mirror of
git://git.sv.gnu.org/emacs.git
synced 2025-12-31 09:20:54 -08:00
1879 lines
49 KiB
C
1879 lines
49 KiB
C
/* Random utility Lisp functions.
|
||
Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
#include <config.h>
|
||
|
||
/* Note on some machines this defines `vector' as a typedef,
|
||
so make sure we don't use that name in this file. */
|
||
#undef vector
|
||
#define vector *****
|
||
|
||
#include "lisp.h"
|
||
#include "commands.h"
|
||
|
||
#include "buffer.h"
|
||
#include "keyboard.h"
|
||
#include "intervals.h"
|
||
|
||
#ifndef NULL
|
||
#define NULL (void *)0
|
||
#endif
|
||
|
||
extern Lisp_Object Flookup_key ();
|
||
|
||
Lisp_Object Qstring_lessp, Qprovide, Qrequire;
|
||
Lisp_Object Qyes_or_no_p_history;
|
||
|
||
static int internal_equal ();
|
||
|
||
DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
|
||
"Return the argument unchanged.")
|
||
(arg)
|
||
Lisp_Object arg;
|
||
{
|
||
return arg;
|
||
}
|
||
|
||
extern long get_random ();
|
||
extern void seed_random ();
|
||
extern long time ();
|
||
|
||
DEFUN ("random", Frandom, Srandom, 0, 1, 0,
|
||
"Return a pseudo-random number.\n\
|
||
All integers representable in Lisp are equally likely.\n\
|
||
On most systems, this is 28 bits' worth.\n\
|
||
With positive integer argument N, return random number in interval [0,N).\n\
|
||
With argument t, set the random number seed from the current time and pid.")
|
||
(limit)
|
||
Lisp_Object limit;
|
||
{
|
||
EMACS_INT val;
|
||
Lisp_Object lispy_val;
|
||
unsigned long denominator;
|
||
|
||
if (EQ (limit, Qt))
|
||
seed_random (getpid () + time (NULL));
|
||
if (NATNUMP (limit) && XFASTINT (limit) != 0)
|
||
{
|
||
/* Try to take our random number from the higher bits of VAL,
|
||
not the lower, since (says Gentzel) the low bits of `random'
|
||
are less random than the higher ones. We do this by using the
|
||
quotient rather than the remainder. At the high end of the RNG
|
||
it's possible to get a quotient larger than limit; discarding
|
||
these values eliminates the bias that would otherwise appear
|
||
when using a large limit. */
|
||
denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
|
||
do
|
||
val = get_random () / denominator;
|
||
while (val >= XFASTINT (limit));
|
||
}
|
||
else
|
||
val = get_random ();
|
||
XSETINT (lispy_val, val);
|
||
return lispy_val;
|
||
}
|
||
|
||
/* Random data-structure functions */
|
||
|
||
DEFUN ("length", Flength, Slength, 1, 1, 0,
|
||
"Return the length of vector, list or string SEQUENCE.\n\
|
||
A byte-code function object is also allowed.")
|
||
(obj)
|
||
register Lisp_Object obj;
|
||
{
|
||
register Lisp_Object tail, val;
|
||
register int i;
|
||
|
||
retry:
|
||
if (STRINGP (obj))
|
||
XSETFASTINT (val, XSTRING (obj)->size);
|
||
else if (VECTORP (obj))
|
||
XSETFASTINT (val, XVECTOR (obj)->size);
|
||
else if (CHAR_TABLE_P (obj))
|
||
XSETFASTINT (val, CHAR_TABLE_ORDINARY_SLOTS);
|
||
else if (BOOL_VECTOR_P (obj))
|
||
XSETFASTINT (val, XBOOL_VECTOR (obj)->size);
|
||
else if (COMPILEDP (obj))
|
||
XSETFASTINT (val, XVECTOR (obj)->size & PSEUDOVECTOR_SIZE_MASK);
|
||
else if (CONSP (obj))
|
||
{
|
||
for (i = 0, tail = obj; !NILP (tail); i++)
|
||
{
|
||
QUIT;
|
||
tail = Fcdr (tail);
|
||
}
|
||
|
||
XSETFASTINT (val, i);
|
||
}
|
||
else if (NILP (obj))
|
||
XSETFASTINT (val, 0);
|
||
else
|
||
{
|
||
obj = wrong_type_argument (Qsequencep, obj);
|
||
goto retry;
|
||
}
|
||
return val;
|
||
}
|
||
|
||
/* This does not check for quits. That is safe
|
||
since it must terminate. */
|
||
|
||
DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
|
||
"Return the length of a list, but avoid error or infinite loop.\n\
|
||
This function never gets an error. If LIST is not really a list,\n\
|
||
it returns 0. If LIST is circular, it returns a finite value\n\
|
||
which is at least the number of distinct elements.")
|
||
(list)
|
||
Lisp_Object list;
|
||
{
|
||
Lisp_Object tail, halftail, length;
|
||
int len = 0;
|
||
|
||
/* halftail is used to detect circular lists. */
|
||
halftail = list;
|
||
for (tail = list; CONSP (tail); tail = XCONS (tail)->cdr)
|
||
{
|
||
if (EQ (tail, halftail) && len != 0)
|
||
break;
|
||
len++;
|
||
if ((len & 1) == 0)
|
||
halftail = XCONS (halftail)->cdr;
|
||
}
|
||
|
||
XSETINT (length, len);
|
||
return length;
|
||
}
|
||
|
||
DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
|
||
"T if two strings have identical contents.\n\
|
||
Case is significant, but text properties are ignored.\n\
|
||
Symbols are also allowed; their print names are used instead.")
|
||
(s1, s2)
|
||
register Lisp_Object s1, s2;
|
||
{
|
||
if (SYMBOLP (s1))
|
||
XSETSTRING (s1, XSYMBOL (s1)->name);
|
||
if (SYMBOLP (s2))
|
||
XSETSTRING (s2, XSYMBOL (s2)->name);
|
||
CHECK_STRING (s1, 0);
|
||
CHECK_STRING (s2, 1);
|
||
|
||
if (XSTRING (s1)->size != XSTRING (s2)->size ||
|
||
bcmp (XSTRING (s1)->data, XSTRING (s2)->data, XSTRING (s1)->size))
|
||
return Qnil;
|
||
return Qt;
|
||
}
|
||
|
||
DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
|
||
"T if first arg string is less than second in lexicographic order.\n\
|
||
Case is significant.\n\
|
||
Symbols are also allowed; their print names are used instead.")
|
||
(s1, s2)
|
||
register Lisp_Object s1, s2;
|
||
{
|
||
register int i;
|
||
register unsigned char *p1, *p2;
|
||
register int end;
|
||
|
||
if (SYMBOLP (s1))
|
||
XSETSTRING (s1, XSYMBOL (s1)->name);
|
||
if (SYMBOLP (s2))
|
||
XSETSTRING (s2, XSYMBOL (s2)->name);
|
||
CHECK_STRING (s1, 0);
|
||
CHECK_STRING (s2, 1);
|
||
|
||
p1 = XSTRING (s1)->data;
|
||
p2 = XSTRING (s2)->data;
|
||
end = XSTRING (s1)->size;
|
||
if (end > XSTRING (s2)->size)
|
||
end = XSTRING (s2)->size;
|
||
|
||
for (i = 0; i < end; i++)
|
||
{
|
||
if (p1[i] != p2[i])
|
||
return p1[i] < p2[i] ? Qt : Qnil;
|
||
}
|
||
return i < XSTRING (s2)->size ? Qt : Qnil;
|
||
}
|
||
|
||
static Lisp_Object concat ();
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
concat2 (s1, s2)
|
||
Lisp_Object s1, s2;
|
||
{
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[2];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
return concat (2, args, Lisp_String, 0);
|
||
#else
|
||
return concat (2, &s1, Lisp_String, 0);
|
||
#endif /* NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
concat3 (s1, s2, s3)
|
||
Lisp_Object s1, s2, s3;
|
||
{
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[3];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
args[2] = s3;
|
||
return concat (3, args, Lisp_String, 0);
|
||
#else
|
||
return concat (3, &s1, Lisp_String, 0);
|
||
#endif /* NO_ARG_ARRAY */
|
||
}
|
||
|
||
DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
|
||
"Concatenate all the arguments and make the result a list.\n\
|
||
The result is a list whose elements are the elements of all the arguments.\n\
|
||
Each argument may be a list, vector or string.\n\
|
||
The last argument is not copied, just used as the tail of the new list.")
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return concat (nargs, args, Lisp_Cons, 1);
|
||
}
|
||
|
||
DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
|
||
"Concatenate all the arguments and make the result a string.\n\
|
||
The result is a string whose elements are the elements of all the arguments.\n\
|
||
Each argument may be a string or a list or vector of characters (integers).\n\
|
||
\n\
|
||
Do not use individual integers as arguments!\n\
|
||
The behavior of `concat' in that case will be changed later!\n\
|
||
If your program passes an integer as an argument to `concat',\n\
|
||
you should change it right away not to do so.")
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return concat (nargs, args, Lisp_String, 0);
|
||
}
|
||
|
||
DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
|
||
"Concatenate all the arguments and make the result a vector.\n\
|
||
The result is a vector whose elements are the elements of all the arguments.\n\
|
||
Each argument may be a list, vector or string.")
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return concat (nargs, args, Lisp_Vectorlike, 0);
|
||
}
|
||
|
||
DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
|
||
"Return a copy of a list, vector or string.\n\
|
||
The elements of a list or vector are not copied; they are shared\n\
|
||
with the original.")
|
||
(arg)
|
||
Lisp_Object arg;
|
||
{
|
||
if (NILP (arg)) return arg;
|
||
|
||
if (CHAR_TABLE_P (arg))
|
||
{
|
||
int i, size;
|
||
Lisp_Object copy;
|
||
|
||
/* Calculate the number of extra slots. */
|
||
size = CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (arg));
|
||
copy = Fmake_char_table (XCHAR_TABLE (arg)->purpose, Qnil);
|
||
/* Copy all the slots, including the extra ones. */
|
||
bcopy (XCHAR_TABLE (arg)->contents, XCHAR_TABLE (copy)->contents,
|
||
(XCHAR_TABLE (arg)->size & PSEUDOVECTOR_SIZE_MASK) * sizeof (Lisp_Object));
|
||
|
||
/* Recursively copy any char-tables in the ordinary slots. */
|
||
for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
|
||
if (CHAR_TABLE_P (XCHAR_TABLE (arg)->contents[i]))
|
||
XCHAR_TABLE (copy)->contents[i]
|
||
= Fcopy_sequence (XCHAR_TABLE (copy)->contents[i]);
|
||
|
||
return copy;
|
||
}
|
||
|
||
if (BOOL_VECTOR_P (arg))
|
||
{
|
||
Lisp_Object val;
|
||
int size_in_chars
|
||
= (XBOOL_VECTOR (arg)->size + BITS_PER_CHAR) / BITS_PER_CHAR;
|
||
|
||
val = Fmake_bool_vector (Flength (arg), Qnil);
|
||
bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
|
||
size_in_chars);
|
||
return val;
|
||
}
|
||
|
||
if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
|
||
arg = wrong_type_argument (Qsequencep, arg);
|
||
return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
|
||
}
|
||
|
||
static Lisp_Object
|
||
concat (nargs, args, target_type, last_special)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
enum Lisp_Type target_type;
|
||
int last_special;
|
||
{
|
||
Lisp_Object val;
|
||
Lisp_Object len;
|
||
register Lisp_Object tail;
|
||
register Lisp_Object this;
|
||
int toindex;
|
||
register int leni;
|
||
register int argnum;
|
||
Lisp_Object last_tail;
|
||
Lisp_Object prev;
|
||
|
||
/* In append, the last arg isn't treated like the others */
|
||
if (last_special && nargs > 0)
|
||
{
|
||
nargs--;
|
||
last_tail = args[nargs];
|
||
}
|
||
else
|
||
last_tail = Qnil;
|
||
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
this = args[argnum];
|
||
if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
|
||
|| COMPILEDP (this) || BOOL_VECTOR_P (this)))
|
||
{
|
||
if (INTEGERP (this))
|
||
args[argnum] = Fnumber_to_string (this);
|
||
else
|
||
args[argnum] = wrong_type_argument (Qsequencep, this);
|
||
}
|
||
}
|
||
|
||
for (argnum = 0, leni = 0; argnum < nargs; argnum++)
|
||
{
|
||
this = args[argnum];
|
||
len = Flength (this);
|
||
leni += XFASTINT (len);
|
||
}
|
||
|
||
XSETFASTINT (len, leni);
|
||
|
||
if (target_type == Lisp_Cons)
|
||
val = Fmake_list (len, Qnil);
|
||
else if (target_type == Lisp_Vectorlike)
|
||
val = Fmake_vector (len, Qnil);
|
||
else
|
||
val = Fmake_string (len, len);
|
||
|
||
/* In append, if all but last arg are nil, return last arg */
|
||
if (target_type == Lisp_Cons && EQ (val, Qnil))
|
||
return last_tail;
|
||
|
||
if (CONSP (val))
|
||
tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
|
||
else
|
||
toindex = 0;
|
||
|
||
prev = Qnil;
|
||
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
Lisp_Object thislen;
|
||
int thisleni;
|
||
register int thisindex = 0;
|
||
|
||
this = args[argnum];
|
||
if (!CONSP (this))
|
||
thislen = Flength (this), thisleni = XINT (thislen);
|
||
|
||
if (STRINGP (this) && STRINGP (val)
|
||
&& ! NULL_INTERVAL_P (XSTRING (this)->intervals))
|
||
{
|
||
copy_text_properties (make_number (0), thislen, this,
|
||
make_number (toindex), val, Qnil);
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
register Lisp_Object elt;
|
||
|
||
/* Fetch next element of `this' arg into `elt', or break if
|
||
`this' is exhausted. */
|
||
if (NILP (this)) break;
|
||
if (CONSP (this))
|
||
elt = Fcar (this), this = Fcdr (this);
|
||
else
|
||
{
|
||
if (thisindex >= thisleni) break;
|
||
if (STRINGP (this))
|
||
XSETFASTINT (elt, XSTRING (this)->data[thisindex++]);
|
||
else if (BOOL_VECTOR_P (this))
|
||
{
|
||
int size_in_chars
|
||
= ((XBOOL_VECTOR (this)->size + BITS_PER_CHAR)
|
||
/ BITS_PER_CHAR);
|
||
int byte;
|
||
byte = XBOOL_VECTOR (val)->data[thisindex / BITS_PER_CHAR];
|
||
if (byte & (1 << thisindex))
|
||
elt = Qt;
|
||
else
|
||
elt = Qnil;
|
||
}
|
||
else
|
||
elt = XVECTOR (this)->contents[thisindex++];
|
||
}
|
||
|
||
/* Store into result */
|
||
if (toindex < 0)
|
||
{
|
||
XCONS (tail)->car = elt;
|
||
prev = tail;
|
||
tail = XCONS (tail)->cdr;
|
||
}
|
||
else if (VECTORP (val))
|
||
XVECTOR (val)->contents[toindex++] = elt;
|
||
else
|
||
{
|
||
while (!INTEGERP (elt))
|
||
elt = wrong_type_argument (Qintegerp, elt);
|
||
{
|
||
#ifdef MASSC_REGISTER_BUG
|
||
/* Even removing all "register"s doesn't disable this bug!
|
||
Nothing simpler than this seems to work. */
|
||
unsigned char *p = & XSTRING (val)->data[toindex++];
|
||
*p = XINT (elt);
|
||
#else
|
||
XSTRING (val)->data[toindex++] = XINT (elt);
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (!NILP (prev))
|
||
XCONS (prev)->cdr = last_tail;
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
|
||
"Return a copy of ALIST.\n\
|
||
This is an alist which represents the same mapping from objects to objects,\n\
|
||
but does not share the alist structure with ALIST.\n\
|
||
The objects mapped (cars and cdrs of elements of the alist)\n\
|
||
are shared, however.\n\
|
||
Elements of ALIST that are not conses are also shared.")
|
||
(alist)
|
||
Lisp_Object alist;
|
||
{
|
||
register Lisp_Object tem;
|
||
|
||
CHECK_LIST (alist, 0);
|
||
if (NILP (alist))
|
||
return alist;
|
||
alist = concat (1, &alist, Lisp_Cons, 0);
|
||
for (tem = alist; CONSP (tem); tem = XCONS (tem)->cdr)
|
||
{
|
||
register Lisp_Object car;
|
||
car = XCONS (tem)->car;
|
||
|
||
if (CONSP (car))
|
||
XCONS (tem)->car = Fcons (XCONS (car)->car, XCONS (car)->cdr);
|
||
}
|
||
return alist;
|
||
}
|
||
|
||
DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
|
||
"Return a substring of STRING, starting at index FROM and ending before TO.\n\
|
||
TO may be nil or omitted; then the substring runs to the end of STRING.\n\
|
||
If FROM or TO is negative, it counts from the end.")
|
||
(string, from, to)
|
||
Lisp_Object string;
|
||
register Lisp_Object from, to;
|
||
{
|
||
Lisp_Object res;
|
||
|
||
CHECK_STRING (string, 0);
|
||
CHECK_NUMBER (from, 1);
|
||
if (NILP (to))
|
||
to = Flength (string);
|
||
else
|
||
CHECK_NUMBER (to, 2);
|
||
|
||
if (XINT (from) < 0)
|
||
XSETINT (from, XINT (from) + XSTRING (string)->size);
|
||
if (XINT (to) < 0)
|
||
XSETINT (to, XINT (to) + XSTRING (string)->size);
|
||
if (!(0 <= XINT (from) && XINT (from) <= XINT (to)
|
||
&& XINT (to) <= XSTRING (string)->size))
|
||
args_out_of_range_3 (string, from, to);
|
||
|
||
res = make_string (XSTRING (string)->data + XINT (from),
|
||
XINT (to) - XINT (from));
|
||
copy_text_properties (from, to, string, make_number (0), res, Qnil);
|
||
return res;
|
||
}
|
||
|
||
DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
|
||
"Take cdr N times on LIST, returns the result.")
|
||
(n, list)
|
||
Lisp_Object n;
|
||
register Lisp_Object list;
|
||
{
|
||
register int i, num;
|
||
CHECK_NUMBER (n, 0);
|
||
num = XINT (n);
|
||
for (i = 0; i < num && !NILP (list); i++)
|
||
{
|
||
QUIT;
|
||
list = Fcdr (list);
|
||
}
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("nth", Fnth, Snth, 2, 2, 0,
|
||
"Return the Nth element of LIST.\n\
|
||
N counts from zero. If LIST is not that long, nil is returned.")
|
||
(n, list)
|
||
Lisp_Object n, list;
|
||
{
|
||
return Fcar (Fnthcdr (n, list));
|
||
}
|
||
|
||
DEFUN ("elt", Felt, Selt, 2, 2, 0,
|
||
"Return element of SEQUENCE at index N.")
|
||
(seq, n)
|
||
register Lisp_Object seq, n;
|
||
{
|
||
CHECK_NUMBER (n, 0);
|
||
while (1)
|
||
{
|
||
if (CONSP (seq) || NILP (seq))
|
||
return Fcar (Fnthcdr (n, seq));
|
||
else if (STRINGP (seq) || VECTORP (seq) || BOOL_VECTOR_P (seq)
|
||
|| CHAR_TABLE_P (seq))
|
||
return Faref (seq, n);
|
||
else
|
||
seq = wrong_type_argument (Qsequencep, seq);
|
||
}
|
||
}
|
||
|
||
DEFUN ("member", Fmember, Smember, 2, 2, 0,
|
||
"Return non-nil if ELT is an element of LIST. Comparison done with `equal'.\n\
|
||
The value is actually the tail of LIST whose car is ELT.")
|
||
(elt, list)
|
||
register Lisp_Object elt;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object tem;
|
||
tem = Fcar (tail);
|
||
if (! NILP (Fequal (elt, tem)))
|
||
return tail;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
|
||
"Return non-nil if ELT is an element of LIST. Comparison done with EQ.\n\
|
||
The value is actually the tail of LIST whose car is ELT.")
|
||
(elt, list)
|
||
register Lisp_Object elt;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object tem;
|
||
tem = Fcar (tail);
|
||
if (EQ (elt, tem)) return tail;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
|
||
"Return non-nil if KEY is `eq' to the car of an element of LIST.\n\
|
||
The value is actually the element of LIST whose car is KEY.\n\
|
||
Elements of LIST that are not conses are ignored.")
|
||
(key, list)
|
||
register Lisp_Object key;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object elt, tem;
|
||
elt = Fcar (tail);
|
||
if (!CONSP (elt)) continue;
|
||
tem = Fcar (elt);
|
||
if (EQ (key, tem)) return elt;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
/* Like Fassq but never report an error and do not allow quits.
|
||
Use only on lists known never to be circular. */
|
||
|
||
Lisp_Object
|
||
assq_no_quit (key, list)
|
||
register Lisp_Object key;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; CONSP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object elt, tem;
|
||
elt = Fcar (tail);
|
||
if (!CONSP (elt)) continue;
|
||
tem = Fcar (elt);
|
||
if (EQ (key, tem)) return elt;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
|
||
"Return non-nil if KEY is `equal' to the car of an element of LIST.\n\
|
||
The value is actually the element of LIST whose car equals KEY.")
|
||
(key, list)
|
||
register Lisp_Object key;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object elt, tem;
|
||
elt = Fcar (tail);
|
||
if (!CONSP (elt)) continue;
|
||
tem = Fequal (Fcar (elt), key);
|
||
if (!NILP (tem)) return elt;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
|
||
"Return non-nil if ELT is `eq' to the cdr of an element of LIST.\n\
|
||
The value is actually the element of LIST whose cdr is ELT.")
|
||
(key, list)
|
||
register Lisp_Object key;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object elt, tem;
|
||
elt = Fcar (tail);
|
||
if (!CONSP (elt)) continue;
|
||
tem = Fcdr (elt);
|
||
if (EQ (key, tem)) return elt;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
|
||
"Return non-nil if KEY is `equal' to the cdr of an element of LIST.\n\
|
||
The value is actually the element of LIST whose cdr equals KEY.")
|
||
(key, list)
|
||
register Lisp_Object key;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
||
{
|
||
register Lisp_Object elt, tem;
|
||
elt = Fcar (tail);
|
||
if (!CONSP (elt)) continue;
|
||
tem = Fequal (Fcdr (elt), key);
|
||
if (!NILP (tem)) return elt;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
|
||
"Delete by side effect any occurrences of ELT as a member of LIST.\n\
|
||
The modified LIST is returned. Comparison is done with `eq'.\n\
|
||
If the first member of LIST is ELT, there is no way to remove it by side effect;\n\
|
||
therefore, write `(setq foo (delq element foo))'\n\
|
||
to be sure of changing the value of `foo'.")
|
||
(elt, list)
|
||
register Lisp_Object elt;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail, prev;
|
||
register Lisp_Object tem;
|
||
|
||
tail = list;
|
||
prev = Qnil;
|
||
while (!NILP (tail))
|
||
{
|
||
tem = Fcar (tail);
|
||
if (EQ (elt, tem))
|
||
{
|
||
if (NILP (prev))
|
||
list = Fcdr (tail);
|
||
else
|
||
Fsetcdr (prev, Fcdr (tail));
|
||
}
|
||
else
|
||
prev = tail;
|
||
tail = Fcdr (tail);
|
||
QUIT;
|
||
}
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
|
||
"Delete by side effect any occurrences of ELT as a member of LIST.\n\
|
||
The modified LIST is returned. Comparison is done with `equal'.\n\
|
||
If the first member of LIST is ELT, deleting it is not a side effect;\n\
|
||
it is simply using a different list.\n\
|
||
Therefore, write `(setq foo (delete element foo))'\n\
|
||
to be sure of changing the value of `foo'.")
|
||
(elt, list)
|
||
register Lisp_Object elt;
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object tail, prev;
|
||
register Lisp_Object tem;
|
||
|
||
tail = list;
|
||
prev = Qnil;
|
||
while (!NILP (tail))
|
||
{
|
||
tem = Fcar (tail);
|
||
if (! NILP (Fequal (elt, tem)))
|
||
{
|
||
if (NILP (prev))
|
||
list = Fcdr (tail);
|
||
else
|
||
Fsetcdr (prev, Fcdr (tail));
|
||
}
|
||
else
|
||
prev = tail;
|
||
tail = Fcdr (tail);
|
||
QUIT;
|
||
}
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
|
||
"Reverse LIST by modifying cdr pointers.\n\
|
||
Returns the beginning of the reversed list.")
|
||
(list)
|
||
Lisp_Object list;
|
||
{
|
||
register Lisp_Object prev, tail, next;
|
||
|
||
if (NILP (list)) return list;
|
||
prev = Qnil;
|
||
tail = list;
|
||
while (!NILP (tail))
|
||
{
|
||
QUIT;
|
||
next = Fcdr (tail);
|
||
Fsetcdr (tail, prev);
|
||
prev = tail;
|
||
tail = next;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
|
||
"Reverse LIST, copying. Returns the beginning of the reversed list.\n\
|
||
See also the function `nreverse', which is used more often.")
|
||
(list)
|
||
Lisp_Object list;
|
||
{
|
||
Lisp_Object length;
|
||
register Lisp_Object *vec;
|
||
register Lisp_Object tail;
|
||
register int i;
|
||
|
||
length = Flength (list);
|
||
vec = (Lisp_Object *) alloca (XINT (length) * sizeof (Lisp_Object));
|
||
for (i = XINT (length) - 1, tail = list; i >= 0; i--, tail = Fcdr (tail))
|
||
vec[i] = Fcar (tail);
|
||
|
||
return Flist (XINT (length), vec);
|
||
}
|
||
|
||
Lisp_Object merge ();
|
||
|
||
DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
|
||
"Sort LIST, stably, comparing elements using PREDICATE.\n\
|
||
Returns the sorted list. LIST is modified by side effects.\n\
|
||
PREDICATE is called with two elements of LIST, and should return T\n\
|
||
if the first element is \"less\" than the second.")
|
||
(list, pred)
|
||
Lisp_Object list, pred;
|
||
{
|
||
Lisp_Object front, back;
|
||
register Lisp_Object len, tem;
|
||
struct gcpro gcpro1, gcpro2;
|
||
register int length;
|
||
|
||
front = list;
|
||
len = Flength (list);
|
||
length = XINT (len);
|
||
if (length < 2)
|
||
return list;
|
||
|
||
XSETINT (len, (length / 2) - 1);
|
||
tem = Fnthcdr (len, list);
|
||
back = Fcdr (tem);
|
||
Fsetcdr (tem, Qnil);
|
||
|
||
GCPRO2 (front, back);
|
||
front = Fsort (front, pred);
|
||
back = Fsort (back, pred);
|
||
UNGCPRO;
|
||
return merge (front, back, pred);
|
||
}
|
||
|
||
Lisp_Object
|
||
merge (org_l1, org_l2, pred)
|
||
Lisp_Object org_l1, org_l2;
|
||
Lisp_Object pred;
|
||
{
|
||
Lisp_Object value;
|
||
register Lisp_Object tail;
|
||
Lisp_Object tem;
|
||
register Lisp_Object l1, l2;
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
||
|
||
l1 = org_l1;
|
||
l2 = org_l2;
|
||
tail = Qnil;
|
||
value = Qnil;
|
||
|
||
/* It is sufficient to protect org_l1 and org_l2.
|
||
When l1 and l2 are updated, we copy the new values
|
||
back into the org_ vars. */
|
||
GCPRO4 (org_l1, org_l2, pred, value);
|
||
|
||
while (1)
|
||
{
|
||
if (NILP (l1))
|
||
{
|
||
UNGCPRO;
|
||
if (NILP (tail))
|
||
return l2;
|
||
Fsetcdr (tail, l2);
|
||
return value;
|
||
}
|
||
if (NILP (l2))
|
||
{
|
||
UNGCPRO;
|
||
if (NILP (tail))
|
||
return l1;
|
||
Fsetcdr (tail, l1);
|
||
return value;
|
||
}
|
||
tem = call2 (pred, Fcar (l2), Fcar (l1));
|
||
if (NILP (tem))
|
||
{
|
||
tem = l1;
|
||
l1 = Fcdr (l1);
|
||
org_l1 = l1;
|
||
}
|
||
else
|
||
{
|
||
tem = l2;
|
||
l2 = Fcdr (l2);
|
||
org_l2 = l2;
|
||
}
|
||
if (NILP (tail))
|
||
value = tem;
|
||
else
|
||
Fsetcdr (tail, tem);
|
||
tail = tem;
|
||
}
|
||
}
|
||
|
||
|
||
DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
|
||
"Extract a value from a property list.\n\
|
||
PLIST is a property list, which is a list of the form\n\
|
||
\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value\n\
|
||
corresponding to the given PROP, or nil if PROP is not\n\
|
||
one of the properties on the list.")
|
||
(val, prop)
|
||
Lisp_Object val;
|
||
register Lisp_Object prop;
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = val; !NILP (tail); tail = Fcdr (Fcdr (tail)))
|
||
{
|
||
register Lisp_Object tem;
|
||
tem = Fcar (tail);
|
||
if (EQ (prop, tem))
|
||
return Fcar (Fcdr (tail));
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("get", Fget, Sget, 2, 2, 0,
|
||
"Return the value of SYMBOL's PROPNAME property.\n\
|
||
This is the last value stored with `(put SYMBOL PROPNAME VALUE)'.")
|
||
(symbol, propname)
|
||
Lisp_Object symbol, propname;
|
||
{
|
||
CHECK_SYMBOL (symbol, 0);
|
||
return Fplist_get (XSYMBOL (symbol)->plist, propname);
|
||
}
|
||
|
||
DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
|
||
"Change value in PLIST of PROP to VAL.\n\
|
||
PLIST is a property list, which is a list of the form\n\
|
||
\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.\n\
|
||
If PROP is already a property on the list, its value is set to VAL,\n\
|
||
otherwise the new PROP VAL pair is added. The new plist is returned;\n\
|
||
use `(setq x (plist-put x prop val))' to be sure to use the new value.\n\
|
||
The PLIST is modified by side effects.")
|
||
(plist, prop, val)
|
||
Lisp_Object plist;
|
||
register Lisp_Object prop;
|
||
Lisp_Object val;
|
||
{
|
||
register Lisp_Object tail, prev;
|
||
Lisp_Object newcell;
|
||
prev = Qnil;
|
||
for (tail = plist; CONSP (tail) && CONSP (XCONS (tail)->cdr);
|
||
tail = XCONS (XCONS (tail)->cdr)->cdr)
|
||
{
|
||
if (EQ (prop, XCONS (tail)->car))
|
||
{
|
||
Fsetcar (XCONS (tail)->cdr, val);
|
||
return plist;
|
||
}
|
||
prev = tail;
|
||
}
|
||
newcell = Fcons (prop, Fcons (val, Qnil));
|
||
if (NILP (prev))
|
||
return newcell;
|
||
else
|
||
Fsetcdr (XCONS (prev)->cdr, newcell);
|
||
return plist;
|
||
}
|
||
|
||
DEFUN ("put", Fput, Sput, 3, 3, 0,
|
||
"Store SYMBOL's PROPNAME property with value VALUE.\n\
|
||
It can be retrieved with `(get SYMBOL PROPNAME)'.")
|
||
(symbol, propname, value)
|
||
Lisp_Object symbol, propname, value;
|
||
{
|
||
CHECK_SYMBOL (symbol, 0);
|
||
XSYMBOL (symbol)->plist
|
||
= Fplist_put (XSYMBOL (symbol)->plist, propname, value);
|
||
return value;
|
||
}
|
||
|
||
DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
|
||
"T if two Lisp objects have similar structure and contents.\n\
|
||
They must have the same data type.\n\
|
||
Conses are compared by comparing the cars and the cdrs.\n\
|
||
Vectors and strings are compared element by element.\n\
|
||
Numbers are compared by value, but integers cannot equal floats.\n\
|
||
(Use `=' if you want integers and floats to be able to be equal.)\n\
|
||
Symbols must match exactly.")
|
||
(o1, o2)
|
||
register Lisp_Object o1, o2;
|
||
{
|
||
return internal_equal (o1, o2, 0) ? Qt : Qnil;
|
||
}
|
||
|
||
static int
|
||
internal_equal (o1, o2, depth)
|
||
register Lisp_Object o1, o2;
|
||
int depth;
|
||
{
|
||
if (depth > 200)
|
||
error ("Stack overflow in equal");
|
||
|
||
tail_recurse:
|
||
QUIT;
|
||
if (EQ (o1, o2))
|
||
return 1;
|
||
if (XTYPE (o1) != XTYPE (o2))
|
||
return 0;
|
||
|
||
switch (XTYPE (o1))
|
||
{
|
||
#ifdef LISP_FLOAT_TYPE
|
||
case Lisp_Float:
|
||
return (extract_float (o1) == extract_float (o2));
|
||
#endif
|
||
|
||
case Lisp_Cons:
|
||
if (!internal_equal (XCONS (o1)->car, XCONS (o2)->car, depth + 1))
|
||
return 0;
|
||
o1 = XCONS (o1)->cdr;
|
||
o2 = XCONS (o2)->cdr;
|
||
goto tail_recurse;
|
||
|
||
case Lisp_Misc:
|
||
if (XMISCTYPE (o1) != XMISCTYPE (o2))
|
||
return 0;
|
||
if (OVERLAYP (o1))
|
||
{
|
||
if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o1),
|
||
depth + 1)
|
||
|| !internal_equal (OVERLAY_END (o1), OVERLAY_END (o1),
|
||
depth + 1))
|
||
return 0;
|
||
o1 = XOVERLAY (o1)->plist;
|
||
o2 = XOVERLAY (o2)->plist;
|
||
goto tail_recurse;
|
||
}
|
||
if (MARKERP (o1))
|
||
{
|
||
return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
|
||
&& (XMARKER (o1)->buffer == 0
|
||
|| XMARKER (o1)->bufpos == XMARKER (o2)->bufpos));
|
||
}
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
{
|
||
register int i, size;
|
||
size = XVECTOR (o1)->size;
|
||
/* Pseudovectors have the type encoded in the size field, so this test
|
||
actually checks that the objects have the same type as well as the
|
||
same size. */
|
||
if (XVECTOR (o2)->size != size)
|
||
return 0;
|
||
/* Boolvectors are compared much like strings. */
|
||
if (BOOL_VECTOR_P (o1))
|
||
{
|
||
int size_in_chars
|
||
= (XBOOL_VECTOR (o1)->size + BITS_PER_CHAR) / BITS_PER_CHAR;
|
||
|
||
if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
|
||
return 0;
|
||
if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
|
||
size_in_chars))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Aside from them, only true vectors, char-tables, and compiled
|
||
functions are sensible to compare, so eliminate the others now. */
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
{
|
||
if (!(size & (PVEC_COMPILED | PVEC_CHAR_TABLE)))
|
||
return 0;
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
}
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
Lisp_Object v1, v2;
|
||
v1 = XVECTOR (o1)->contents [i];
|
||
v2 = XVECTOR (o2)->contents [i];
|
||
if (!internal_equal (v1, v2, depth + 1))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
break;
|
||
|
||
case Lisp_String:
|
||
if (XSTRING (o1)->size != XSTRING (o2)->size)
|
||
return 0;
|
||
if (bcmp (XSTRING (o1)->data, XSTRING (o2)->data,
|
||
XSTRING (o1)->size))
|
||
return 0;
|
||
#ifdef USE_TEXT_PROPERTIES
|
||
/* If the strings have intervals, verify they match;
|
||
if not, they are unequal. */
|
||
if ((XSTRING (o1)->intervals != 0 || XSTRING (o2)->intervals != 0)
|
||
&& ! compare_string_intervals (o1, o2))
|
||
return 0;
|
||
#endif
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
|
||
"Store each element of ARRAY with ITEM.\n\
|
||
ARRAY is a vector, string, char-table, or bool-vector.")
|
||
(array, item)
|
||
Lisp_Object array, item;
|
||
{
|
||
register int size, index, charval;
|
||
retry:
|
||
if (VECTORP (array))
|
||
{
|
||
register Lisp_Object *p = XVECTOR (array)->contents;
|
||
size = XVECTOR (array)->size;
|
||
for (index = 0; index < size; index++)
|
||
p[index] = item;
|
||
}
|
||
else if (CHAR_TABLE_P (array))
|
||
{
|
||
register Lisp_Object *p = XCHAR_TABLE (array)->contents;
|
||
size = CHAR_TABLE_ORDINARY_SLOTS;
|
||
for (index = 0; index < size; index++)
|
||
p[index] = item;
|
||
XCHAR_TABLE (array)->defalt = Qnil;
|
||
}
|
||
else if (STRINGP (array))
|
||
{
|
||
register unsigned char *p = XSTRING (array)->data;
|
||
CHECK_NUMBER (item, 1);
|
||
charval = XINT (item);
|
||
size = XSTRING (array)->size;
|
||
for (index = 0; index < size; index++)
|
||
p[index] = charval;
|
||
}
|
||
else if (BOOL_VECTOR_P (array))
|
||
{
|
||
register unsigned char *p = XBOOL_VECTOR (array)->data;
|
||
int size_in_chars
|
||
= (XBOOL_VECTOR (array)->size + BITS_PER_CHAR) / BITS_PER_CHAR;
|
||
|
||
charval = (! NILP (item) ? -1 : 0);
|
||
for (index = 0; index < size_in_chars; index++)
|
||
p[index] = charval;
|
||
}
|
||
else
|
||
{
|
||
array = wrong_type_argument (Qarrayp, array);
|
||
goto retry;
|
||
}
|
||
return array;
|
||
}
|
||
|
||
DEFUN ("char-table-subtype", Fchar_table_subtype, Schar_table_subtype,
|
||
1, 1, 0,
|
||
"Return the subtype of char-table CHAR-TABLE. The value is a symbol.")
|
||
(chartable)
|
||
Lisp_Object chartable;
|
||
{
|
||
CHECK_CHAR_TABLE (chartable, 0);
|
||
|
||
return XCHAR_TABLE (chartable)->purpose;
|
||
}
|
||
|
||
DEFUN ("char-table-parent", Fchar_table_parent, Schar_table_parent,
|
||
1, 1, 0,
|
||
"Return the parent char-table of CHAR-TABLE.\n\
|
||
The value is either nil or another char-table.\n\
|
||
If CHAR-TABLE holds nil for a given character,\n\
|
||
then the actual applicable value is inherited from the parent char-table\n\
|
||
\(or from its parents, if necessary).")
|
||
(chartable)
|
||
Lisp_Object chartable;
|
||
{
|
||
CHECK_CHAR_TABLE (chartable, 0);
|
||
|
||
return XCHAR_TABLE (chartable)->parent;
|
||
}
|
||
|
||
DEFUN ("set-char-table-parent", Fset_char_table_parent, Sset_char_table_parent,
|
||
2, 2, 0,
|
||
"Set the parent char-table of CHAR-TABLE to PARENT.\n\
|
||
PARENT must be either nil or another char-table.")
|
||
(chartable, parent)
|
||
Lisp_Object chartable, parent;
|
||
{
|
||
Lisp_Object temp;
|
||
|
||
CHECK_CHAR_TABLE (chartable, 0);
|
||
|
||
if (!NILP (parent))
|
||
{
|
||
CHECK_CHAR_TABLE (parent, 0);
|
||
|
||
for (temp = parent; !NILP (temp); temp = XCHAR_TABLE (temp)->parent)
|
||
if (EQ (temp, chartable))
|
||
error ("Attempt to make a chartable be its own parent");
|
||
}
|
||
|
||
XCHAR_TABLE (chartable)->parent = parent;
|
||
|
||
return parent;
|
||
}
|
||
|
||
DEFUN ("char-table-extra-slot", Fchar_table_extra_slot, Schar_table_extra_slot,
|
||
2, 2, 0,
|
||
"Return the value in extra-slot number N of char-table CHAR-TABLE.")
|
||
(chartable, n)
|
||
Lisp_Object chartable, n;
|
||
{
|
||
CHECK_CHAR_TABLE (chartable, 1);
|
||
CHECK_NUMBER (n, 2);
|
||
if (XINT (n) < 0
|
||
|| XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (chartable)))
|
||
args_out_of_range (chartable, n);
|
||
|
||
return XCHAR_TABLE (chartable)->extras[XINT (n)];
|
||
}
|
||
|
||
DEFUN ("set-char-table-extra-slot", Fset_char_table_extra_slot,
|
||
Sset_char_table_extra_slot,
|
||
3, 3, 0,
|
||
"Set extra-slot number N of CHAR-TABLE to VALUE.")
|
||
(chartable, n, value)
|
||
Lisp_Object chartable, n, value;
|
||
{
|
||
CHECK_CHAR_TABLE (chartable, 1);
|
||
CHECK_NUMBER (n, 2);
|
||
if (XINT (n) < 0
|
||
|| XINT (n) >= CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (chartable)))
|
||
args_out_of_range (chartable, n);
|
||
|
||
return XCHAR_TABLE (chartable)->extras[XINT (n)] = value;
|
||
}
|
||
|
||
DEFUN ("char-table-range", Fchar_table_range, Schar_table_range,
|
||
2, 2, 0,
|
||
"Return the value in CHARTABLE for a range of characters RANGE.\n\
|
||
RANGE should be t (for all characters), nil (for the default value)\n\
|
||
a vector which identifies a character set or a row of a character set,\n\
|
||
or a character code.")
|
||
(chartable, range)
|
||
Lisp_Object chartable, range;
|
||
{
|
||
int i;
|
||
|
||
CHECK_CHAR_TABLE (chartable, 0);
|
||
|
||
if (EQ (range, Qnil))
|
||
return XCHAR_TABLE (chartable)->defalt;
|
||
else if (INTEGERP (range))
|
||
return Faref (chartable, range);
|
||
else if (VECTORP (range))
|
||
{
|
||
for (i = 0; i < XVECTOR (range)->size - 1; i++)
|
||
chartable = Faref (chartable, XVECTOR (range)->contents[i]);
|
||
|
||
if (EQ (XVECTOR (range)->contents[i], Qnil))
|
||
return XCHAR_TABLE (chartable)->defalt;
|
||
else
|
||
return Faref (chartable, XVECTOR (range)->contents[i]);
|
||
}
|
||
else
|
||
error ("Invalid RANGE argument to `char-table-range'");
|
||
}
|
||
|
||
DEFUN ("set-char-table-range", Fset_char_table_range, Sset_char_table_range,
|
||
3, 3, 0,
|
||
"Set the value in CHARTABLE for a range of characters RANGE to VALUE.\n\
|
||
RANGE should be t (for all characters), nil (for the default value)\n\
|
||
a vector which identifies a character set or a row of a character set,\n\
|
||
or a character code.")
|
||
(chartable, range, value)
|
||
Lisp_Object chartable, range, value;
|
||
{
|
||
int i;
|
||
|
||
CHECK_CHAR_TABLE (chartable, 0);
|
||
|
||
if (EQ (range, Qt))
|
||
for (i = 0; i < CHAR_TABLE_ORDINARY_SLOTS; i++)
|
||
XCHAR_TABLE (chartable)->contents[i] = value;
|
||
else if (EQ (range, Qnil))
|
||
XCHAR_TABLE (chartable)->defalt = value;
|
||
else if (INTEGERP (range))
|
||
Faset (chartable, range, value);
|
||
else if (VECTORP (range))
|
||
{
|
||
for (i = 0; i < XVECTOR (range)->size - 1; i++)
|
||
chartable = Faref (chartable, XVECTOR (range)->contents[i]);
|
||
|
||
if (EQ (XVECTOR (range)->contents[i], Qnil))
|
||
XCHAR_TABLE (chartable)->defalt = value;
|
||
else
|
||
Faset (chartable, XVECTOR (range)->contents[i], value);
|
||
}
|
||
else
|
||
error ("Invalid RANGE argument to `set-char-table-range'");
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Map C_FUNCTION or FUNCTION over CHARTABLE, calling it for each
|
||
character or group of characters that share a value.
|
||
DEPTH is the current depth in the originally specified
|
||
chartable, and INDICES contains the vector indices
|
||
for the levels our callers have descended. */
|
||
|
||
void
|
||
map_char_table (c_function, function, chartable, depth, indices)
|
||
Lisp_Object (*c_function) (), function, chartable, depth, *indices;
|
||
{
|
||
int i;
|
||
int size = CHAR_TABLE_ORDINARY_SLOTS;
|
||
|
||
/* Make INDICES longer if we are about to fill it up. */
|
||
if ((depth % 10) == 9)
|
||
{
|
||
Lisp_Object *new_indices
|
||
= (Lisp_Object *) alloca ((depth += 10) * sizeof (Lisp_Object));
|
||
bcopy (indices, new_indices, depth * sizeof (Lisp_Object));
|
||
indices = new_indices;
|
||
}
|
||
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
Lisp_Object elt;
|
||
indices[depth] = i;
|
||
elt = XCHAR_TABLE (chartable)->contents[i];
|
||
if (CHAR_TABLE_P (elt))
|
||
map_char_table (chartable, c_function, function, depth + 1, indices);
|
||
else if (c_function)
|
||
(*c_function) (depth + 1, indices, elt);
|
||
/* Here we should handle all cases where the range is a single character
|
||
by passing that character as a number. Currently, that is
|
||
all the time, but with the MULE code this will have to be changed. */
|
||
else if (depth == 0)
|
||
call2 (function, make_number (i), elt);
|
||
else
|
||
call2 (function, Fvector (depth + 1, indices), elt);
|
||
}
|
||
}
|
||
|
||
DEFUN ("map-char-table", Fmap_char_table, Smap_char_table,
|
||
2, 2, 0,
|
||
"Call FUNCTION for each range of like characters in CHARTABLE.\n\
|
||
FUNCTION is called with two arguments--a key and a value.\n\
|
||
The key is always a possible RANGE argument to `set-char-table-range'.")
|
||
(function, chartable)
|
||
Lisp_Object function, chartable;
|
||
{
|
||
Lisp_Object keyvec;
|
||
Lisp_Object *indices = (Lisp_Object *) alloca (10 * sizeof (Lisp_Object));
|
||
|
||
map_char_table (NULL, function, chartable, 0, indices);
|
||
return Qnil;
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
nconc2 (s1, s2)
|
||
Lisp_Object s1, s2;
|
||
{
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[2];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
return Fnconc (2, args);
|
||
#else
|
||
return Fnconc (2, &s1);
|
||
#endif /* NO_ARG_ARRAY */
|
||
}
|
||
|
||
DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
|
||
"Concatenate any number of lists by altering them.\n\
|
||
Only the last argument is not altered, and need not be a list.")
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
register int argnum;
|
||
register Lisp_Object tail, tem, val;
|
||
|
||
val = Qnil;
|
||
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
tem = args[argnum];
|
||
if (NILP (tem)) continue;
|
||
|
||
if (NILP (val))
|
||
val = tem;
|
||
|
||
if (argnum + 1 == nargs) break;
|
||
|
||
if (!CONSP (tem))
|
||
tem = wrong_type_argument (Qlistp, tem);
|
||
|
||
while (CONSP (tem))
|
||
{
|
||
tail = tem;
|
||
tem = Fcdr (tail);
|
||
QUIT;
|
||
}
|
||
|
||
tem = args[argnum + 1];
|
||
Fsetcdr (tail, tem);
|
||
if (NILP (tem))
|
||
args[argnum + 1] = tail;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* This is the guts of all mapping functions.
|
||
Apply fn to each element of seq, one by one,
|
||
storing the results into elements of vals, a C vector of Lisp_Objects.
|
||
leni is the length of vals, which should also be the length of seq. */
|
||
|
||
static void
|
||
mapcar1 (leni, vals, fn, seq)
|
||
int leni;
|
||
Lisp_Object *vals;
|
||
Lisp_Object fn, seq;
|
||
{
|
||
register Lisp_Object tail;
|
||
Lisp_Object dummy;
|
||
register int i;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
/* Don't let vals contain any garbage when GC happens. */
|
||
for (i = 0; i < leni; i++)
|
||
vals[i] = Qnil;
|
||
|
||
GCPRO3 (dummy, fn, seq);
|
||
gcpro1.var = vals;
|
||
gcpro1.nvars = leni;
|
||
/* We need not explicitly protect `tail' because it is used only on lists, and
|
||
1) lists are not relocated and 2) the list is marked via `seq' so will not be freed */
|
||
|
||
if (VECTORP (seq))
|
||
{
|
||
for (i = 0; i < leni; i++)
|
||
{
|
||
dummy = XVECTOR (seq)->contents[i];
|
||
vals[i] = call1 (fn, dummy);
|
||
}
|
||
}
|
||
else if (STRINGP (seq))
|
||
{
|
||
for (i = 0; i < leni; i++)
|
||
{
|
||
XSETFASTINT (dummy, XSTRING (seq)->data[i]);
|
||
vals[i] = call1 (fn, dummy);
|
||
}
|
||
}
|
||
else /* Must be a list, since Flength did not get an error */
|
||
{
|
||
tail = seq;
|
||
for (i = 0; i < leni; i++)
|
||
{
|
||
vals[i] = call1 (fn, Fcar (tail));
|
||
tail = Fcdr (tail);
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
|
||
"Apply FN to each element of SEQ, and concat the results as strings.\n\
|
||
In between each pair of results, stick in SEP.\n\
|
||
Thus, \" \" as SEP results in spaces between the values returned by FN.")
|
||
(fn, seq, sep)
|
||
Lisp_Object fn, seq, sep;
|
||
{
|
||
Lisp_Object len;
|
||
register int leni;
|
||
int nargs;
|
||
register Lisp_Object *args;
|
||
register int i;
|
||
struct gcpro gcpro1;
|
||
|
||
len = Flength (seq);
|
||
leni = XINT (len);
|
||
nargs = leni + leni - 1;
|
||
if (nargs < 0) return build_string ("");
|
||
|
||
args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
|
||
|
||
GCPRO1 (sep);
|
||
mapcar1 (leni, args, fn, seq);
|
||
UNGCPRO;
|
||
|
||
for (i = leni - 1; i >= 0; i--)
|
||
args[i + i] = args[i];
|
||
|
||
for (i = 1; i < nargs; i += 2)
|
||
args[i] = sep;
|
||
|
||
return Fconcat (nargs, args);
|
||
}
|
||
|
||
DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
|
||
"Apply FUNCTION to each element of SEQUENCE, and make a list of the results.\n\
|
||
The result is a list just as long as SEQUENCE.\n\
|
||
SEQUENCE may be a list, a vector or a string.")
|
||
(fn, seq)
|
||
Lisp_Object fn, seq;
|
||
{
|
||
register Lisp_Object len;
|
||
register int leni;
|
||
register Lisp_Object *args;
|
||
|
||
len = Flength (seq);
|
||
leni = XFASTINT (len);
|
||
args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
|
||
|
||
mapcar1 (leni, args, fn, seq);
|
||
|
||
return Flist (leni, args);
|
||
}
|
||
|
||
/* Anything that calls this function must protect from GC! */
|
||
|
||
DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
|
||
"Ask user a \"y or n\" question. Return t if answer is \"y\".\n\
|
||
Takes one argument, which is the string to display to ask the question.\n\
|
||
It should end in a space; `y-or-n-p' adds `(y or n) ' to it.\n\
|
||
No confirmation of the answer is requested; a single character is enough.\n\
|
||
Also accepts Space to mean yes, or Delete to mean no.")
|
||
(prompt)
|
||
Lisp_Object prompt;
|
||
{
|
||
register Lisp_Object obj, key, def, answer_string, map;
|
||
register int answer;
|
||
Lisp_Object xprompt;
|
||
Lisp_Object args[2];
|
||
int ocech = cursor_in_echo_area;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
map = Fsymbol_value (intern ("query-replace-map"));
|
||
|
||
CHECK_STRING (prompt, 0);
|
||
xprompt = prompt;
|
||
GCPRO2 (prompt, xprompt);
|
||
|
||
while (1)
|
||
{
|
||
#ifdef HAVE_MENUS
|
||
if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
|
||
&& have_menus_p ())
|
||
{
|
||
Lisp_Object pane, menu;
|
||
redisplay_preserve_echo_area ();
|
||
pane = Fcons (Fcons (build_string ("Yes"), Qt),
|
||
Fcons (Fcons (build_string ("No"), Qnil),
|
||
Qnil));
|
||
menu = Fcons (prompt, pane);
|
||
obj = Fx_popup_dialog (Qt, menu);
|
||
answer = !NILP (obj);
|
||
break;
|
||
}
|
||
#endif /* HAVE_MENUS */
|
||
cursor_in_echo_area = 1;
|
||
message_nolog ("%s(y or n) ", XSTRING (xprompt)->data);
|
||
|
||
obj = read_filtered_event (1, 0, 0);
|
||
cursor_in_echo_area = 0;
|
||
/* If we need to quit, quit with cursor_in_echo_area = 0. */
|
||
QUIT;
|
||
|
||
key = Fmake_vector (make_number (1), obj);
|
||
def = Flookup_key (map, key);
|
||
answer_string = Fsingle_key_description (obj);
|
||
|
||
if (EQ (def, intern ("skip")))
|
||
{
|
||
answer = 0;
|
||
break;
|
||
}
|
||
else if (EQ (def, intern ("act")))
|
||
{
|
||
answer = 1;
|
||
break;
|
||
}
|
||
else if (EQ (def, intern ("recenter")))
|
||
{
|
||
Frecenter (Qnil);
|
||
xprompt = prompt;
|
||
continue;
|
||
}
|
||
else if (EQ (def, intern ("quit")))
|
||
Vquit_flag = Qt;
|
||
/* We want to exit this command for exit-prefix,
|
||
and this is the only way to do it. */
|
||
else if (EQ (def, intern ("exit-prefix")))
|
||
Vquit_flag = Qt;
|
||
|
||
QUIT;
|
||
|
||
/* If we don't clear this, then the next call to read_char will
|
||
return quit_char again, and we'll enter an infinite loop. */
|
||
Vquit_flag = Qnil;
|
||
|
||
Fding (Qnil);
|
||
Fdiscard_input ();
|
||
if (EQ (xprompt, prompt))
|
||
{
|
||
args[0] = build_string ("Please answer y or n. ");
|
||
args[1] = prompt;
|
||
xprompt = Fconcat (2, args);
|
||
}
|
||
}
|
||
UNGCPRO;
|
||
|
||
if (! noninteractive)
|
||
{
|
||
cursor_in_echo_area = -1;
|
||
message_nolog ("%s(y or n) %c",
|
||
XSTRING (xprompt)->data, answer ? 'y' : 'n');
|
||
cursor_in_echo_area = ocech;
|
||
}
|
||
|
||
return answer ? Qt : Qnil;
|
||
}
|
||
|
||
/* This is how C code calls `yes-or-no-p' and allows the user
|
||
to redefined it.
|
||
|
||
Anything that calls this function must protect from GC! */
|
||
|
||
Lisp_Object
|
||
do_yes_or_no_p (prompt)
|
||
Lisp_Object prompt;
|
||
{
|
||
return call1 (intern ("yes-or-no-p"), prompt);
|
||
}
|
||
|
||
/* Anything that calls this function must protect from GC! */
|
||
|
||
DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
|
||
"Ask user a yes-or-no question. Return t if answer is yes.\n\
|
||
Takes one argument, which is the string to display to ask the question.\n\
|
||
It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.\n\
|
||
The user must confirm the answer with RET,\n\
|
||
and can edit it until it has been confirmed.")
|
||
(prompt)
|
||
Lisp_Object prompt;
|
||
{
|
||
register Lisp_Object ans;
|
||
Lisp_Object args[2];
|
||
struct gcpro gcpro1;
|
||
Lisp_Object menu;
|
||
|
||
CHECK_STRING (prompt, 0);
|
||
|
||
#ifdef HAVE_MENUS
|
||
if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
|
||
&& have_menus_p ())
|
||
{
|
||
Lisp_Object pane, menu, obj;
|
||
redisplay_preserve_echo_area ();
|
||
pane = Fcons (Fcons (build_string ("Yes"), Qt),
|
||
Fcons (Fcons (build_string ("No"), Qnil),
|
||
Qnil));
|
||
GCPRO1 (pane);
|
||
menu = Fcons (prompt, pane);
|
||
obj = Fx_popup_dialog (Qt, menu);
|
||
UNGCPRO;
|
||
return obj;
|
||
}
|
||
#endif /* HAVE_MENUS */
|
||
|
||
args[0] = prompt;
|
||
args[1] = build_string ("(yes or no) ");
|
||
prompt = Fconcat (2, args);
|
||
|
||
GCPRO1 (prompt);
|
||
|
||
while (1)
|
||
{
|
||
ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
|
||
Qyes_or_no_p_history));
|
||
if (XSTRING (ans)->size == 3 && !strcmp (XSTRING (ans)->data, "yes"))
|
||
{
|
||
UNGCPRO;
|
||
return Qt;
|
||
}
|
||
if (XSTRING (ans)->size == 2 && !strcmp (XSTRING (ans)->data, "no"))
|
||
{
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
Fding (Qnil);
|
||
Fdiscard_input ();
|
||
message ("Please answer yes or no.");
|
||
Fsleep_for (make_number (2), Qnil);
|
||
}
|
||
}
|
||
|
||
DEFUN ("load-average", Fload_average, Sload_average, 0, 0, 0,
|
||
"Return list of 1 minute, 5 minute and 15 minute load averages.\n\
|
||
Each of the three load averages is multiplied by 100,\n\
|
||
then converted to integer.\n\
|
||
If the 5-minute or 15-minute load averages are not available, return a\n\
|
||
shortened list, containing only those averages which are available.")
|
||
()
|
||
{
|
||
double load_ave[3];
|
||
int loads = getloadavg (load_ave, 3);
|
||
Lisp_Object ret;
|
||
|
||
if (loads < 0)
|
||
error ("load-average not implemented for this operating system");
|
||
|
||
ret = Qnil;
|
||
while (loads > 0)
|
||
ret = Fcons (make_number ((int) (load_ave[--loads] * 100.0)), ret);
|
||
|
||
return ret;
|
||
}
|
||
|
||
Lisp_Object Vfeatures;
|
||
|
||
DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 1, 0,
|
||
"Returns t if FEATURE is present in this Emacs.\n\
|
||
Use this to conditionalize execution of lisp code based on the presence or\n\
|
||
absence of emacs or environment extensions.\n\
|
||
Use `provide' to declare that a feature is available.\n\
|
||
This function looks at the value of the variable `features'.")
|
||
(feature)
|
||
Lisp_Object feature;
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_SYMBOL (feature, 0);
|
||
tem = Fmemq (feature, Vfeatures);
|
||
return (NILP (tem)) ? Qnil : Qt;
|
||
}
|
||
|
||
DEFUN ("provide", Fprovide, Sprovide, 1, 1, 0,
|
||
"Announce that FEATURE is a feature of the current Emacs.")
|
||
(feature)
|
||
Lisp_Object feature;
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_SYMBOL (feature, 0);
|
||
if (!NILP (Vautoload_queue))
|
||
Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
||
tem = Fmemq (feature, Vfeatures);
|
||
if (NILP (tem))
|
||
Vfeatures = Fcons (feature, Vfeatures);
|
||
LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
||
return feature;
|
||
}
|
||
|
||
DEFUN ("require", Frequire, Srequire, 1, 2, 0,
|
||
"If feature FEATURE is not loaded, load it from FILENAME.\n\
|
||
If FEATURE is not a member of the list `features', then the feature\n\
|
||
is not loaded; so load the file FILENAME.\n\
|
||
If FILENAME is omitted, the printname of FEATURE is used as the file name.")
|
||
(feature, file_name)
|
||
Lisp_Object feature, file_name;
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_SYMBOL (feature, 0);
|
||
tem = Fmemq (feature, Vfeatures);
|
||
LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
||
if (NILP (tem))
|
||
{
|
||
int count = specpdl_ptr - specpdl;
|
||
|
||
/* Value saved here is to be restored into Vautoload_queue */
|
||
record_unwind_protect (un_autoload, Vautoload_queue);
|
||
Vautoload_queue = Qt;
|
||
|
||
Fload (NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
||
Qnil, Qt, Qnil);
|
||
|
||
tem = Fmemq (feature, Vfeatures);
|
||
if (NILP (tem))
|
||
error ("Required feature %s was not provided",
|
||
XSYMBOL (feature)->name->data );
|
||
|
||
/* Once loading finishes, don't undo it. */
|
||
Vautoload_queue = Qt;
|
||
feature = unbind_to (count, feature);
|
||
}
|
||
return feature;
|
||
}
|
||
|
||
syms_of_fns ()
|
||
{
|
||
Qstring_lessp = intern ("string-lessp");
|
||
staticpro (&Qstring_lessp);
|
||
Qprovide = intern ("provide");
|
||
staticpro (&Qprovide);
|
||
Qrequire = intern ("require");
|
||
staticpro (&Qrequire);
|
||
Qyes_or_no_p_history = intern ("yes-or-no-p-history");
|
||
staticpro (&Qyes_or_no_p_history);
|
||
|
||
DEFVAR_LISP ("features", &Vfeatures,
|
||
"A list of symbols which are the features of the executing emacs.\n\
|
||
Used by `featurep' and `require', and altered by `provide'.");
|
||
Vfeatures = Qnil;
|
||
|
||
defsubr (&Sidentity);
|
||
defsubr (&Srandom);
|
||
defsubr (&Slength);
|
||
defsubr (&Ssafe_length);
|
||
defsubr (&Sstring_equal);
|
||
defsubr (&Sstring_lessp);
|
||
defsubr (&Sappend);
|
||
defsubr (&Sconcat);
|
||
defsubr (&Svconcat);
|
||
defsubr (&Scopy_sequence);
|
||
defsubr (&Scopy_alist);
|
||
defsubr (&Ssubstring);
|
||
defsubr (&Snthcdr);
|
||
defsubr (&Snth);
|
||
defsubr (&Selt);
|
||
defsubr (&Smember);
|
||
defsubr (&Smemq);
|
||
defsubr (&Sassq);
|
||
defsubr (&Sassoc);
|
||
defsubr (&Srassq);
|
||
defsubr (&Srassoc);
|
||
defsubr (&Sdelq);
|
||
defsubr (&Sdelete);
|
||
defsubr (&Snreverse);
|
||
defsubr (&Sreverse);
|
||
defsubr (&Ssort);
|
||
defsubr (&Splist_get);
|
||
defsubr (&Sget);
|
||
defsubr (&Splist_put);
|
||
defsubr (&Sput);
|
||
defsubr (&Sequal);
|
||
defsubr (&Sfillarray);
|
||
defsubr (&Schar_table_subtype);
|
||
defsubr (&Schar_table_parent);
|
||
defsubr (&Sset_char_table_parent);
|
||
defsubr (&Schar_table_extra_slot);
|
||
defsubr (&Sset_char_table_extra_slot);
|
||
defsubr (&Schar_table_range);
|
||
defsubr (&Sset_char_table_range);
|
||
defsubr (&Smap_char_table);
|
||
defsubr (&Snconc);
|
||
defsubr (&Smapcar);
|
||
defsubr (&Smapconcat);
|
||
defsubr (&Sy_or_n_p);
|
||
defsubr (&Syes_or_no_p);
|
||
defsubr (&Sload_average);
|
||
defsubr (&Sfeaturep);
|
||
defsubr (&Srequire);
|
||
defsubr (&Sprovide);
|
||
}
|