIZE (reg) != 8)
|
|
error ("Length of vector REGISTERS is not 8");
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ccl.reg[i] = (INTEGERP (AREF (reg, i))
|
|
? XINT (AREF (reg, i))
|
|
: 0);
|
|
|
|
ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
|
|
QUIT;
|
|
if (ccl.status != CCL_STAT_SUCCESS)
|
|
error ("Error in CCL program at %dth code", ccl.ic);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
XSETINT (AREF (reg, i), ccl.reg[i]);
|
|
return Qnil;
|
|
}
|
|
|
|
DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
|
|
3, 5, 0,
|
|
doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
|
|
|
|
CCL-PROGRAM is a symbol registered by `register-ccl-program',
|
|
or a compiled code generated by `ccl-compile' (for backward compatibility,
|
|
in this case, the execution is slower).
|
|
|
|
Read buffer is set to STRING, and write buffer is allocated automatically.
|
|
|
|
STATUS is a vector of [R0 R1 ... R7 IC], where
|
|
R0..R7 are initial values of corresponding registers,
|
|
IC is the instruction counter specifying from where to start the program.
|
|
If R0..R7 are nil, they are initialized to 0.
|
|
If IC is nil, it is initialized to head of the CCL program.
|
|
|
|
If optional 4th arg CONTINUE is non-nil, keep IC on read operation
|
|
when read buffer is exausted, else, IC is always set to the end of
|
|
CCL-PROGRAM on exit.
|
|
|
|
It returns the contents of write buffer as a string,
|
|
and as side effect, STATUS is updated.
|
|
If the optional 5th arg UNIBYTE-P is non-nil, the returned string
|
|
is a unibyte string. By default it is a multibyte string.
|
|
|
|
See the documentation of `define-ccl-program' for the detail of CCL program.
|
|
usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
|
|
(ccl_prog, status, str, contin, unibyte_p)
|
|
Lisp_Object ccl_prog, status, str, contin, unibyte_p;
|
|
{
|
|
Lisp_Object val;
|
|
struct ccl_program ccl;
|
|
int i, produced;
|
|
int outbufsize;
|
|
char *outbuf;
|
|
struct gcpro gcpro1, gcpro2;
|
|
|
|
if (setup_ccl_program (&ccl, ccl_prog) < 0)
|
|
error ("Invalid CCL program");
|
|
|
|
CHECK_VECTOR (status);
|
|
if (ASIZE (status) != 9)
|
|
error ("Length of vector STATUS is not 9");
|
|
CHECK_STRING (str);
|
|
|
|
GCPRO2 (status, str);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
if (NILP (AREF (status, i)))
|
|
XSETINT (AREF (status, i), 0);
|
|
if (INTEGERP (AREF (status, i)))
|
|
ccl.reg[i] = XINT (AREF (status, i));
|
|
}
|
|
if (INTEGERP (AREF (status, i)))
|
|
{
|
|
i = XFASTINT (AREF (status, 8));
|
|
if (ccl.ic < i && i < ccl.size)
|
|
ccl.ic = i;
|
|
}
|
|
outbufsize = SBYTES (str) * ccl.buf_magnification + 256;
|
|
outbuf = (char *) xmalloc (outbufsize);
|
|
ccl.last_block = NILP (contin);
|
|
ccl.multibyte = STRING_MULTIBYTE (str);
|
|
produced = ccl_driver (&ccl, SDATA (str), outbuf,
|
|
SBYTES (str), outbufsize, (int *) 0);
|
|
for (i = 0; i < 8; i++)
|
|
ASET (status, i, make_number (ccl.reg[i]));
|
|
ASET (status, 8, make_number (ccl.ic));
|
|
UNGCPRO;
|
|
|
|
if (NILP (unibyte_p))
|
|
{
|
|
int nchars;
|
|
|
|
produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
|
|
val = make_multibyte_string (outbuf, nchars, produced);
|
|
}
|
|
else
|
|
val = make_unibyte_string (outbuf, produced);
|
|
xfree (outbuf);
|
|
QUIT;
|
|
if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
|
|
error ("Output buffer for the CCL programs overflow");
|
|
if (ccl.status != CCL_STAT_SUCCESS
|
|
&& ccl.status != CCL_STAT_SUSPEND_BY_SRC)
|
|
error ("Error in CCL program at %dth code", ccl.ic);
|
|
|
|
return val;
|
|
}
|
|
|
|
DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
|
|
2, 2, 0,
|
|
doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
|
|
CCL-PROG should be a compiled CCL program (vector), or nil.
|
|
If it is nil, just reserve NAME as a CCL program name.
|
|
Return index number of the registered CCL program. */)
|
|
(name, ccl_prog)
|
|
Lisp_Object name, ccl_prog;
|
|
{
|
|
int len = ASIZE (Vccl_program_table);
|
|
int idx;
|
|
Lisp_Object resolved;
|
|
|
|
CHECK_SYMBOL (name);
|
|
resolved = Qnil;
|
|
if (!NILP (ccl_prog))
|
|
{
|
|
CHECK_VECTOR (ccl_prog);
|
|
resolved = resolve_symbol_ccl_program (ccl_prog);
|
|
if (NILP (resolved))
|
|
error ("Error in CCL program");
|
|
if (VECTORP (resolved))
|
|
{
|
|
ccl_prog = resolved;
|
|
resolved = Qt;
|
|
}
|
|
else
|
|
resolved = Qnil;
|
|
}
|
|
|
|
for (idx = 0; idx < len; idx++)
|
|
{
|
|
Lisp_Object slot;
|
|
|
|
slot = AREF (Vccl_program_table, idx);
|
|
if (!VECTORP (slot))
|
|
/* This is the first unsed slot. Register NAME here. */
|
|
break;
|
|
|
|
if (EQ (name, AREF (slot, 0)))
|
|
{
|
|
/* Update this slot. */
|
|
ASET (slot, 1, ccl_prog);
|
|
ASET (slot, 2, resolved);
|
|
ASET (slot, 3, Qt);
|
|
return make_number (idx);
|
|
}
|
|
}
|
|
|
|
if (idx == len)
|
|
{
|
|
/* Extend the table. */
|
|
Lisp_Object new_table;
|
|
int j;
|
|
|
|
new_table = Fmake_vector (make_number (len * 2), Qnil);
|
|
for (j = 0; j < len; j++)
|
|
ASET (new_table, j, AREF (Vccl_program_table, j));
|
|
Vccl_program_table = new_table;
|
|
}
|
|
|
|
{
|
|
Lisp_Object elt;
|
|
|
|
elt = Fmake_vector (make_number (4), Qnil);
|
|
ASET (elt, 0, name);
|
|
ASET (elt, 1, ccl_prog);
|
|
ASET (elt, 2, resolved);
|
|
ASET (elt, 3, Qt);
|
|
ASET (Vccl_program_table, idx, elt);
|
|
}
|
|
|
|
Fput (name, Qccl_program_idx, make_number (idx));
|
|
return make_number (idx);
|
|
}
|
|
|
|
/* Register code conversion map.
|
|
A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
|
|
The first element is the start code point.
|
|
The other elements are mapped numbers.
|
|
Symbol t means to map to an original number before mapping.
|
|
Symbol nil means that the corresponding element is empty.
|
|
Symbol lambda means to terminate mapping here.
|
|
*/
|
|
|
|
DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
|
|
Sregister_code_conversion_map,
|
|
2, 2, 0,
|
|
doc: /* Register SYMBOL as code conversion map MAP.
|
|
Return index number of the registered map. */)
|
|
(symbol, map)
|
|
Lisp_Object symbol, map;
|
|
{
|
|
int len = ASIZE (Vcode_conversion_map_vector);
|
|
int i;
|
|
Lisp_Object index;
|
|
|
|
CHECK_SYMBOL (symbol);
|
|
CHECK_VECTOR (map);
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
|
|
|
|
if (!CONSP (slot))
|
|
break;
|
|
|
|
if (EQ (symbol, XCAR (slot)))
|
|
{
|
|
index = make_number (i);
|
|
XSETCDR (slot, map);
|
|
Fput (symbol, Qcode_conversion_map, map);
|
|
Fput (symbol, Qcode_conversion_map_id, index);
|
|
return index;
|
|
}
|
|
}
|
|
|
|
if (i == len)
|
|
{
|
|
Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
|
|
int j;
|
|
|
|
for (j = 0; j < len; j++)
|
|
AREF (new_vector, j)
|
|
= AREF (Vcode_conversion_map_vector, j);
|
|
Vcode_conversion_map_vector = new_vector;
|
|
}
|
|
|
|
index = make_number (i);
|
|
Fput (symbol, Qcode_conversion_map, map);
|
|
Fput (symbol, Qcode_conversion_map_id, index);
|
|
AREF (Vcode_conversion_map_vector, i) = Fcons (symbol, map);
|
|
return index;
|
|
}
|
|
|
|
|
|
void
|
|
syms_of_ccl ()
|
|
{
|
|
staticpro (&Vccl_program_table);
|
|
Vccl_program_table = Fmake_vector (make_number (32), Qnil);
|
|
|
|
Qccl_program = intern ("ccl-program");
|
|
staticpro (&Qccl_program);
|
|
|
|
Qccl_program_idx = intern ("ccl-program-idx");
|
|
staticpro (&Qccl_program_idx);
|
|
|
|
Qcode_conversion_map = intern ("code-conversion-map");
|
|
staticpro (&Qcode_conversion_map);
|
|
|
|
Qcode_conversion_map_id = intern ("code-conversion-map-id");
|
|
staticpro (&Qcode_conversion_map_id);
|
|
|
|
DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
|
|
doc: /* Vector of code conversion maps. */);
|
|
Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
|
|
|
|
DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
|
|
doc: /* Alist of fontname patterns vs corresponding CCL program.
|
|
Each element looks like (REGEXP . CCL-CODE),
|
|
where CCL-CODE is a compiled CCL program.
|
|
When a font whose name matches REGEXP is used for displaying a character,
|
|
CCL-CODE is executed to calculate the code point in the font
|
|
from the charset number and position code(s) of the character which are set
|
|
in CCL registers R0, R1, and R2 before the execution.
|
|
The code point in the font is set in CCL registers R1 and R2
|
|
when the execution terminated.
|
|
If the font is single-byte font, the register R2 is not used. */);
|
|
Vfont_ccl_encoder_alist = Qnil;
|
|
|
|
DEFVAR_LISP ("translation-hash-table-vector", &Vtranslation_hash_table_vector,
|
|
doc: /* Vector containing all translation hash tables ever defined.
|
|
Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
|
|
to `define-translation-hash-table'. The vector is indexed by the table id
|
|
used by CCL. */);
|
|
Vtranslation_hash_table_vector = Qnil;
|
|
|
|
defsubr (&Sccl_program_p);
|
|
defsubr (&Sccl_execute);
|
|
defsubr (&Sccl_execute_on_string);
|
|
defsubr (&Sregister_ccl_program);
|
|
defsubr (&Sregister_code_conversion_map);
|
|
}
|
|
|
|
/* arch-tag: bb9a37be-68ce-4576-8d3d-15d750e4a860
|
|
(do not change this comment) */
|